Chapter 19

Thermodynamics

- Study of energy changes in chemical reactions - useful to understand the nature of chemical changes
- Recall thermochemistry (study of heat changes) from Chapter 5
- Three types of chemical reactions
- spontaneous (exothermic or endothermic)
- non-spontaneous
- equilibrium

Types of processes

- Spontaneous - occurs without external intervention
- Non-Spontaneous - does not occur unless energy is added from an external source
- Equilibrium - not all reactions go to completion; reversible reactions (can move back and forth along the same path)

19.1 Spontaneous processes

- hot object cools
- gases expand
- iron rusts
- Cs reacts with $\mathrm{H}_{2} \mathrm{O}$

What makes a process spontaneous?

- Tendency to go to a state of lower energy.
- Enthalpy: $\Delta \mathrm{H}<0$ (exothermic), but can be endothermic
- Tendency to become more disordered or random
- Entropy: $\Delta \mathrm{S}>0$ (increase in randomness)
- Randomness increases when particles become further apart.
- What is the order of entropy values for solid, liquid, and gaseous substances?

Review: Enthalpy and the First Law of Thermodynamics

- 1st Law = Law of Conservation of Energy: energy is neither created nor destroyed in a process
- Energy is converted to a different form during a process
- Types of energy of interest: internal energy (E), heat (q), work (w)
- Internal energy $=$ energy stored within a system
- Transfer energy by converting E to q or w or both (work is usually PV work)
- $\mathrm{CoSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})+7 \mathrm{SOCl}_{2}(\mathrm{l}) \rightarrow \mathrm{CoSO}_{4}(\mathrm{~s})+7 \mathrm{SO}_{2}(\mathrm{~g})+14 \mathrm{HCl}(\mathrm{g})$
- Expansion of gases represents work done by the system on the surroundings (w<0), so E must be decreased.
- Surroundings cool, so q is transferred from the surroundings to the system ($\mathrm{q}>0$) and E must be increased
$\xrightarrow{\bullet} \xrightarrow{\bullet} \Delta \mathrm{E}=\mathrm{q}+\mathrm{w} \xrightarrow[\text { depends on path }]{ }$
- Work is done by the system (an energy loss) when $\Delta \mathrm{V}>0$ at constant P . Important primarily for gases or for reactions involving gases.
- $\mathrm{w}=-\mathrm{P} \Delta \mathrm{V}$
- For an ideal gas, $w=-\Delta n R T$ where Δn is for gases only and $R=8.314 \mathrm{~J} / \mathrm{K} \mathrm{mol}$
- At constant $\mathrm{P}, \mathrm{q}=\Delta \mathrm{H}$ (becomes a state function)
- $\Delta \mathrm{E}=\Delta \mathrm{H}+\mathrm{w}=\Delta \mathrm{H}-\mathrm{P} \Delta \mathrm{V}=\Delta \mathrm{H}-\Delta \mathrm{nRT}$
- $\quad \mathrm{RT}=2.48 \mathrm{~kJ} / \mathrm{mol}$ at $25^{\circ} \mathrm{C}$
- At constant $\mathrm{P}, \Delta \mathrm{H}$ is usually a good measure of $\Delta \mathrm{E}$ because $\mathrm{P} \Delta \mathrm{V}$ is relatively small
- $\mathrm{H}_{2} \mathrm{O}_{2}$ decomposition: $\Delta \mathrm{H}=-189.5 \mathrm{~kJ} / \mathrm{mol} \mathrm{O}_{2}$ and $-\mathrm{P} \Delta \mathrm{V}=-2.48 \mathrm{~kJ} / \mathrm{mol} \mathrm{O}_{2}$ at $25^{\circ} \mathrm{C}$
- Thus, $\Delta \mathrm{H}$ is a decent predictor for spontaneity

19.2 Entropy and the Second Law of Thermodynamics

- Matter tends to change spontaneously to a state of lower energy and greater disorder
- Use $\Delta \mathrm{H}$ to measure energy changes.
- Consider the expansion of a gas into a vacuum.
- This is at constant temperature, so no heat is transferred. There is no opposing pressure, so no work is done. Thus $\Delta \mathrm{H}=0$. Why does the gas expand spontaneously?

