Chapter 3

Stoichiometry: Calculations with Chemical Formulas and Equations

3.1 Chemical Reactions

- What happens during a chemical reaction?
- What distinguishes a chemical change from changes in physical properties?
- Draw a picture of a chemical reaction, showing the changes that occur at a molecular level.

$$
\text { Reactants } \rightarrow \text { Products }
$$

- Several levels of examining chemical reactions:
- Macroscopic changes accompanying the chemical changes
- Changes in microscopic structure
- Rearrangement of atoms
- Representation of reactions with equations:
thermite reaction: $2 \mathrm{Al}(\mathrm{s})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Fe}(\mathrm{l})$

Writing Chemical Equations

- Compact representation of chemical reactions
- Features: reactants \rightarrow products (with physical state noted)

$$
2 \mathrm{Al}(\mathrm{~s})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Fe}(\mathrm{l})
$$

Balancing Equations

- Law of Conservation of Mass
- Conservation of atoms
- Do we need to conserve molecules?
$2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
- Adjust coefficients and not subscripts to balance an equation
- Coefficients are usually integers
- Action of Drano ($\mathrm{Al} / \mathrm{NaOH}$)
$2 \mathrm{Al}(\mathrm{s})+2 \mathrm{NaOH}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaAl}(\mathrm{OH})_{4}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})$
- Represents single atoms or molecules, or several molecules, or moles

Examples of chemical reactions

- Fe burning: $4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
- What is wrong with this drawing?

Balancing chemical equations

- Demo: methanol cannon

Balance the reaction:
$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

- Software: Balance.exe available in the Learning Resource Center

Guidelines to balancing equations

- Write correct formulas for reactants and products
- Begin balancing with the most complex formula
- Balance polyatomic ions as a single unit
- Check each reactant and product to verify the coefficients (check atom balance)
- Balance the following equations:
- $\mathrm{Ca}_{3} \mathrm{~N}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{NH}_{3}$
- $\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
- $\mathrm{KClO}_{3} \rightarrow \mathrm{KCl}+\mathrm{O}_{2}$
- $\mathrm{N}_{2} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HNO}_{3}$
- $\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
- $\mathrm{Na}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}+\mathrm{H}_{2}$

3.2 Patterns of Chemical Reactivity

- Demo: Pour together two clear colorless liquids
- Did a chemical reaction occur? How do you know?
- Demo: AlkaSeltzer in water, or calcium in water
- Did a chemical reaction occur?

Observing and Predicting Reactions

- How do we know whether a reaction occurs? What clues does nature offer? Make a list.
- What clues does nature offer that a chemical reaction occurred?

Observing and Predicting Reactions

- Predictions:
- do an experiment
- use periodicity
- use classifications of reactions
- example: combustion reactions involve the reaction of an element or a compound with oxygen, usually with the evolution of heat

Reaction Classifications

- In the following particulate representations, a circle represents an atom and different circles represent different elements. Using these representations, draw pictures of all the different types of atomic/molecular changes these substances could undergo.

- Classify the following reactions, based on the changes happening at an atomic/molecular level.

1. $\mathrm{AlF}_{3}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{HF}(\mathrm{aq})$
2. $\mathrm{BaCl}_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})+2 \mathrm{NaCl}(\mathrm{aq})$
3. $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
4. $\mathrm{Ca}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
5. $\mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})$
6. $\mathrm{Cl}_{2}(\mathrm{aq})+2 \mathrm{NaI}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq})$
7. $\mathrm{Cu}(\mathrm{s})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$
8. $\mathrm{Fe}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{FeCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
9. $\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{SO}_{2}(\mathrm{~g})$
$10.2 \mathrm{HgO}(\mathrm{s}) \rightarrow 2 \mathrm{Hg}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$
10. $\mathrm{KOH}(\mathrm{aq})+\mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{KNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
11. $4 \mathrm{Li}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Li}_{2} \mathrm{O}(\mathrm{s})$
12. $\mathrm{Na}_{2} \mathrm{~S}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
13. $\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g}) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$
14. $\mathrm{NiCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{NiO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
15. $\mathrm{P}_{4}(\mathrm{~s})+10 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{PF}_{5}(\mathrm{~g})$

Reaction Classes
Combination Reactions

- element + element \rightarrow compound
- metal + nonmetal \rightarrow ionic compound
- $\quad 2 \mathrm{Na}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NaCl}(\mathrm{s})$
- nonmetal + nonmetal \rightarrow covalent cmpd
- $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
- Draw a molecular diagram of this type of reaction
- Combination: $\mathrm{K}+\mathrm{Cl}_{2}$

Reaction Classes
Addition Reactions

- element + compound \rightarrow compound
- $\mathrm{Cl}_{2}+2 \mathrm{TiCl}_{3} \rightarrow 2 \mathrm{TiCl}_{4}$
- $\mathrm{Cl}_{2}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$
- Draw a molecular diagram of this type of reaction

Reaction Classes
Decomposition Reactions

- Compound $\rightarrow 2$ elements or element + compound or 2 compounds
- Oxides, peroxides $\rightarrow \mathrm{O}_{2}$
- Nitrates $\rightarrow \mathrm{NO}_{2}$ or $\mathrm{NO}_{2}{ }^{-}$
- Carbonates $\rightarrow \mathrm{CO}_{2}$
- Hydrates $\rightarrow \mathrm{H}_{2} \mathrm{O}$
- Ammonium salts $\rightarrow \mathrm{NH}_{3}$
- Draw a molecular diagram of this type of reaction

