
1

"TEM imaging of dislocation kinks, their motion and pinning". J. Spence, H. Kolar, H. Alexander.
J. de. Physique.III,  Vol 7,  p.2325-2338.  1997. . DMR9526100

TEM imaging of dislocation kinks, their motion and pinning

Short title: TEM kink movies

 J.C.H.Spence, H.R. Kolar and H. Alexander*.

Dept. of Physics and SEM, Arizona State University

Tempe, AZ. 85287,  U.S.A.  Spence@asu.edu

*Universität zu Köln

Abteilung für Metallphysik im II Physikalishen Institut

Zülpicher Str. 77, D 50937, Köln, Germany.

Abstract

HREM lattice images have been obtained using "forbidden" reflections generated by (111)

stacking faults in silicon lying normal to the beam at temperatures up to 600oC. Stationary and

video images of 30o/90o partial dislocations relaxing toward equilibrium are studied. The lattice

images formed from these forbidden reflections show directional fluctuations which are believed to

be kinks, since, as expected from mobility measurements, a higher density is observed on 90o

partials than on 30o partials, whereas artifacts contribute equally. Video difference images are used

to obtain direct  estimates of kink velocity. Observations of kink delay at obstacles, thought to be

oxygen atoms at the dislocation core, yield unpinning energies and the parameters of the obstacle

theory of kink motion. The kink formation  energy is obtained from the distribution of kink pair

separations in low-dose images. The kink migration rather than formation energy barrier is thus

found to control the velocity of unobstructed dislocations in silicon under these experimental

conditions.
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1. Introduction

The oldest question in semiconductor dislocation theory remains to be answered - what limits

dislocation velocity for given conditions of stress and temperature. Candidates for the rate-limiting

process include the double kink formation energy 2Fk, the migration energy Wm , and kink

obstacles, possibly on an atomic scale. In an earlier paper [1], we showed that TEM images formed

using certain space-group-forbidden Bragg reflections in silicon maybe used to directly reveal

dislocation cores running normal to the electron beam at a resolution of about 0.3 nm. The aim of

this work is to address this old question using new lattice images of moving and stationary kinks,

obtained by the "forbidden reflection" method [2].The images reveal the position of kinks (with

some uncertainty), not their structure. Kink movement was induced by warming in the TEM

samples  containing quenched-in stacking faults (SF) of non-equilibrium spacing.

It is worth considering first the information which could in principle be obtained from images of

kinks, stationary and in motion, at the 0.3 nm resolution level. From recordings of kink velocity at

known temperature and stress (as discussed more quantitatively below) an Arhenius plot might

yield kink migration activation energies (different for left and right kinks [3]) and, from the pre-

factor given by the intercept, the entropy term  might  also be obtained. Very little is known about

this term [4]. These results could be obtained for both partials on dissociated dislocations,

comparisons made and the stress dependance of the kink velocity determined. Measurements of

kink density at low stress would yield directly the double kink formation energy. But perhaps more

importantly, "movies" of kink motion would answer the question "Are kinks colliding" [5], and so

provide a direct  test of the Hirth-Lothe theory and its two regimes. In addition, the observation of

kink delay at obstacles and the measurement of waiting times would yield unpinning energies and

provide a test of the obstacle theory of dislocation motion [6]. The proposed correlation between

kink nucleation events on different partials could be sought [7]. Finally, the possibility of entirely

new phenomena and mechanisms might be observed. All this information could be provided by an

imaging method which allows the position of a kink to be localised to within about 0.5 nm, and

does not require an image interpretable at the atomic resolution level. Earlier dynamical simulations

of HREM images of kinks [8] have shown that obstacles, such as foreign atoms, could not be

identified in such images, and many processes (such as kink nucleation at impurites or solitons)

would require much higher spatial resolution for structural analysis. The distinction between

hetrogeneous and homogeneous kink nucleation could, however, probably be made using our 0.3

nm resolution video images under ideal conditions. In fact our original aim was to make a direct

measurement of the nucleation energy barrier (equation 5 below) for comparison with the Seeger-