Why does the gas expand?

- Which is more likely - a random distribution of molecules throughout the volume of the gas, or an ordered distribution with all the gas molecules on one side?
- A disordered or random system is more probable.

Entropy

- How to measure disorder? Use entropy (S).
- The more disordered the system, the larger the value of the entropy.
- Entropy is a state function: $\Delta \mathrm{S}=S_{\text {final }}-S_{\text {initial }}$
- $\Delta \mathrm{S}>0$ corresponds to a more random arrangement or greater freedom of motion.

Second Law of Thermodynamics

- 2nd Law: In any spontaneous process, the entropy of the universe increases.
- $\Delta S_{\text {univ }}=\Delta S_{\text {sys }}+\Delta S_{\text {surr }}$: the change in entropy of the universe is the sum of the change in entropy of the system and the change in entropy of the surroundings.
- Entropy is not conserved: $\Delta S_{\text {univ }}$ is increasing.
- For a reversible process: $\Delta S_{\text {univ }}=0$.
- For a spontaneous process (i.e. irreversible): $\Delta S_{\text {univ }}>0$.
- Note: the second law states that the entropy of the universe must increase in a spontaneous process. It is possible for the entropy of a system to decrease as long as the entropy of the surroundings increases.

19.3 The Molecular Interpretation of Entropy

- The entropy of a system indicates its degree of disorder.
- Which gas has more disorder? (See Figure 19.10)

Which has the greater entropy?

- separate gases or mixture of gases?
$\mathrm{N}_{2} \quad \mathrm{O}_{2} \quad$ air $\left(\mathrm{N}_{2}+\mathrm{O}_{2}\right)$
- Solid, liquid or gas? (ice, water, or steam)
- Solute and solvent or solution? (See Figure 19.7)
- Reactants or products?
- $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
- $2 \mathrm{O}_{3}(\mathrm{~g}) \rightarrow 3 \mathrm{O}_{2}(\mathrm{~g})$
- $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
- Elements or compounds formed from them?
- $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})$
- Low temperature or high temperature?
- Consider a gas at different temperatures: gas_sim.exe available on lrc_nts1

Effect of Temperature

- Entropy decreases with decreasing temperature because motion decreases. Can we reach a point of no motion? What is the reference point for measurement of entropy?
- We can measure absolute entropies, using the 3rd law: S of perfect crystal $=0$ at 0 K

Absolute Entropy

- Calculate S from the amount of heat required to raise the temperature from 0 K
- Slow increase in S with T (difficult to calculate); but large increase in S at phase change (no T change, and $\Delta \mathrm{S}=\Delta \mathrm{H} / \mathrm{T}$)

19.4 Calculation of Entropy Changes

- Values of S can be obtained from measurements of the variation in heat capacity with temperature.
- Results of calculations and measurements have been collected into tables
- Table 19.2, Appendix C
- Tables usually list standard molar entropies
- Standard state defined as pure solids or liquids, 1 atm for gases, 1 M for solutions

Entropy Changes

- For phase changes or chemical reactions, can calculate $\Delta \mathrm{S}$ because entropy is a state function (doesn't depend on the path)
- $\Delta \mathrm{S}^{0}=\Sigma \mathrm{n}_{\text {products }} \mathrm{S}_{\text {products }}^{0}-\Sigma \mathrm{n}_{\text {reactants }} \mathrm{S}_{\text {reactants }}^{0}$
- where n is the appropriate coefficient from the balanced equation for the process