Reaction Classes
 Single-Displacement Reactions

- element + cmpd $\rightarrow \mathrm{cmpd}+$ element (The more metallic element in the compound is displaced.)
- carbon + metal oxides
- $3 \mathrm{C}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow 3 \mathrm{CO}+2 \mathrm{Fe}$
- metals + water
- $\mathrm{Ca}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
- Single Displacement: $\mathrm{Li}+\mathrm{H}_{2} \mathrm{O}$
- metals + acids
- $\mathrm{Fe}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{FeCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
- metals + metal salts
- $\mathrm{Zn}(\mathrm{s})+\mathrm{SnCl}_{2}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{Sn}(\mathrm{s})$

Single Displacement: $\mathrm{Cu}+\mathrm{AgNO}_{3}$

- nonmetals + salts
- $\mathrm{Cl}_{2}(\mathrm{aq})+2 \mathrm{KI}(\mathrm{aq}) \rightarrow 2 \mathrm{KCl}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq})$
- Draw a molecular diagram of this type of reaction
- Predictions of this type of reaction will be considered in Chapter 4, which deals with reactions occurring in aqueous solution.

Reaction Classes

Double-Displacement Reactions

- compound $1+$ compound $2 \rightarrow$ compound $3+$ compound 4
- Also called metathesis reactions.
- exchange of ionic partners

$$
\mathrm{AB}+\mathrm{CD} \rightarrow \mathrm{AD}+\mathrm{CB}
$$

- $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{aq}) \rightarrow \mathrm{PbCrO}_{4}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$
- And other related reactions

3.3 Atomic and Molecular Weights

- Demo: large bag of styrofoam peanuts, bottle of sand, 1 L beaker, 18 mL of water
- How can we count very large numbers of particles?
- Demo: weigh pennies of various ages
- If we have a large number of particles of two close but different masses, how do we describe the mass of these particles?

Atomic and Molecular Weights

- How do we accommodate the masses of isotopes of an element?
- Why do we use a C-12 standard for the mass of atoms of elements?
- How can we determine these masses?
- How do we get average atomic weights?
- When would the average atomic weight not be a useful number?
- atomic weight: average mass of 1 atom of an element, expressed in amu
- formula weight: sum of the atomic weights of each atom in a chemical formula
- What is the formula weight of CaCl_{2} ?
- molecular weight: same as formula weight when the chemical formula is a molecular formula
- What is the molecular weight of $\mathrm{H}_{2} \mathrm{CO}_{3}$?

3.4 The Mole

- Demo: different substances
- What do these substances all have in common?

Molar Mass and Moles

- Describe the difference between molar mass, molecular weight, and atomic weight.
- How do we get these quantities?
- Calculations:
mass \leftrightarrow moles \leftrightarrow number of particles
- How do we carry out these conversions?
- mass \leftrightarrow moles: Use molar mass
- moles \leftrightarrow number of particles: Use N_{A}

Mole Calculations

- Write on the blackboard and calculate the number of CaCO_{3} units in the writing.
- How do we determine the mass of the writing?
- Mass of writing $=5.473 \mathrm{~g}-5.448 \mathrm{~g}=0.025 \mathrm{~g}$
- How much $\mathrm{Ca}, \mathrm{C}, \mathrm{O}$ in the writing?
3.5 Empirical Formulas from Analyses
- Calculate the empirical formulas:
- 50% O, 50% S
- 60% O, 40% S

Molecular formula from empirical formula

- How to calculate a molecular formula if a molar mass is known?
- Empirical formula $=\mathrm{CH}_{2} \mathrm{O}, \mathrm{MM}=90 \mathrm{~g} / \mathrm{mol}$
- What is the molecular formula?

3.6 Quantitative Information from Balanced Equations

- Mass-Mole Conversions
- $10 \mathrm{~g} \mathrm{CaCO}_{3} \rightarrow$ How many moles?
$\mathrm{MM}=100 \mathrm{~g} / \mathrm{mol}$
$10 \mathrm{~g} \times 1 \mathrm{~mol} / 100 \mathrm{~g}=0.10 \mathrm{~mol}$
- How many moles in 20 g ?
- How many moles in 25 g of NaOH ?

Calculations

- Mole-Mole Conversions
- $\mathrm{CaCl}_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3}+2 \mathrm{NaCl}$ 0.105 mol xs ? ?

How many moles of each product?
Mass - Mass Conversion Calculations

- Mass Conversions in a Single Reaction
- $\mathrm{CaCl}_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3}+2 \mathrm{NaCl}$
$5.45 \mathrm{~g} \quad ? \quad ?$
$111 \mathrm{~g} / \mathrm{mol} \quad 100.1 \mathrm{~g} / \mathrm{mol} \quad 58.4 \mathrm{~g} / \mathrm{mol}$
- Mass Conversions in Sequences of Reactions

Follow the same sequence of conversions, using the amounts of products from the first reaction as the amount of reactant in the second reaction.

3.7 Limiting Reactants

- Limiting Reactant Demo: Mg or Zn in HCl
- Analogy: making cheese sandwichs
- Limiting Reactant

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

What is the limiting reactant?

Limiting Reactant Problem Calculations

- $\mathrm{CaCl}_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3}+2 \mathrm{NaCl}$
$0.105 \mathrm{~mol} 0.085 \mathrm{~mol} ?$?
How many moles of each product?
- $\mathrm{CaCl}_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3}+2 \mathrm{NaCl}$
$5.45 \mathrm{~g} \quad 4.55 \mathrm{~g}$? ?
$111 \mathrm{~g} / \mathrm{mol} 106 \mathrm{~g} / \mathrm{mol} 100.1 \mathrm{~g} / \mathrm{mol} 58.4 \mathrm{~g} / \mathrm{mol}$
How much CaCO_{3} is formed?