Schiller model, from the measured kink pair distribution function, however this has proven an

overly ambitious aim !
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Two major experimental difficulties must at once be confronted: the difficulty of distinguishing

the effects of atomic-scale surface roughness from kinks in HREM images, which are projections

through thin samples, and the effects of electron-beam induced damage or enhancement of glide [9,

10]. Our approaches to these two problems has been as follows. By subtracting successive images

which are identical apart from the effects of kink motion we hoped to eliminate the effects of surface

roughness. By working below the knock-on threshold for damage, using low-dose techniques and

the new Fuji image plates and a CCD camera as detectors, and by turning off the beam during kink

motion in certain experiments we planned also to make beam-induced effects negligible. A final

difficulty is the accurate control of temperature needed to obtain a kink velocity for given stress

which is measurable using video-rate imaging. Thickness variations in the sample mean that only a

very limited field of view can be obtained.

Experimental work on kink nucleation and growth in semiconductors is summarized elsewhere

[11]; a recent paper proposes several new low energy mechanisms for kink motion [3].

2. "Forbidden" Bragg reflections and their uses.

We commence with a review of the forbidden reflection lattice image method. In 1971,

Lynch performed three-dimensional multiple scattering calculations for gold [111] zone-axis

electron diffraction patterns, and noted the occurance of additional reflections at the (-422)/3

positions in computed and experimental patterns if the crystal contained  p ≠ 3m layers of atoms (m

an interger) [12]. Figure 1 indicates the location of these reflections. Such reflections are forbidden

by the symmetry elements of the space group for a crystal of infinite dimensions. Calculations for

similar "termination" reflections in MgO were subsequently reported [13]. TEM dark-field images

were first formed with these reflections by D. Cherns in 1974 , who used them to image monatomic

surface steps on (111) gold films [14]. Dynamical calculations [15] showed the optimum orientation

and thickness to be used. Although there are no termination reflections in the wurtzite structure

(because the {-422}/3 reflections are then the fundamental reflections of the three-dimensional

hexagonal structure), similar contrast effects have been analysed at SF's in this structure [16]. With

the development of ultra-high vacuum transmission electron microscopy, these same termination

reflections could be identified in transmission  patterns from thin (111) silicon crystals with (7X7)

reconstructed surfaces  [17] and analysed [18]. These reflections can also occur in f.c.c. and

diamond structure materials due to twinning, or to SF's parallel to the surface. They were first

observed as additional spots in microdiffraction patterns from stacking faults in 1986, using a field-

emission STEM probe narrower than the ribbon of SF separating two partial dislocations [19].

Figure 1 shows such a pattern, obtained recently by H. Kolar using convergent-beam electron

diffraction (CBED). Since the edges of the SF ribbon define partial dislocation cores, an image
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formed with the inner six of these "termination" or forbidden reflections in the (111) zone provides

a lattice image of the SF alone, and its boundary at the dislocation core. The d-spacing for the

"forbidden" planes is d422 = h = 0.33 nm., or one Peierls valley wide. These valleys run along the

<011> tunnels in the diamond structure, orthogonal to (42-2)/3. Additional studies based on the use

of termination reflections can be found elsewhere [20, 21].

Termination reflections may be understood in several ways. A single (111) double layer of

silicon atoms produces a much denser reciprocal lattice (which includes {-422}/3  reflections) than

does an infinite crystal. This occurs because atoms in a single double layer are more sparsely

packed that those in a [111] projection of three double layers, which overlap in projection, leading

to a less dense reciprocal lattice without  g  = (-422)/3 type reflections. Dark field images formed

with them show single atomic-height surface steps on thin foils. This can be understood as follows.