Group Work

- Calculate $\Delta \mathrm{S}^{0}$ for the following two reactions:
- $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
- $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
\qquad
$\mathrm{H}_{2} 130.57$
- $\Delta \mathrm{S}^{\mathrm{o}}=2 \mathrm{~S}_{\mathrm{H} 2 \mathrm{O}}^{\mathrm{o}}-2 \mathrm{~S}_{\mathrm{H} 2}^{\mathrm{o}}-\mathrm{S}_{\mathrm{O} 2}^{\mathrm{o}}$
$\mathrm{O}_{2} 205.03$
- Gaseous water: $\Delta \mathrm{S}^{0}=-88.75 \mathrm{~J} / \mathrm{K}$
- If we ignore coefficients, $=-146.89$ (error)
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) 188.71$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad 69.91$
- Liquid water: $\Delta \mathrm{S}^{\mathrm{o}}=-326.35 \mathrm{~J} / \mathrm{K}$

19.5 Gibbs Free Energy

- How do we combine $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ to decide about spontaneity?
- Gibbs free energy change or free energy change $=\Delta \mathrm{G}=$ maximum amount of energy
available to do work on the surroundings
- $\Delta \mathrm{E}$ or $\Delta \mathrm{H}$: some is used to do work within the system (rearrange particles, new bonds, ...) and the rest is available to do work on the surroundings ($\Delta \mathrm{G}$)

Free Energy Changes

- $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
- A spontaneous process transfers energy to the surroundings: $\Delta \mathrm{G}<0$
- $\Delta \mathrm{G}>0$, not spontaneous, but the reverse process is spontaneous
- $\Delta \mathrm{G}=0$, process is in a state of equilibrium

Standard Free Energy Changes

- Can get $\Delta \mathrm{G}^{0}$ from $\Delta \mathrm{G}^{0}=\Delta \mathrm{H}^{0}-\mathrm{T} \Delta \mathrm{S}^{\circ}$
- Use $\Delta \mathrm{G}^{0}$ to predict spontaneity in the standard state
- Can also get values of $\Delta \mathrm{G}^{0}$ from free energies of formation: $\Delta \mathrm{G}_{\mathrm{f}}^{\mathrm{o}}$ (formation from the elements)
- $\Delta \mathrm{G}_{\mathrm{f}}^{\mathrm{o}}=0$ for an element in its stable form
- element \rightarrow element $\Delta \mathrm{G}_{\mathrm{f}}^{\mathrm{o}}=0$
- What are the characteristics of a formation reaction?
- Which of these reactions corresponds to $\Delta \mathrm{G}^{\mathrm{o}} \mathrm{f}$ of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$?
- $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
- $\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
- $\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
- Hess's Law:
- $\Delta \mathrm{G}^{0}=\sum \mathrm{n}_{\text {products }} \Delta \mathrm{G}_{\mathrm{f} \text { products }}^{\mathrm{o}}-\sum \mathrm{n}_{\text {reactants }} \Delta \mathrm{G}_{\mathrm{f} \text { reactants }}^{\mathrm{o}}$
- Similarly,
- $\Delta \mathrm{H}^{\mathrm{o}}=\Sigma \mathrm{n}_{\text {products }} \Delta \mathrm{H}_{\mathrm{f} \text { products }}^{\mathrm{o}}-\Sigma \mathrm{n}_{\text {reactants }} \Delta \mathrm{H}_{\mathrm{f} \text { reactants }}^{\mathrm{o}}$
- $\Delta \mathrm{S}^{0}=\Sigma \mathrm{n}_{\text {products }} \mathrm{S}_{\text {products }}^{0}-\Sigma \mathrm{n}_{\text {reactants }} \mathrm{S}_{\text {reactants }}^{0}$
- Values of $\Delta \mathrm{G}^{\mathrm{o}}, \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}, \mathrm{S}^{\mathrm{o}}$ are listed for standard state conditions in Appendix C
- Can use tables to predict the value of $\Delta \mathrm{G}^{\circ}$ and the spontaneity of chemical reactions, even ones that are not yet observed.

