Chapter 5
Thermochemistry

- Energy in reactions helps to explain why reactions occur.


### 5.1 The Nature of Energy

- Why do chemical reactions occur?
- What is energy?
- Energy is the capacity to do work or transfer heat.
- Forms of Energy - kinetic (motion) \& potential (position)


## Units of Energy

- Units of Energy
cal, J, Cal (= kcal)
- $1 \mathrm{cal}=4.184 \mathrm{~J}$
- $1 \mathrm{Cal}=1 \mathrm{kcal}$
$=1000 \mathrm{cal}$
$=4184 \mathrm{~J}=4.184 \mathrm{~kJ}$


## System and Surroundings

- System is the part of the universe we are interested in studying
- Surroundings is the rest of the universe
- Identify the system and surroundings in this diagram.


### 5.2 First Law of Thermodynamics

- Law of Conservation of Energy

Energy cannot be created or destroyed, but only converted to other forms.
$\Delta \mathrm{E}=\mathrm{q}+\mathrm{w}$ (more later)

- Heat $(q)=$ energy transferred because of a difference in temperature
- Work $(\mathrm{w})=$ force applied to an object over a distance


## Internal Energy

- Internal energy ( E ) is the sum of all the kinetic and potential energy of all parts of the system
- In what ways can energy be stored when considering matter at an atomic or molecular level?
bonds, vibrations, rotations, molecular motion, electron motion, motion of nuclei (protons and neutrons)
- It is not possible to measure the internal energy of any system of practical interest.
- We can measure changes in internal energy:
$\Delta \mathrm{E}=\mathrm{E}_{\text {final }}-\mathrm{E}_{\text {initial }}$
- $\Delta \mathrm{E}>0$ if $\mathrm{E}_{\text {final }}>\mathrm{E}_{\text {initial }}$
- $\Delta \mathrm{E}<0$ if $\mathrm{E}_{\text {final }}<\mathrm{E}_{\text {initial }}$


## Heat and Work

- $\Delta \mathrm{E}=\mathrm{q}+\mathrm{w}$
- Heat flowing from the surroundings to the system is positive (the system feels cold because it absorbs heat from your hand)
- Work done by the surroundings on the system is positive


## Heat and Temperature

- $\mathrm{q}<0$ exothermic, surroundings get hot
- $q>0$ endothermic, surroundings get cold


## State Functions

- Value does not depend on history of the system, just its present condition
- Does the distance between Phoenix and Flagstaff depend on the route?
- Examples of state functions?
- Does the distance between San Francisco and Denver depend on how one travels from one city to another?
- $\Delta \mathrm{E}$ is a state function
- $q$ and $w$ are not state functions
- $\Delta \mathrm{E}=\mathrm{q}+\mathrm{w}$ : If a system generates more heat, it will accomplish less work.
- State functions are given an upper case symbol


### 5.3 Enthalpy

- At constant pressure, we have $\mathrm{q}_{\mathrm{p}}=\Delta \mathrm{H}$, which we call an enthalpy change, which is a state function.
- $\Delta \mathrm{E}=\Delta \mathrm{H}-\mathrm{P} \Delta \mathrm{V}$ for pressure-volume work
- $\Delta \mathrm{H}=\mathrm{H}_{\mathrm{f}}-\mathrm{H}_{\mathrm{i}}$
- $\Delta \mathrm{H}<0$ exothermic
- $\Delta \mathrm{H}>0$ endothermic


### 5.4 Enthalpies of Reaction

- $\Delta \mathrm{H}=\mathrm{H}_{\text {products }}-\mathrm{H}_{\text {reactants }}$
- $\Delta \mathrm{H}$ is the enthalpy of reaction or heat of reaction
- $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~s})+53.00 \mathrm{~kJ} \rightarrow 2 \mathrm{HI}(\mathrm{g})$
- Thermochemical equation:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{HI}(\mathrm{~g}) \quad \Delta \mathrm{H}=53.00 \mathrm{~kJ}
$$

- $\Delta \mathrm{H}$ is proportional to the number of moles
- What is $\Delta \mathrm{H}$ for this reaction if 127 g of $\mathrm{I}_{2}(\mathrm{~s})$ reacts with excess $\mathrm{H}_{2}$ ?
- Proportional to the amount of reactant consumed
- For a reaction in the reverse direction is numerically equal but opposite in sign
- Depends on the physical state of the reactants and products
- Value changes sign with direction
- Values depend on physical state
- Values are for the standard state: stable physical state, 1 atm , usually $25^{\circ} \mathrm{C}$


### 5.5 Calorimetry

- The value of $\Delta \mathrm{H}$ can be determined by measuring the heat flow accompanying a reaction at constant pressure
- Apparatus to do this is called a calorimeter


