Bank Networks and Systemic Risk: Evidence from the National Banking Acts

Mark Paddrik
OFR

Haelim Park
OFR

Jessie Jiaxu Wang
ASU

SFS Cavalcade, Vanderbilt University

May 18th, 2017
How does financial architecture affect systemic risk?

- The financial system is highly interconnected.
 - systemic risk, SIFIs, LCR, Dodd-Frank, CCPs
How does financial architecture affect systemic risk?

- The financial system is highly interconnected.
 - systemic risk, SIFIs, LCR, Dodd-Frank, CCPs

- Ample theories on the role of network structures on stability
 - Allen & Gale 2000, Elliott, Golub & Jackson 2015, Acemoglu et al. 2015

... yet little structural analysis using real data
How does financial architecture affect systemic risk?

• The financial system is highly interconnected.
 - systemic risk, SIFIs, LCR, Dodd-Frank, CCPs

• Ample theories on the role of network structures on stability
 - Allen & Gale 2000, Elliott, Golub & Jackson 2015, Acemoglu et al. 2015

... yet little structural analysis using real data

_sprite: This paper looks at bank networks in 1862 and 1867
 - networks simply formed by interbank deposits
 - National Banking Acts (1863-1864) reshaped network structure
 - 5 major banking crises afterwards
Empirically documents how National Banking Acts (NBAs) affected bank linkages

finding: Post-NBAs network had a more concentrated tiered structure.

Quantitatively examines the impact on systemic risk

finding: a more concentrated network is robust-yet-fragile.
Outline

1. Historical Background
2. Data and Empirical Results
3. Model and Quantitative Analysis
Historical Background
State Banking Era: 1837 - 1862

- Banks were state-regulated; no uniform currency, no Fed, no OCC.
- State banks issued own banknotes. Large dispersion in discounts.

- Banks had correspondent networks
 - shaped by interbank deposits, note-deeming, trade patterns
 - core-periphery structure with local hubs (Weber 2003)
National Banking Acts (NBAs): 1863 - 1864

- Lincoln tried to finance the Civil War for the North. Banks didn’t lend.
- Secretary of Treasury Chase launched National Banking Act in 1863.
 - national banking system: national charters, OCC, uniform currency
 - national chartered banks: buy US bonds, reserves requirements
- National charters were not popular; NBA revision (1864) raised taxes on state banknotes 2%→10% ⇒ most converted
Interbank Network after the National Banking Acts

- NBAs set reserve requirements that reshaped bank networks
 - classified banks into 3 tiers with different reserve ratios
 - mandated reserve deposits with approved agents

<table>
<thead>
<tr>
<th>Banks</th>
<th>Reserve ratio</th>
<th>Max deposit in upper tiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central reserve city banks</td>
<td>25%</td>
<td>0</td>
</tr>
<tr>
<td>Reserve city banks (PHL, PIT)</td>
<td>25%</td>
<td>1/2</td>
</tr>
<tr>
<td>Country banks</td>
<td>15%</td>
<td>3/5</td>
</tr>
</tbody>
</table>

- Profitable to deposit reserves at approved agents due to interest

- Interbank networks became 3-tiered and more concentrated.
Data and Empirical Results
Data: detailed balance sheets and links in 1862, 1867

- Unique achieve data on Pennsylvania and NYC banks in 1862, 1867
Data: detailed balance sheets and links in 1862, 1867

- Unique achieve data on Pennsylvania and NYC banks in 1862, 1867

State banks: balance sheets, detailed interbank deposits (1862, 1867)

Due to the Allentown Bank, from the following named solvent banks respectively, on the third day of November, 1862:

