Chapter 10

Gases

- Earth is surrounded by a layer of gaseous molecules - the atmosphere - extending out to about 50 km .

10.1 Characteristics of Gases

- Gases
- low density; compressible
- volume and shape of container
- expand when heated
- large distance between particles
- Model of a gas:
- rapidly moving particles: vol. \& shape of container
- no attraction between particles
- moving about freely
- large space between particles: low density \& high compressibility

Liquids and Solids

- Liquids
- higher density, lower compressibility
- characteristic volume; shape of container
- particles closer together; moving about; experience attractive forces
- Solids
- high density; low compressibility
- particles are close together; little empty space; strong attractive forces
- characteristic volume and shape

Atomic View of the States of Matter

- Note distance between particles and order of arrangement of particles

10.2 Pressure

- Pressure = force/area
- Units: $\mathrm{lb} / \mathrm{ft}^{2}$
$\mathrm{Pa}=\mathrm{N} / \mathrm{m}^{2}=\mathrm{kg} / \mathrm{ms}^{2}$
torr $=\mathrm{mm} \mathrm{Hg}$
atm
- $1 \mathrm{~atm}=760$ torr
$1 \mathrm{~atm}=29.9$ in $\mathrm{Hg}=14.7 \mathrm{lb} / \mathrm{in}^{2}$
$1 \mathrm{~atm}=101.3 \mathrm{kPa}$
- Measure pressure with barometer or U-tube or manometer
- Demo: soft drink can
- Why does a pin hurt?
- Why don't snowshoes sink?

Barometer

- What is in a vacuum? What is the weight of the atmosphere?

10.3 The Gas Laws

- How can we change the volume of a gas enclosed in a balloon?
- Variables: V, P, T, n (or m and MM or d)
- How do each of the other variables affect the volume of a gas?
- Ideal Gas: properties are independent of the identity of the gas
- What is the relationship between the variables for an ideal gas?

$P-V$ at constant n, T

- Boyle's Law

PV = constant

Charles' Law

- Investigation of Balloons

$V-T$ at constant n, P

- Charles' Law
- $\mathrm{V} / \mathrm{T}=\mathrm{constant}$

Avogadro's Law

- Gay-Lussac's Law of combining volumes: at a given temperature and pressure, the volumes of gases which react are ratios of small whole numbers.
- Explained by Avogadro's Hypothesis: equal volumes of gas at the same temperature and pressure will contain the same number of molecules.
- Avogadro's Law: the volume of gas at a given temperature and pressure is directly proportional to the number of moles of gas.
- Mathematically: $\mathrm{V}=$ constant $\times \mathrm{n}$.
- Why did the blimp deflate?

Molar Volume at STP
We can show that 22.414 L of any gas at $0^{\circ} \mathrm{C}$ and 1 atm contain 6.02×10^{23} gas molecules.

10.4 The Ideal-Gas Equation

- $\mathrm{PV}=\mathrm{nRT}$
- Boyle's Law: $\mathrm{PV}=$ constant at constant n, T
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
- Charles' Law: $\mathrm{V}=$ constant x T at constant P, n $\mathrm{V}_{1} \mathrm{~T}_{2}=\mathrm{V}_{2} \mathrm{~T}_{1}$
- Avogadro's Hypothesis: $\mathrm{V}=$ constant x n at constant P, T
- 1 mole occupies 22.414 L at $\operatorname{STP}\left(0^{\circ} \mathrm{C}, 1 \mathrm{~atm}\right)$
- $\mathrm{V}_{1} \mathrm{n}_{2}=\mathrm{V}_{2} \mathrm{n}_{1}$

Ideal Gas Problems

- $\mathrm{PV}=\mathrm{nRT}$
- Universal Gas Constant:
$\mathrm{R}=0.08206 \mathrm{~L} \mathrm{~atm} / \mathrm{mol} \mathrm{K}$
- Convert variables to these units to simplify problem solving.
- $\mathrm{n}=\mathrm{m} / \mathrm{MM}$
- With these relationships, you should be able to solve problems involving the variables that determine the physical properties of gases.

Practice Problem

- The volume of an oxygen cylinder is 1.85 L . What mass of oxygen gas remains in the cylinder when it is "empty" if the pressure is 755 torr and the temperature is $18.1^{\circ} \mathrm{C}$?

10.5 Further Applications of the Ideal-Gas Equation

Gas Densities and Molar Mass

- Density has units of mass over volume.
- Rearranging the ideal-gas equation with M as molar mass we get

$$
\begin{aligned}
& \frac{n}{V}=\frac{P}{R T} \\
& \frac{n M}{V}=d=\frac{P M}{R T} \\
& \text { Practice Problem }
\end{aligned}
$$

- Bromine gas has the formula Br_{2}. Calculate the density of bromine gas at $50.0^{\circ} \mathrm{C}$ and 785.0 torr.

