Chapter 17

Additional Aspects of Aqueous Equilibria

- Water is a common solvent. Dissolved materials can be involved in different types of chemical equilibria.

17.1 The Common Ion Effect

- Metal ions or salts containing a conjugate weak acid or base can shift the pH of a solution.
- If we add a conjugate acid (base) to a solution of a weak base (acid), the pH will shift. This is called the common ion effect. A common ion will shift a chemical equilibrium in such a direction as to get rid of some of the added ion.
- $\mathrm{NaCH}_{3} \mathrm{CO}_{2}$ added to a solution of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ will make the solution more basic.

Common Ion Effect

- $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
- Adding more $\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$to the solution shifts the equilibrium to the left, making the solution less acidic (higher pH).
- $0.100 \mathrm{M} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} \quad \mathrm{pH}=2.879$
- $0.100 \mathrm{M} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, 0.050 \mathrm{M} \mathrm{NaCH}_{3} \mathrm{CO}_{2} \quad \mathrm{pH}=4.456$
- $\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}$is an ion common to $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ and $\mathrm{NaCH}_{3} \mathrm{CO}_{2}$ solutions, consistent with LeChatelier's Principle
- Which of the following salts will change the pH of a solution?

NaCl
KNO_{2}
CrCl_{3}
LiCN
KClO_{4}
$\mathrm{Na}_{2} \mathrm{CO}_{3}$
$\mathrm{NH}_{4} \mathrm{Cl}$
CaBr_{2}

- What is the pH of 1.00 M HF solution? $\mathrm{K}_{\mathrm{a}}=7.0 \times 10^{-4}$
- What is the pH of 1.00 M HF solution to which is added $0.500 \mathrm{M} \mathrm{NaF?} \mathrm{~K}_{\mathrm{a}}=7.0 \mathrm{x}$ 10^{-4}

17.2 Buffered Solutions

- Solution of a weak acid and its conjugate base in approximately equal concentrations
- Used to control pH
- Addition of a strong acid or base shifts the pH only slightly
- $\mathrm{HF}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})$
- Add HCl , equilibrium shifts to left to consume some of added $\mathrm{H}_{3} \mathrm{O}^{+}$

Buffer Solutions

- Add NaOH , some $\mathrm{H}_{3} \mathrm{O}^{+}$is consumed to neutralize the added OH^{-}, and the equilibrium shifts to the right to replace some of the consumed $\mathrm{H}_{3} \mathrm{O}^{+}$
- There will be a pH change in each case, but not as much as if the HCl (or NaOH) were added to water or to HF solution (or to NaF solution)
- pH of all body fluids is controlled in this way. In blood, phosphate, carbonate, and hemoglobin all act as buffers.

Addition of acid or base to a buffer

- Recall that a solution of 1.00 M HF and 0.500 M NaF has a pH of 2.854
- Now add 0.100 M HCl (assume there is no volume change)
- To find the new pH , first assume that all the added strong acid reacts to change the F^{-} and HF concentrations.
- $[\mathrm{HF}]=1.00+0.100=1.100 \mathrm{M}$
- $\left[\mathrm{F}^{-}\right]=0.500-0.100=0.400 \mathrm{M}$
- Now solve the weak acid/conjugate base system:
- $\mathrm{HF} \quad \mathrm{H}_{3} \mathrm{O}^{+} \quad \mathrm{F}^{-}$
- Initial $1.100 \quad 0 \quad 0.400$
- Change -x +x +x
- Equil. $1.100-\mathrm{x} \quad \mathrm{x} \quad 0.400+\mathrm{x}$
- $\mathrm{x}(0.400+\mathrm{x}) /(1.100-\mathrm{x})=7.0 \times 10^{-4}$
- Assume $x \ll 0.400$ and 1.100 :
- $\mathrm{x}(0.400) / 1.100=7.0 \times 10^{-4}$
- $\mathrm{x}=1.93 \times 10^{-3}$, so the assumption was okay
- $\mathrm{pH}=-\log \left(1.93 \times 10^{-3}\right)=2.714$
- Water: pure $\rightarrow 0.100 \mathrm{M} \mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{pH} 7 \rightarrow \mathrm{pH} 1$
- Buffer: pH $2.854 \rightarrow \mathrm{pH} 2.714$
- If base is added, assuming no volume change, reduce the concentration of HF and increase the concentration of F^{-}by the corresponding amount. Then solve the weak acid/conjugate base system.
- Add 0.100 M NaOH to the $1.00 \mathrm{M} \mathrm{HF} / 0.500 \mathrm{M} \mathrm{NaF}$ buffer. What is the new pH ?