Firstly we note that, if the [-1,-1,-1] beam direction is taken into the foil,  then a (1-11) reflection

lies in the first order Laue zone (FOLZ) directly above the ( 2,-4,2 )/3  ZOLZ termination reflection

shown in figure 1. We can thus consider the (2,-4,2 )/3  ZOLZ spot to be the tail of the crystal

shape-transform (or rocking curve) laid down around the (1-11) HOLZ spot, and extending down

into the ZOLZ. Since the (1,-1, 1) reflection is weak in the ZOLZ, kinematic theory can be used to

give the intensity of the (1,-1,1) beam as

φ g (z)
2

= z 2σ 2 Vg

2
sin 2 (π ⋅ z ⋅ s

g
)

(π ⋅ z ⋅ s
g
)2

1.

The period of this function in z  (giving rise to thickness fringes) is L = Sg-1. The excitation error

Sg of the (1-11) FOLZ reflection evaluated in the ZOLZ  (i.e. at the  (2,-4,2)/3  position)  is just

equal to the height of the FOLZ, or  |g(111)|/3 = (√3/a)/3 = 1/(3d111) = S111,  where a is the

silicon conventional cubic cell constant. Thus the period of thickness fringes is to = 3 d111 = 0.94

nm,  and we expect a sinusiodal intensity variation with thickness, with a period of three atomic

double-layers. Termination reflections thus give "weak beam" thickness fringes with the period of

the lattice in the beam direction.

This approximate treatment assumes that the (2,-4,2)/3 reflection is at the Bragg condition

(rather than the [111] zone axis orientation used in these experiments), and it ignores atomic

structure within the 0.94 nm spacing along the beam path. Alternatively, we may explicitly evaluate

the (2,-4,2)/3 structure factor for silicon.  If we choose an unconventional hexagonal unit cell for

silicon with the c axis along the cubic [111] direction so that atoms have coordinates such as

(1/3,1/3,1/3) etc, then a "forbidden"  reflection g  has hexagonal indicies such as (11.0), and its

structure factor becomes
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Vg = 47.878
Ω

f j

e
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for a crystal of N double layers, again at the Bragg condition for (2,-4,2)/3 (cubic indicies). Here

Vg is in volts, Ω is the cell volume and fe(g) the electron structure factor. Each term in the final sum

is proportional to the scattering from  one double layer , and these terms may be represented on an

Argand diagram, as shown in figure 2. The imaginary part of Vg has been plotted horizontally and

real part vertical. One side of the triangle represents the scattering from a single (111) double layer

of atoms in silicon - to analyse the effects of shuffle or glide termination, half the lengths of the

sides should be used. The lateral shear of each double layer in the diamond structure introduces a

120o phase shift, making a closed triangle ABC every three layers with zero resultant scattering. A

thin crystal containing 3m double layers above an intrinsic SF and 3n below it has  stacking

sequence (3m) AB/ABC (3n), as shown. Below the SF the total scattering vector runs from the

origin to each of the corners on the upper triangle in turn, and the intensity is never zero. If the

scattering amplitude from one double layer is  F (with intensity F2), then the change in intensity due

to the addition of a single double layer in an unfaulted crystal is either zero (on adding a B layer to

an A layer) or F2 (for addition of an A or C layer). For a faulted crystal the results depend on the

depth of the fault, however all the possible cases may be obtained by starting at one corner of the

lower triangle and ending at one on the upper. In particular, for the kink images, we may compare

the diffracted intensity produced by a column of crystal within a ribbon of SF with that generated

outside it. In the most favorable case, an unfaulted region ABCABCABC produces zero intensity ,

but a faulted crystal ABCAB/ABCA of the same thickness generates intensity 3F2.  Multiple

scattering calculations [19] confirm these kinematic estimates. Figure 3 shows multislice

calculations for the intensity of the (-2-24)/3 reflection as a function of thickness, and we see that

the addition of a C layer (shown primed in figures 2 and 3) after the fault changes the intensity by

about 4F2, in agreement with figure 2. These calculations (unlike figure 2 ) correctly take account

of the excitation errors for the termination reflections, and when this is done we find that the six {-

422}/3 reflections are not equivalent - there are two groups of three, reflecting the three-fold (not

six-fold) symmetry of a (111) slab consisting of  p ≠ 3m layers. At the [111] zone axis orientation

the forbidden reflection intensity nevertheless still falls to zero every three double layers.