## Heat Capacity/Specific Heat

- Heat capacity $=$ amount of heat that can be absorbed by a sample of material for a given temperature increase; units $=\mathrm{J} /{ }^{\circ} \mathrm{C}$
- Molar heat capacity $=$ amount of heat that can be absorbed by 1 mole of material when its temperature increases by $1^{\circ} \mathrm{C}$; units $=\mathrm{J} / \mathrm{mol}{ }^{\circ} \mathrm{C}$
- Specific Heat Capacity or Specific Heat = amount of heat that can be absorbed by 1 gram of material when its temperature increases by $1^{\circ} \mathrm{C}$; units $=\mathrm{J} / \mathrm{g}{ }^{\circ} \mathrm{C}$
- Which holds more heat when exposed to $120^{\circ} \mathrm{F}$ sunlight -- a wood or an iron bench (both at the same temperature)?
- Which has the higher heat capacity?
- Which holds more heat - pie filling or pie crust?


## Calorimetric Measurements

- $\Delta T=T_{f}-T_{i}$
- $\mathrm{q}=\mathrm{nC}_{\mathrm{m}} \Delta \mathrm{T}$
- $\mathrm{q}=\mathrm{m}$ sp.ht. $\Delta \mathrm{T}$
- Conservation of energy:
heat gained + heat lost $=0$
- $\quad 150.0 \mathrm{~g} \mathrm{Zn}$ at $79.5^{\circ} \mathrm{C}$ added to $250.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $25.0^{\circ} \mathrm{C}$. What is the final temperature of the mixture?
- Specific heats: $\mathrm{Zn} 0.377, \mathrm{H}_{2} \mathrm{O} 4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$


## Enthalpy Change and Changes of Physical State

- If temperature changes involve changes of physical state as well, we must also calculate how much heat is involved in the change of state.
- Various processes to change physical state are reversible; the amount of heat required to go one direction must be recovered going the opposite direction
- $\Delta \mathrm{H}=\Sigma \Delta \mathrm{H}$ for phase changes $+\Sigma \mathrm{n} \mathrm{C}_{\mathrm{m}} \Delta \mathrm{T}$


### 5.6 Hess's Law

- Does the energy change in a reaction depend on the number of steps in the reaction?
- $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{HI}(\mathrm{g}) \quad \Delta \mathrm{H}=53.00 \mathrm{~kJ}$
$\mathrm{I}_{2}(\mathrm{~s}) \rightarrow \mathrm{I}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=62.44 \mathrm{~kJ}$
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HI}(\mathrm{g}) \quad \Delta \mathrm{H}=-9.44 \mathrm{~kJ}$
- How are these reactions related?
- Hess's Law: $\Delta \mathrm{H}_{\text {sum of steps }}=\Sigma \Delta \mathrm{H}_{\text {steps }}$

Enthalpy change independent of path

## Application of Hess's Law

- How can we use known values of $\Delta \mathrm{H}^{0}$ to calculate unknown values for other reactions?
- $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{0}=-393.5 \mathrm{~kJ}$
$2 \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g}) \quad \Delta \mathrm{H}^{0}=-221.0 \mathrm{~kJ}$
- What is $\Delta \mathrm{H}^{\mathrm{o}}$ for the following reaction?
$2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\mathrm{o}}=$ ?
- What is $\Delta \mathrm{H}^{\circ}$ for the following reaction?
$\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g}) \quad \Delta \mathrm{H}^{\mathrm{o}}=?$
5.7 Enthalpies of Formation
- $\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}=\Delta \mathrm{H}^{0}$ for formation of 1 mole of a substance from the stable form of its elements at 1 atm and $25^{\circ} \mathrm{C}$
- Generally given only for the standard state
- $\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}=0$ for a stable element
- Which of these have $\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}=0$ ?
- $\mathrm{CO}, \mathrm{Cu}, \mathrm{Br}_{2}, \mathrm{Cl}, \mathrm{O}_{2}, \mathrm{O}_{3}, \mathrm{O}_{2}(\mathrm{~s}), \mathrm{P}_{4}$


## Heats of Formation

An application of Hess's Law

- Heats of formation involve decomposition of reactants into elements, then formation of products from the elements
- $\Delta \mathrm{H}_{\mathrm{rxn}}^{\mathrm{o}}=\Sigma \Delta \mathrm{H}_{\mathrm{f}, \mathrm{products}}^{\mathrm{o}}-\Sigma \Delta \mathrm{H}_{\mathrm{f}, \text { reactants }}^{\mathrm{o}}$
- Calculate values of $\Delta \mathrm{H}^{0}$ for the following reactions:
- $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{HI}(\mathrm{g})$
- $\mathrm{CS}_{2}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g})$
$\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}$ :

| HI | $\mathrm{CS}_{2}$ | $\mathrm{CO}_{2}$ | $\mathrm{SO}_{2}$ |
| :--- | :--- | :--- | :--- |
| 26.5 | 117.4 | -393.51 | -296.83 |