Buffer Capacity

- Buffers only work within a pH range set by the value of pK_{a} :
- $0.1<[\mathrm{HA}] /\left[\mathrm{A}^{-}\right]<10$
- Outside this range, we see little buffering effect.

Henderson-Hasselbalch Equation

- Assuming that $\mathrm{x} \ll$ [HA] and $\mathrm{x} \ll$ [$\left.\mathrm{A}^{-}\right]$for good buffer action, the equilibrium constant expression can be rearranged to give simplified calculations:
- $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right)$
- Consider $1.00 \mathrm{M} \mathrm{HF}, 0.500 \mathrm{M} \mathrm{NaF}$
- $\mathrm{K}_{\mathrm{a}}=7 \times 10^{-4}, \mathrm{pK}_{\mathrm{a}}=3.155$
- $\quad \log \left(\left[\mathrm{F}^{-}\right] /[\mathrm{HF}]\right)=\log (0.500 / 1.00)=-0.301$
- $\mathrm{pH}=3.155-0.301=2.854$ (same result as before)

Buffer Range

- We can examine the buffer range graphically by plotting the fraction as each species vs the pH
- As we move through the buffer range, one species decreases in concentration as the other increases in concentration
- Buffer range: $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}} \pm 1$
- Select an appropriate acid-base pair to get within the range of the desired pH
- $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} / \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$
- $\mathrm{HF} / \mathrm{F}^{-}$
- $\mathrm{NH}_{3} / \mathrm{NH}_{4}{ }^{+}$
- $\mathrm{H}_{3} \mathrm{PO}_{4} / \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-} / \mathrm{HPO}_{4}{ }^{2-} / \mathrm{PO}_{4}{ }^{3-}$

17.3 Acid-Base Titrations

- Refer to Chapter 4 for titration calculations to determine amounts of acids or bases. Widely used for chemical analysis:
- acids in plating baths
- ascorbic acid in vitamin C tablets
- acetylsalicylic acid in aspirin tablets
- acetic acid in vinegar and wines
- NaOH in potato peeling solutions or hide dehairing solutions
- phosphoric acid in soft drinks
- Equivalence point: point in a titration where there are exactly equivalent amounts of the reactants
- End point: point in a titration where the indicator changes color; may not be exactly the same as the equivalence point
- Indicator: an acid or base which has a different color than its conjugate; characterized by a pK_{a}, which determines the pH range of the color change $\left(\mathrm{pK}_{\mathrm{a}} \pm 1\right)$.
- $\mathrm{HIn}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{In}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
- Color change for phenolphthalein: colorless to pink $\mathrm{pH}=8.2-10$

Indicators

- The appropriate indicator for a titration depends on the strength of the acid. The indicator should be picked so its color change comes close to the equivalence point.
- Examine titration curves to see what pH changes are observed at the equivalence point

Strong Acid - Strong Base

- Note the slow change before and after the equivalence point and the rapid large change at the equivalence point.
- pH changes rapidly over the range of 3 to 11
- Which indicators would give an endpoint close to the equivalence point?
- phenolphthalein
8.2-10
- bromcresol green
3.8-5.5
- methyl red
4.8-6.0
- litmus

5-8

- bromthymol blue
6.0-7.6
- thymol blue
1.2-2.8, 8.0-8.6

Titration Curve Calculations

- Calculate the equivalence point pH by assuming complete reaction of the acid and base, then solve any weak acid (base) equilibrium for the pH .
- Calculate the pH on either side of the equivalence point the same way, except in this case, there will be an excess of one substance.
- $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\mathrm{xs}}=[\mathrm{HCl}]_{\mathrm{xs}}=0.002500 \mathrm{~mol} / 0.07500 \mathrm{~L}=0.0333 \mathrm{M}$
- $\mathrm{pH}=-\log (0.0333)=1.478$
- Use this method to calculate the entire titration curve (or measure the curve with a pH meter)

Weak Acid - Strong Base

- Equivalence point pH is higher than for a strong acid - strong base titration, and the range for rapid change is narrower.
- $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$ at half-way point
- Must take into account the weak acid / conjugate base equilibrium.
- At the equivalence point, we have a solution of the conjugate base.
- $50.0 \mathrm{~mL} 0.100 \mathrm{M} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+50.0 \mathrm{~mL} 0.100 \mathrm{M} \mathrm{NaOH} \rightarrow 100.0 \mathrm{~mL} 0.0500 \mathrm{M}$ $\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}$
- Calculate pH as for weak base: $\mathrm{pH}=8.728$
- Note narrower range of pH change (6-11); phenolphthalein okay here, but might need a different indicator for a different weak acid.