Real crystals have atomically rough surfaces, and these effects must also be considered, in

addition to other sources of background in the images, which limit contrast. A full analysis has been

given, [19], but the main points are as follows. TEM cross section lattice images of Si/SiO2

interfaces suggest that the roughness will be one or two double-layers, and no images were

recorded if contamination could be seen growing at the edges of our samples. Large atomically flat

surface islands produce sharp forbidden reflections unless p =3m. As the island size becomes small
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compared with the coherence width of the electron beam these forbidden reflections broaden out

into diffuse elastic scattering peaks. For a random distribution of surface vacancies there are no

termination reflections. The width of the diffuse peaks increases with the depth of the surface

roughness. We can understand this by recalling that the projected potential for a thin "perfect"

crystal with atomically rough surfaces is not a periodic function, hence its diffraction pattern

contains elastic diffuse scattering. Because we do not see surface islands in forbidden reflection

lattice images from unfaulted crystal, we assume that the roughness can be modelled as random

vacancies in the surface layer. Depending on the crystal thickness, these vacancies may or may not

lie within the atomic column which contains a kink, thereby altering its contrast. The still images of

dislocation cores, however, show a much higher density of kinks on the 90o partial dislocation than

on the 30o partial, suggesting that surface roughness is not the dominant contrast effect. In

addition, by digital subtraction of sucessive video frames we can isolate the moving kinks from the

stationary surface noise. Figure 3 shows that the average image intensity from by a rough, faulted

crystal is higher than that of a rough, unfaulted crystal, and kinks form the boundary between these

regions. (The average scattering, rather than the image intensity, from a crystal with a uniform

distribution of  terminations is represented by a point in the center of each triangle). Nevertheless, in

still images this surface roughness contributes a large error to our estimates of kink concentration.

(The error is calculated by tracing every reasonable boundary to the SF). The ability to introduce

dislocations in-situ into a sample whose surfaces have been cleaned by heating in-situ would

improve the quality of our images, but would also superimpose the silicon (7X7) reconstruction

onto the images.

3. Dynamic observations and pinning.

Our first experiments consisted of TEM video recording of partials relaxing toward their

equilibrium spacing at 600oC. Our silicon samples were formed by a two stage deformation

process, ending with cooling under high stress [22]. This produces stacking faults on (111) of non-

equilibrium width d, which relax back to equilibrium if the sample is warmed in the microscope.

TEM samples were prepared by chemical etching at room temperature (no hot  glues). In

equilibrium, the elastic repulsive force between the partials is just balanced by the attractive force

resulting from the work needed to create SF, and the SF width is d= 5.8 nm.   Otherwise the shear

stress σ in the direction of the partial Burgers vector b can  be determined if d is known using  σ = (

γ −(Α/d) )/b , where the SF energy γ = 0.058 J m-2 for Si, and A = 3.36 x 10-10 N. Video

recordings were obtained during this relaxation on the Akashi 002B TEM using the Gatan heating

stage, at 0.25 nm resolution at temperatures of 600oC (above the kink nucleation temperature). The

objective aperture shown in figure 1 was used. The beam remained on during the dislocation motion
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and video recording.Figure 4 shows a sketch of the experimental geometry used.  In 4(a) the

diagonal lines are the [011] "tunnels" , or Peierls valleys,through the diamond lattice, with

separation 0.33 nm.  Kinks are shown at K and K' where the dislocation throws  a loop of line

forward into the next [011] low energy valley by nucleating a kink pair. The line advances in

direction V if the kinks move apart to the end of the segment, or until they collide with kinks of

opposite sign. Figure 4(b) shows a side view. The SF plane generates six <42-2>/3 Bragg beams

within the SF ribbon and not elsewhere, and only these are used to form the images.  The d-spacing

for the planes is d422 = h = 0.33 nm., or one Peierls valley wide. These valleys run along the

<011> tunnels in the diamond structure, orthogonal to (42-2)/3.