Further Applications of the Ideal-Gas Equation
Gas Densities and Molar Mass

- The molar mass of a gas can be determined as follows:

$$
M=\frac{d R T}{P}
$$

Practice Problem

- If 1.48 g of an unknown gas occupies 132 mL at $25.0^{\circ} \mathrm{C}$ and 722 torr, what is its molar mass?

> Further Applications of the Ideal-Gas Equation
> Volumes of Gases in Chemical Reactions

- The ideal-gas equation relates P, V, and T to number of moles of gas.
- The n can then be used in stoichiometric calculations.

Practice Problem

- A tank of hydrogen gas has a volume of 7.49 L and an internal pressure of 22.0 atm at a temperature of $32.0^{\circ} \mathrm{C}$. What volume of gaseous water is produced by the following reaction at $100.0^{\circ} \mathrm{C}$ and 0.975 atm if all the hydrogen gas reacts with iron(III) oxide?
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

10.6 Gas Mixtures and Partial Pressures

- Dalton's Law of Partial Pressures: In a mixture of gases, each exerts a partial pressure the same as it would exert alone.
- $\mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{C}}+\ldots$
- The amount of each type of gas in air is proportional to its partial pressure.

Gas Mixtures

- It is common to synthesize gases and collect them by displacing a volume of water.
- To calculate the amount of gas produced, we need to correct for the partial pressure of the water: $\mathrm{P}_{\text {total }}=\mathrm{P}_{\text {gas }}+\mathrm{P}_{\text {water }}$

9.7 Kinetic Molecular Theory

- What causes the observed ideal gas behavior?
- Model of gases is Kinetic Molecular Theory

1. Small, widely-separated particles

- low density
- compressible
- Example: Xe at STP, only 0.025% of the volume is occupied by the atoms

2. Molecules behave independently

- no intermolecular forces
- Dalton's Law

3. Rapid, straight-line motion

- diffusion of gases
- expansion of gases
- no net energy loss from collisions

4. Pressure arises from collisions with the walls of the container

- Boyle's Law
- Pressure proportional to number of moles

5. Average kinetic energy (KE) depends only of the absolute temperature (T)

- See distribution of KE
- Distribution of velocities of gaseous particles depends on temperature

10.8 Molecular Effusion and Diffusion

- Average behavior is described by two equations:
$\mathrm{KE}_{\mathrm{av}}=3 / 2 \mathrm{kT}$ ($\mathrm{k}=\mathrm{R} / \mathrm{N}=$ Boltzmann Constant)
$\mathrm{KE}_{\mathrm{av}}=1 / 2 \mathrm{mv}_{\mathrm{av}}{ }^{2}$
- Pressure is proportional to temperature (more collisions)
- Graham's Law: $3 / 2 \mathrm{kT}=1 / 2 \mathrm{~m}_{1} \mathrm{v}_{1}{ }^{2}=1 / 2 \mathrm{~m}_{2} \mathrm{v}_{2}{ }^{2}$
- $\mathrm{v}_{1} / \mathrm{v}_{2}=\left(\mathrm{m}_{2} / \mathrm{m}_{1}\right)^{1 / 2}$

Effusion and Diffusion

- Effusion - escape of a gas through a pinhole
- Diffusion - motion of a gas through space
- Gas motion: rate is inversely proportional to the square root of the mass of the particles
- $\mathrm{r}_{1} / \mathrm{r}_{2}=\left(\mathrm{M}_{2} / \mathrm{M}_{1}\right)^{1 / 2}=\left(\mathrm{d}_{2} / \mathrm{d}_{1}\right)^{1 / 2}$
- Demo: Gassim (available in the Learning Resource Center)
- Which molecules will escape from a leaky balloon fastest?

10.9 Real Gases: Deviations from Ideal Behavior

- Gases can be liquefied by application of pressure (or cooling)
- not predicted by gas laws
- real gases deviate from the gas laws
- Ideal gas assumptions about gas particles:
- no volume
- no attractive forces
- Near STP, these are good assumptions.
- At high pressure, molecules become closer together.
- How will the actual (measured) volume compare to the ideal (predicted) volume?
- At low temperature, molecules are moving slowly and attractions between particles may become important.
- How will the actual (measured) pressure compare to the ideal (predicted) pressure ?

Intermolecular Forces

- What is the source of attractions between molecules?
- Molecules have variable polarizability - the ability to deform the electron cloud with a nearby charge.
- Larger molecules are easier to deform.
- Temporary polarity arises from momentary electron cloud deformation. This induces temporary polarity in nearby molecules.
- Attractions between adjacent temporary dipoles are called London dispersion forces.

Real Gases

- The van der Waals Equation
- We add two terms to the ideal gas equation, one to correct for volume of molecules and the other to correct for intermolecular attractions
- The correction terms generate the van der Waals equation:

$$
P=\frac{n R T}{V-n b}-\frac{n^{2} a}{V^{2}}
$$

where a and b are empirical constants.