Strong Acid - Weak Base

- Equivalence point pH is lower than for a strong acid - strong base titration, and rapid change is narrowed.
- pH at equivalence point is <7
- $0.100 \mathrm{M} \mathrm{HCl}+0.100 \mathrm{M} \mathrm{NH}_{3}$ gives $\mathrm{pH}=5.27$
- Phenolphthalein doesn't work for this titration.
- Want an indicator that changes color in the range of $\mathrm{pH} 3-7$
- Methyl red is a good choice.

Weak Acid - Weak Base

- Titration curve shows major pH change in a very narrow range.
- Generally doesn't give a good titration; gets worse as K_{a} gets smaller.

Lewis Acid-Base (Complex Ion) Equilibria

- Lewis acid-base reactions can also reach a state of equilibrium
- Metal ion + ligand \rightleftharpoons complex ion
- $\mathrm{K}_{\mathrm{f}}=$ [complex ion]/[metal ion][ligand] (formation constant)
- $\mathrm{Hg}^{2+}+4 \mathrm{I}^{-} \rightleftharpoons \mathrm{HgI}_{4}{ }^{2-}$
- $\mathrm{K}_{\mathrm{f}}=\left[\mathrm{HgI}_{4}{ }^{2-}\right] /\left[\mathrm{Hg}^{2+}\right]\left[\mathrm{I}^{-}\right]^{4}$
- Complex ions are often formed stepwise:
- $\mathrm{Hg}^{2+}+\mathrm{I}^{-} \rightleftharpoons \mathrm{HgI}^{+}$
- $\mathrm{K}_{\mathrm{fl}}=\left[\mathrm{HgI}^{+}\right] /\left[\mathrm{Hg}^{2+}\right]\left[\mathrm{I}^{2}\right]=7.9 \times 10^{12}$
- $\mathrm{HgI}^{+}+\mathrm{I}^{-} \rightleftharpoons \mathrm{HgI}_{2}$
- $\mathrm{K}_{\mathrm{f} 2}=\left[\mathrm{HgI}_{2}\right] /\left[\mathrm{HgI}^{+}\right]\left[\mathrm{I}^{-}\right]=1.0 \times 10^{11}$
- $\mathrm{HgI}_{2}+\mathrm{I}^{-} \rightleftharpoons \mathrm{HgI}_{3}{ }^{-}$
- $\mathrm{K}_{\mathrm{f} 3}=\left[\mathrm{HgI}_{3}{ }^{-}\right] /\left[\mathrm{HgI}_{2}\right]\left[\mathrm{I}^{-}\right]=5.0 \times 10^{3}$
- $\mathrm{HgI}_{3}{ }^{-}+\mathrm{I}^{-} \rightleftharpoons \mathrm{HgI}_{4}{ }^{2-}$
- $\mathrm{K}_{\mathrm{f} 4}=\left[\mathrm{HgI}_{4}{ }^{2-}\right] /\left[\mathrm{HgI}_{3}{ }^{-}\right][\mathrm{I}]=2.5 \times 10^{2}$
- Add all four equations together:
- $\mathrm{Hg}^{2+}+4 \mathrm{I}^{-} \rightleftharpoons \mathrm{HgI}_{4}{ }^{2-}$
- $\mathrm{K}_{\mathrm{f}}=\left[\mathrm{HgI}_{4}{ }^{2-}\right] /\left[\mathrm{Hg}^{2+}\right]\left[\mathrm{I}^{-}\right]^{4}$
- $\mathrm{K}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f} 1} \times \mathrm{K}_{\mathrm{f} 2} \times \mathrm{K}_{\mathrm{f} 3} \times \mathrm{K}_{\mathrm{f} 4}=1.0 \times 10^{30}$
- Values of K_{f} are listed in Table 17.1; they have a wide range of values and thus of stabilities.
- Unlike Bronsted-Lowrey polyprotic acids, successive K_{f} values may not differ by large factors, so there may be many species coexisting.