Video rate images  of several 60o dislocation segments dissociated into 30o and 90o partials

were recorded at 600oC. Consistent with the earlier finding that  90o partials are more mobile than

30o partials [11], motion (on the atomic scale) was confined to the 90o partial, and, accordingly,

later stationary images of quenched samples showed a higher kink density on the 90o partial than on

the 30o partial. (Mobility depends on which partial is leading or trailing [11]). Figure 5(a)  shows

the difference between  video frames recorded before and after motion of a 90o/30o dislocation  at

600 o + 10o C. In principle, such a difference image should show zero intensity everywhere except

in the region where SF has been created or elliminated. The high constrast outside this region is due

to noise, which has been amplified in the process of increasing the contrast digitally in order to

reveal the SF, which is the dark strip. Observations at the edge of the sample showed no growth of

contamination. The overall SF is narrowing toward equilibrium by motion of the 90o partial alone.

Cross-correlation between stationary regions was used to align successive video frames, which are

inherently noisy.  The dark region is a thin strip of SF on the 90o partial, whose width measured

normal to the dislocation line is three Peierls valleys (3 d422 =0.99 nm ). This strip, suggested by

the crossed shading in Figure 4(a), has been eliminated by the passage of several kinks moving

parallel to Vk shown. The kinks encounter obstacles at K and K'.  Figure 5(b) shows the collapse

of a segment of SF whose width is one Peierls valley (0.33nm) wide. A study of individual frames

shows that the motion spans several 33ms frames, so that upper and lower limits on the kink transit

time can be made with an error of one frame. A typical single-width segment L = 11.7 nm long

gave a velocity of  205 + 111 nm/sec , at 600oC. The stress  σ = 108.5+ 7.5 Mpa, was obtained

from the total SF width of 9.95+ 0.5 nm. From the waiting times τ = νD-1exp(Eu/kT) at obstacles

such as K and K' in figure 4(a) unpinning energies Eu may also be obtained -the average of two

single-width cases gave Eu = 2.4 + 0.04 eV. Applying the obstacle theory of kink motion [6, 7, 23]

we obtain a velocity  v'k = L νD exp (-Eu/kT) = 2.4 nm/sec for  the average velocity of kinks

encountering many obstacles. A comparison with the instantaneous kink velocity of 205 nm/sec

shows that the transit time is short compared with the waiting time, as assumed in obstacle theories.

Several experimentally indistinguishable kink mechanisms may be responsible for these
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observations - in particular we cannot distinguish single kink unpinning at one end of the segment

K from homogeneous double kink nucleation at mid-segment followed by outward propagation to

obstacles K, K' at the ends of the segment. Since extended defects are not seen at cores in still

images at atomic resolution, the obstacles are most likely to be dragging points which move forward

with the line. We now consider the likely origin of the obstacles.

During the 800oC first stage of deformation, dislocations getter the P (2x1013 cm-3), O

(<1016) and C (<1016) impurities in our FZ sample. Carbon is known to be ineffective in

dislocation pinning [24]. Vacancies and interstitials have much larger values of L, as does P

(although strongly pinning) due to its low diffusion rate [25]. We find no evidence  (at 0.27 nm

resolution) for the O or P complexes previously proposed as pinning centers [26, 27]. We see no

evidence of climb-induced pinning. The impurity with highest concentration is oxygen, whose

pinning effect has been studied extensively by X-ray topography in samples with controlled

impurity concentrations. This work suggests [28], at high temperature, an oxygen pinning center

with L ≈ 14.0 nm and an unpinning energy of about 3 eV. Ab-initio electronic structure cluster

calculations for a variety of likely structures suggest [29] that a single oxygen atom on the most

stretched bond around the anti-phase (soliton) defect can explain this X-ray imaging result. The

concentration and unpinning energy (release rate) of this defect are in rough agreement with our

observations, however beam induced pinning effects must be considered. Previous work [30, 31,