Group Work

- Calculate $\Delta \mathrm{G}^{\mathrm{o}}$ and spontaneity for these two reactions:
- $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
- $\mathrm{CaO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$
$\Delta \mathrm{G}_{\mathrm{f}}{ }^{\circ}$ in $\mathrm{kJ} / \mathrm{mol}$
$\mathrm{CaO}(\mathrm{s}) \quad-604.2$
$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})-896.76$
$\mathrm{H}_{2} \quad 0.00$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad-228.59$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad-237.18$
O_{2}
0.00
- reaction 1
reaction 2
reaction $3 \quad \Delta \mathrm{G}_{3}^{\mathrm{o}}=\Delta \mathrm{G}_{2}{ }_{2}+\Delta \mathrm{G}^{\mathrm{o}}{ }_{1}$
- Add equations, add $\Delta \mathrm{G}^{\circ}$
- Reverse equation, change sign of $\Delta \mathrm{G}^{0}$
- Multiply equation by a constant, also multiply the value of $\Delta \mathrm{G}^{0}$ by that constant
- $\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{G}^{\mathrm{o}}=-237.18 \mathrm{~kJ}$
- $\mathrm{CaO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \quad \Delta \mathrm{G}^{\mathrm{o}}=-55.38 \mathrm{~kJ}$
- --
- $\mathrm{CaO}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \Delta \mathrm{G}^{\mathrm{o}}=$?
- $\Delta \mathrm{G}^{\mathrm{o}}=(-237.18 \mathrm{~kJ})+(-55.38 \mathrm{~kJ})=-292.56 \mathrm{Kj}$

Group Work

- $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g}) \quad \Delta \mathrm{G}^{\mathrm{o}}=173.38 \mathrm{~kJ}$
- $2 \mathrm{NOCl}(\mathrm{g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \Delta \mathrm{G}^{\mathrm{o}}=41.18 \mathrm{~kJ}$
- What is $\Delta \mathrm{G}^{\mathrm{o}}$ for the following equation?
- $1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{NOCl}(\mathrm{g})$
- Can get answer by combining the first two equations, or from a table of free energies of formation.

19.6 Free Energy and Temperature

- $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
- $\Delta \mathrm{H}<0, \Delta \mathrm{~S}>0, \Delta \mathrm{G}<0$ at all T
- $\Delta \mathrm{H}<0, \Delta \mathrm{~S}<0, \Delta \mathrm{G}<0$ at low $\mathrm{T}(\mathrm{T}<\Delta \mathrm{H} / \Delta \mathrm{S})$
- $\Delta \mathrm{H}>0, \Delta \mathrm{~S}>0, \Delta \mathrm{G}<0$ at high $\mathrm{T}(\mathrm{T}>\Delta \mathrm{H} / \Delta \mathrm{S})$
- $\Delta \mathrm{H}>0, \Delta \mathrm{~S}<0, \Delta \mathrm{G}$ never <0 at any T but the reverse process is spontaneous at all T
- Groups: $\Delta \mathrm{H}=-227 \mathrm{~kJ} / \mathrm{mol}, \Delta \mathrm{S}=-309 \mathrm{~J} / \mathrm{mol} \mathrm{K}, \mathrm{T}=1450 \mathrm{~K}$. Is this process spontaneous?

19.7 Free Energy and the Equilibrium Constant

- $\Delta \mathrm{G}<0$ spontaneous
- $\Delta \mathrm{G}>0$ not spontaneous, but reverse reaction is spontaneous
- $\Delta \mathrm{G}=0$ not spontaneous in either direction
- This is a state of equilibrium between reactants and products; they coexist in a stable condition.
- Many situations are not in the standard state, so we need some way to relate $\Delta \mathrm{G}$ to $\Delta \mathrm{G}^{0}$ and the existing conditions.

Equilibrium

- We define the reaction quotient to describe the extent of reaction.
- $\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD}$
- $\mathrm{Q}=\mathrm{P}_{\mathrm{C}}{ }^{c} \mathrm{P}_{\mathrm{D}}{ }^{d} / \mathrm{P}_{\mathrm{A}}{ }^{a} \mathrm{P}_{\mathrm{B}}{ }^{\mathrm{b}}$
- Only the pressure of gases $\left(\mathrm{P}_{\mathrm{A}}\right)$ or the concentration ([A]) of dissolved substances appear in the reaction quotient; pure solids and pure liquids are omitted.