17.4 Solubility Equilibria

- Some combinations of ions in solution form insoluble salts. Recall the solubility rules from Chapter 4.
- Even insoluble salts dissolve to a small extent.
- Solubility of insoluble salts is characterized by the solubility product constant, $\mathrm{K}_{\text {sp }}$.
- $\mathrm{AgCl}(\mathrm{s}) \rightleftharpoons \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
- $\mathrm{K}_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=1.70 \times 10^{-10}$
- Use to determine conditions for precipitation

Solubility Product Constant

- $\mathrm{Ag}_{2} \mathrm{~S}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{S}^{2-}(\mathrm{aq})$
- $\mathrm{K}_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{~S}^{2-}\right]=1.0 \times 10^{-51}$
- We can directly compare only those salts that have the same exponents in the solubility product expression.
- If that condition is met, the lower the value of K_{sp}, the less soluble the salt.
- $K_{\text {sp }}$ can be used to calculate the solubility, which can be compared for any salts.

Solubility

- \quad Solubility $(\mathrm{S})=$ molar concentration of dissolved salt; ion concentrations are related to this by their coefficients.
- $\mathrm{AgCl}:\left[\mathrm{Ag}^{+}\right]=\mathrm{S} \quad\left[\mathrm{Cl}^{-}\right]=\mathrm{S} \quad \mathrm{K}_{\text {sp }}=(\mathrm{S})(\mathrm{S})$
- $\mathrm{Ag}_{2} \mathrm{~S}:\left[\mathrm{Ag}^{+}\right]=2 \mathrm{~S}\left[\mathrm{~S}^{2-}\right]=\mathrm{S} \quad \mathrm{K}_{\mathrm{sp}}=(2 \mathrm{~S})^{2}(\mathrm{~S})$
- $\mathrm{Fe}(\mathrm{OH})_{3}:\left[\mathrm{Fe}^{3+}\right]=\mathrm{S}\left[\mathrm{OH}^{-}\right]=3 \mathrm{~S} \mathrm{~K}_{\mathrm{sp}}=(\mathrm{S})(3 \mathrm{~S})^{3}$
- After setting up the equation, can solve for S :
- For $\mathrm{Fe}(\mathrm{OH})_{3},(\mathrm{~S})(3 \mathrm{~S})^{3}=1.1 \times 10^{-36}$
- $27 \mathrm{~S}^{4}=1.1 \times 10^{-36}$
- $\mathrm{S}^{4}=4.07 \times 10^{-38}$
- $S=4.49 \times 10^{-10} \mathrm{M}$
- $\left[\mathrm{Fe}^{3+}\right]=4.49 \times 10^{-10} \mathrm{M}$
- $\left[\mathrm{OH}^{-}\right]=3 \times 4.49 \times 10^{-10}=1.35 \times 10^{-9}$
- $\left[\mathrm{Fe}^{3+}\right][\mathrm{OH}]^{3}=\left(4.49 \times 10^{-10}\right)\left(1.35 \times 10^{-9}\right)^{3}$
- $=1.1 \times 10^{-36}=\mathrm{K}_{\mathrm{sp}}$
- If S is known, can reverse this procedure and calculate $\mathrm{K}_{\text {sp }}$.
- $\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq})$
- Can solve as well by setting up an ICE table:

Substance:	$\mathrm{Fe}^{3+}(\mathrm{aq})$	$\mathrm{OH}^{-}(\mathrm{aq})$
Initial Conc.	0.00 M	0.00 M
Change	x	3 x
Equil. Conc.	x	3 x

- $\mathrm{K}_{\text {sp }}=\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3}=(\mathrm{x})(3 \mathrm{x})^{3}=1.1 \times 10^{-36}$
- Then the solution is the same as before.