32] suggests that the beam has two effects a) At energies above the threshold for ballistic knock-on

damage (about 140 kV)  strong pinning centers are introduced, and b) Enhanced diffusion of kinks

(REDG) and impurities by beam-induced electron-hole pair recombination at these defects occurs

[33]. The first effect was minimized by conducting a series of experiments in which the beam

energy was reduced until, at 130 kV (where all this work was done), the concentration of resolvable

beam-induced defects was found to be negligible. (Knock-on damage is easily visible in lattice

images at  higher voltages). The second effect depends on the intensity and duration of tbe

exposure. The spacing of these obstacles is consistent with the "garland"  and cusp features seen on

90o partials in previous work, thought  to be due to recombination enhanced diffusion of impurities

from the thin foil surfaces to dislocations [34], and which are not seen in unirradiated samples. The

ability of impurities to create a soliton-antisoliton pair on arrival at a reconstructed core, and for

these sites subsequently to nucleate oxide precipitates, has been noted [35]. In summary, we

speculate that the 2.4 eV unpinning energy we observe is due to oxygen at anti-phase defects,

affected in some way by irradiation. Self interstitials may also be involved.

4. Kink migration energy

By analysing the motion of a partial at a temperature low enough to ensure that no new kinks are

created during the motion, the kink migration energy can be determined if the kink density is
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known. The velocity of a kink of height h, for a dislocation with Burgers vector b and core period a

is

vk = σbhν Da2

kT
exp(−W m / kT ) = σbh

2kT
Dp 3

where ν D  is the Debye frequency (1.3 x 1013 sec-1 - more strictly the phonon frequency in the

direction of motion should be used) , Dp the double kink diffusion coefficient and Wm = Um -

TSm is the free energy (strictly enthalpy) of kink migration, Um an enthalpy (experiments are

performed at constant pressure).  (Similarly Fk = Uk - TSk). Theoreticians compute internal

energies U'm (the sum of elastic and core energies, usually computed at constant volume);

experiments measure either Wm  or Um (depending on data analysis). Our Um values assume [4]

Sk (90o) = 0.5 k  and Sm (90o) = 5k )

Stationary images were therefore recorded on video and film of a 30o/90o dislocation under low

dose conditions (to avoid the introduction of pinning centers), both before and after annealing at

130oC (below the kink nucleation temperature) for 15 mins. The electron beam was switched off

during the dislocation motion. Figure 6 shows a typical lattice image formed from the inner six

"forbidden" reflections in figure 1. The partials have moved apart in the TEM toward their

equilibrium separation of 5.8 nm. (Unlike 90/30 dislocations and screws, the 30/90 contracts

during the initial ex-situ deformation due to lattice friction [11]). Image calculations [8] show that

the bright diagonal band of regularly spaced dots is a  lattice image of the double layer of atoms

(spaced 0.33 nm apart) which form the SF plane. (Extrinsic and intrinsic faults produce similar

images). Pairs of atoms appear as a single dark spot, bright spots are centered on the six-fold rings

of a single double-layer. The borders of this band of regular dots forms the partial dislocation cores,

as shown. The white scale lines indicate one Peierls valley, 0.33 nm wide.  The average SF width

corresponds to a stress on the partials of  275 MPa . We note that the density of kinks is greater on

the 90o partial than on the 30o partial (see also figure 7). An accurate determination of kink density

is complicated by the effects of surface roughness, however the higher density on one partial (seen

also in larger fields of view such as figure 7 and in many different cases [19]) suggests that surface

effects are not  dominant. In addition, monatomic surface islands are not seen outside the SF - these

would produce similar (but lower) contrast to the SF. "Kinks" smaller than the critical separation x*