Equilibrium: Reaction Quotient

- $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
- $\mathrm{Q}=\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}{ }^{2} / \mathrm{P}_{\mathrm{H} 2}{ }^{2} \mathrm{P}_{\mathrm{O} 2}$
- $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
- $\mathrm{Q}=1 / \mathrm{P}_{\mathrm{H} 2}{ }^{2} \mathrm{P}_{\mathrm{O} 2}$

ΔG^{o} and Equilibrium

- Q can be used to relate $\Delta \mathrm{G}$ to $\Delta \mathrm{G}^{\circ}$
- $\Delta \mathrm{G}=\Delta \mathrm{G}^{0}+\mathrm{RT} \ln \mathrm{Q}$
- $\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
- $\mathrm{T}=$ absolute temperature (K)
- \ln is natural logarithm; find this button on your calculator because it will be useful throughout the semester.
- $\Delta \mathrm{G}=\Delta \mathrm{G}^{\mathrm{o}}+\mathrm{RT} \ln \mathrm{Q}$
- no products: $\mathrm{Q}=0$
- no reactants: $\mathrm{Q}=\infty$
- standard state: all $P=1$, all $[X]=1$, so $Q=1$ and $\ln Q=\ln 1=0, \Delta G=\Delta G^{\circ}$
- Between the extremes, $\mathrm{Q}>0$, but $<\infty$ and $\Delta \mathrm{G}$ changes as the reaction progresses (decreases as the reaction goes forward)
- $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
- $\mathrm{Q}=\mathrm{P}_{\mathrm{CO} 2} \mathrm{P}_{\mathrm{H} 2} / \mathrm{P}_{\mathrm{CO}} \mathrm{P}_{\mathrm{H} 2 \mathrm{O}}$
- Initially, $\mathrm{Q}=0$, but then it increases
- As the reaction progresses, $\Delta \mathrm{G}$ decreases until a minimum value of G is reached; at this point, $\Delta \mathrm{G}=0$ and net reaction ceases (though the forward and reverse reactions still occur, but they offset one another).
- When $\Delta \mathrm{G}=0=\Delta \mathrm{G}^{0}+\mathrm{RT} \ln \mathrm{Q}$, we call this a state of equilibrium and $\mathrm{Q}=\mathrm{Q}_{\text {equil }}=\mathrm{K}$, the equilibrium constant.
- Thus, $\Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{RT} \ln \mathrm{K}$
- $\Delta \mathrm{G}^{\mathrm{o}}>0$ when $\mathrm{K} \ll 1$ (lies toward reactants)
- $\Delta \mathrm{G}^{0}<0$ when $\mathrm{K} \gg 1$ (lies toward products)
- $\Delta \mathrm{G}^{\mathrm{o}}=0$ when $\mathrm{K}=1$ (equal amounts of reactants and products)
- The position of equilibrium depends on the value of $\Delta \mathrm{G}^{0}$.

Group Work

- $\Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{RT} \ln K$
- Calculate K for the following reaction at $25^{\circ} \mathrm{C}$.
- $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HBr}(\mathrm{g}) \Delta \mathrm{G}^{\mathrm{o}}=-53.2 \mathrm{~kJ} / \mathrm{mol}$
- $-53,200 \mathrm{~J} / \mathrm{mol}=-8.314 \mathrm{~J} / \mathrm{mol} \mathrm{K} \mathrm{x} 298 \mathrm{~K} \times \ln K$
- $\quad \ln K=21.47$
- $K=2.12 \times 10^{9} \quad$ (K has no units)
- When K is this large, the reaction proceeds far toward products to reach equilibrium.
- $\mathrm{P}_{\mathrm{H} 2}=\mathrm{P}_{\mathrm{Br} 2}=4.72 \times 10^{-10} \mathrm{~atm}$ when $\mathrm{P}_{\mathrm{HBr}}=1 \mathrm{~atm}$