17.5 Factors that Affect Solubility

- Modify solubility to dissolve minerals and ores, to precipitate ions from solution, to separate and purify ions.
- Examples:
- remove hardness from water by adding $\mathrm{Na}_{2} \mathrm{CO}_{3}$
- remove Ag^{+}from water by adding Cl^{-}to recover Ag
- dissolve $\mathrm{Cu}(\mathrm{OH})_{2} \mathrm{CuCO}_{3}$ to mine Cu
- separate the rare earth ions
- separate U^{4+} from Th^{4+}
- separate the halide ions

Common Ion Effect

- $\mathrm{AgCl}(\mathrm{s}) \rightleftharpoons \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
- Common ion effect: add more Cl^{-}to precipitate more Ag^{+}from solution.
- Saturated solution of AgCl :
- $\mathrm{K}_{\text {sp }}=1.70 \times 10^{-10}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=\mathrm{S}^{2}$
- $\mathrm{S}=\left[\mathrm{Ag}^{+}\right]=\left[\mathrm{Cl}^{-}\right]=1.30 \times 10^{-5} \mathrm{M}$
- Add $0.100 \mathrm{M} \mathrm{Cl}^{-}\left(\gg 1.30 \times 10^{-5}\right.$, so $\left[\mathrm{Cl}^{-}\right]=0.100 \mathrm{M}$
- $1.70 \times 10^{-10}=\left[\mathrm{Ag}^{+}\right](0.100)$
- $\left[\mathrm{Ag}^{+}\right]=1.70 \times 10^{-9} \mathrm{M}$

Insoluble Basic Salts

- Metal hydroxide solubility depends on the pH .
- $\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$
- Adjust the pH to adjust the solubility.
- $\operatorname{AgCN}(\mathrm{s}) \rightleftharpoons \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq})$
- $\mathrm{K}_{\text {sp }}=1.6 \times 10^{-14}$
- Add HNO_{3} (why not HCl ?) to dissolve:
- $\mathrm{CN}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{HCN}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
- $\mathrm{K}=2.5 \times 10^{9}$
- Add the two equations (multiply the Ks):
- $\mathrm{AgCN}(\mathrm{s})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{HCN}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
- $\mathrm{K}=1.6 \times 10^{-14} \times 2.5 \times 10^{9}=4.0 \times 10^{-5}$
- $=\left[\mathrm{Ag}^{+}\right][\mathrm{HCN}] /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
- Adding acid shifts the equilibrium towards products.

Solubility and Complex Ions

- Formation of complex ions can also increase solubility.
- Can dissolve AgCl with NH_{3}.
- $\mathrm{AgCl}(\mathrm{s}) \rightleftharpoons \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
- $\mathrm{K}_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=1.70 \times 10^{-10}$
- $\mathrm{Ag}^{+}(\mathrm{aq})+2 \mathrm{NH}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}(\mathrm{aq})$
- $\mathrm{K}_{\mathrm{f}}=\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}\right] /\left[\mathrm{Ag}^{+}\right]\left[\mathrm{NH}_{3}\right]^{2}$
- Mixture of AgCl and AgBr can be separated: $5 \mathrm{M} \mathrm{NH}_{3}$ dissolves AgCl , but not AgBr .

17.6 Precipitation and Separation of Ions

- To precipitate an ion, we must add sufficient common ion for $\mathrm{Q}_{\text {sp }}$ to exceed $\mathrm{K}_{\text {sp }}$.
- Group Work:
- How much Cl^{-}must be in solution to begin precipitation of Ag^{+}from a $0.100 \mathrm{M} \mathrm{Ag}^{+}$ solution.
- $\quad 1.70 \times 10^{-10}=(0.100)\left[\mathrm{Cl}^{-}\right]$
- $\quad\left[\mathrm{Cl}^{-}\right]=1.70 \times 10^{-10} / 0.100=1.70 \times 10^{-9} \mathrm{M}$
- To dissolve AgNO_{3} in water, with no precipitation of AgCl , we must have very pure water (no Cl^{-}in the water).

Precipitation of Ions

- Will a solution containing $1.0 \times 10^{-6} \mathrm{M} \mathrm{Cl}^{-}$and $1.5 \times 10^{-4} \mathrm{M} \mathrm{Ag}^{+}$form a precipitate of $\mathrm{AgCl} ? \mathrm{~K}_{\text {sp }}=1.70 \times 10^{-10}$
- Want to separate $0.100 \mathrm{M} \mathrm{Pb}^{2+}$ from $0.100 \mathrm{M} \mathrm{Ag}^{+}$, using Cl^{-}. How much Ag^{+}is left when the Pb^{2+} begins to precipitate?
- $\mathrm{K}_{\text {sp }}$ of $\mathrm{PbCl}_{2}=1.6 \times 10^{-5} \quad \mathrm{~K}_{\text {sp }}$ of $\mathrm{AgCl}=1.70 \times 10^{-10}$