= 0.81 nm (defined below) are evidently due to surface roughness. Figure 6 shows how the error in

kink density was estimated. These images may be used to estimate Wm from the kink density c and

distance ∆s the partial dislocation moves (with beam off), using Vdis = 2 c h Vk = ∆s/∆t, where h

= 0.33 nm, the kink height. Now vk ∆t = ∆y,  hence ∆s = 2ch∆y, where ∆y is the mean distance a

kink moves in time  ∆t . Using ∆y/∆t  = vk in  equation 3 yields  Wm = 1. 24 + 0.07 eV (Um =
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1.55 eV). (Within our limited field of view, less than the kink mean free path, obstacles are

unimportant if present in unirradiated material). Figure 7 shows a still from a low-dose video frame

for a different dislocation, in this case an unrelaxed pair of partials more narrowly spaced than their

equilibrium separation.

5. Kink nucleation energy

By measuring the distribution of kink-pair separations in these images, the kink formation free

energy Fk may be estimated. This could be most easily done under conditions of low stress, when

the concentration of kinks is close to thermal equilibrium, and simply related to Fk by a Boltzmann

factor. Our annealing experiments were unsuccessful is providing a sufficiently large field of view

of fully relaxed partials within the acceptable range of sample thickeness for good imaging. It was

therefore necessary to use the high stress theory of dislocation motion to analyse our images. The

most successful theory of dislocation motion [36] (but see [5]) considers the nucleation of double

kinks (with separation x), their diffusion and drift under an external stress σ  by one-dimensional

analogy with classical steady-state nucleation theory for particles of size x. Then the distribution of

kink separations (constrained to zero kink current) per unit length of line is

cc (x) =
1

a2 exp(−F(x) / kT) 4

with dims L-2 .  Here the free energy of kink-pair formation in the presence of the large stresses

used in our experiments is [37]

F(x ) = 2Fk − µb2h2

8πx
− σbhx 5

where µ is the shear modulus. The second term represents the attractive kink-kink strain interaction

(tending to annihilate by recombination kink pair embryos less then the critical separation x*) while

the last term describes the external stress, driving kinks apart.  The net double kink nucleation rate

is J = DpCo(x*)/2x', and the dislocation velocity  V = 2h(Jvk)1/2 if the dislocation segment length

is larger than the kink mean free path λ. Then V depends exponentially on Q = Fk +Wm. Here

x'=kT/(σbh). Other theoretical treatments have assumed that kink velocity is limited by obstacles

(such as anti-phase defects, impurities or point defects) [6, 7, 23] . Several theoretical calculations

for Wm and Fk have been published [38, 39].

Table 1 shows the distribution of kink pair separations measured from images such as figure 6.

The large error was obtained by drawing in all reasonable core boundaries. From the table, values

of c(x) (with dims L-2 , not L-1) , the unconstrained number of kink pairs with separation between
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x and x+dx per unit length of dislocation may be obtained. The critical separation at the saddle point

is x* = (µbh/8πσ)1/2 = 0.81 nm. By extrapolation from Table 1 we obtain c(x*) = 8.9 x 107 m-2,

which, according to Zeldovich [40] is half the constrained value co(x*). Using eqn. 4 with a

=0.384 nm, T = 420oC  gives F(x*) ≈ 1.455 eV , so that, from eqn. 5, Fk = 0.5 ( F(x*) + (µ σ b3

h3/2π)1/2 ) = 0.727 + 0.15 eV (Uk = 0.74 eV). This may  refer either to a reconstructed kink, or to

a kink associated with a soliton dangling bond.

6. Conclusions.

Measurements on the 30o partial give approximately one-third the kink density as the 90o. Thus

we find Fk(30) = 0.797 + 0.15 eV.  Our  value of Wm = 1.24 eV may be compared with recent ab-

initio LDA calculations, which give  1.8 eV [41] and is consistent with recent ab-initio calculations

[42] favoring reconstruction of the 90o core, which hinders kink motion (by doubling the jump

distance) and clears the band-gap of deep states . Our value  is consistent with values of 1.0 - 1.2eV

measured previously [30, 34]. Our  finding that Fk = 0.727 eV may be compared with

measurements by other methods which fall in the range 0.4 to 1.1 eV [38, 43], and with

calculations giving 0.1 eV [41], based on a hydrogen terminated cluster for the smallest kink pair,

with elastic interactions dominating. (These authors comment that their method may underestimate

Fk). For segments much longer than the kink mean free path we thus obtain Q = Fk + Wm = 0.727

+ 1.24  = 1.97 + 0.2 eV. Since Fk < Wm, we find that, unlike metals, kink mobility rather than

formation is the rate-limiting step controlling the motion of free dislocations in silicon. Since we

cannot demonstrate the absence of widely spaced or unresolvable obstacles in unirradiated material,

this work cannot distinguish the obstacle [6] and secondary Peierls-valley [36] theories of kink

motion. In irradiated material, unpinning of kinks at obstacles is directly observed for the first time,

yielding the parameters of the obstacle theory.
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Table 1

  N                          m x  (nm)

    3                         4 1.5

    2                         5 1.9

    2                         6 2.3
The measured number of kink pairs N with separations x = ma (m integer, a=0.384 nm core period)
for a 90o partial dislocation in silicon.
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Figure 1. Experimental CBED pattern from an intrinsic stacking fault on (111) in silicon lying

normal to the beam. The "termination"  {-422}/3 type forbidden reflections can be clearly seen

inside the bulk allowed {220} reflections. Circle shows aperture used for imaging (Philips FEG

400 ST, 120 kV. Probe size about  2 nm.). The (1-11) reciprocal lattice point lies directly above

(2,-4,2)/3.
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Figure 2. Argand diagram for a {-422}/3 reflection in silicon. Real part of structure factor F plotted
vertically, imaginary part horizontal. The kinematic amplitude of Bragg scattering is proportional to
a vector from the origin to one corner of the figure. A crystal with stacking sequence
ABCAB/ABCA produces the amplitude √3 F shown.
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Figure 3. Multiple scattering calculations (using 1000 beams) giving the thickness dependance of
the termination reflection (-2-24)/3 in silicon at 100 kV, with beam along [111]. Each letter
represents the addition of one atomic layer. A stacking fault occurs at ABA. Three of the six beams
are equivalent.
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Figure 4.(a). Stacking fault SF on (111) plane (parallel to page)  separating 30o and 90o partial

dislocation lines, with low-energy Peierls valleys along [110] and kink pair K, K' shown. By

running together these kinks advance the dislocation line in direction V. (b) shows side view, along

[011], indicating "forbidden" (42-2)/3 Bragg reflections generated by SF, and bulk (220) beams.
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0.99 nm

11.71 nm

Figure 5(a). Difference between filtered video images of a moving 90o partial dislocation in silicon

at 600oC, viewed along [111]. Dark strip is SF three Peierls valleys wide (0.99nm),  eliminated by

passage of several kinks. Inset shows experimental SF image for scale. The dark patch is a portion

of the shaded region in figure 4(a).
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Figure 5(b). Similar for 90o partial segment , one Peierls valley wide.
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Figure 6.  TEM image of dissociated 60o dislocation in silicon after relaxation. The bright diagonal

band of regular dots are six-membered rings in the ribbon of SF separating 30o and 90o partial

dislocation lines. Black lines run along cores of the two partial dislocations. Fine white line shows

typical  alternative boundary used to estimate error in counting kinks.
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Figure 7. Similar to figure 6, but for an unrelaxed pair of partials spaced more closely than the

equilibrium separation.