Manufacturers' and Mechanics' Bank, Philadelphia...................... $29,710 52
Union Bank, New York.. 88,413 33
Easton Bank... 9,209 69
Farmers' and Mechanics' Bank, Philadelphia.............................. 6,453 44
Northern Liberties Bank... 3,328 20
Penn Township Bank... 2,765 62
Corn Exchange Bank, Philadelphia.................................. 4,225 01
Mauch Chunk Bank... 2,412 79
Union Bank, Philadelphia.. 649 90
Union Bank of Reading... 1,183 91
Farmers' and Mechanics' Bank of Easton................................. 606,17
Farmers' Bank of Reading.. 8 33
Bank of Catasauqua.. 885 13
Philipsburg Bank, New Jersey.. 713 21
Pottstown Bank... 72 00
E. W. Clark & Co., Philadelphia... 5,780 58

156,367 83
Data: detailed balance sheets and links in 1862, 1867

- Unique achieve data on Pennsylvania and NYC banks in 1862, 1867

- National banks: balance sheets, deposits at approved agents (1867)
Empirics: NBAs led to a concentration of bank linkages

- Post-NBAs network had a more concentrated tiered structure.

(a) 1862
(b) 1867

- NYC
- PHL
- PIT
- country banks

Log Size of Due-To Deposits
Empirics: NBAs led to a concentration of bank linkages

- Distribution of interbank deposits was more concentrated in 1867.

- Similar results from degree distribution and other network statistics.
Model and Quantitative Analysis
Model: key features

- Demand deposits, long-term investment \rightarrow liquidity risk
- Interbank liability relationships form the network
- Banks can withdrawal from and default on others \rightarrow contagion
- Clearing equilibrium (Eisenberg, Noe 2001; Acemoglu et al 2015)
- Contagious withdraws and liquidation
Model: environment

- N risk-neutral banks, 2 periods \((t_0, t_1, t_2)\), no discounting

- Balance sheet given at \(t_0\)

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vault cash (C_i)</td>
<td>Equity capital (K_i)</td>
</tr>
<tr>
<td>Investment in loans and securities (I_i)</td>
<td>Local deposits (D_i)</td>
</tr>
<tr>
<td>Deposits due from other banks (\sum_k L_{ik})</td>
<td>Deposits due to other banks (\sum_j L_{ji})</td>
</tr>
</tbody>
</table>
Model: environment

- N risk-neutral banks, 2 periods \((t_0, t_1, t_2)\), no discounting
- Balance sheet given at \(t_0\)

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vault cash (C_i)</td>
<td>Equity capital (K_i)</td>
</tr>
<tr>
<td>Investment in loans and securities (I_i)</td>
<td>Local deposits (D_i)</td>
</tr>
<tr>
<td>Deposits due from other banks (\sum_k L_{ik})</td>
<td>Deposits due to other banks (\sum_j L_{ji})</td>
</tr>
</tbody>
</table>

- \(L\) is interbank deposit network; \(L_{ij} > 0\): bank \(i\) deposits at \(j\).
 - bank \(i\) is the respondent: it has \(L_{ij}\) due-from \(j\)
 - bank \(j\) is the correspondent: it has \(L_{ij}\) due-to \(i\)
 - \(L\) is a weighted directed graph
Model: environment

- N risk-neutral banks, 2 periods \((t_0, t_1, t_2)\), no discounting

- Balance sheet given at \(t_0\)

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vault cash (C_i)</td>
<td>Equity capital (K_i)</td>
</tr>
<tr>
<td>Investment in loans and securities (I_i)</td>
<td>Local deposits (D_i)</td>
</tr>
<tr>
<td>Deposits due from other banks (\sum_k L_{ik})</td>
<td>Deposits due to other banks (\sum_j L_{ji})</td>
</tr>
</tbody>
</table>

- \(L\) is interbank deposit network; \(L_{ij} > 0\): bank \(i\) deposits at \(j\).
 - bank \(i\) is the respondent: it has \(L_{ij}\) due-from \(j\)
 - bank \(j\) is the correspondent: it has \(L_{ij}\) due-to \(i\)
 - \(L\) is a weighted directed graph

- Loan investment matures at \(t_2\) with random return
 \[\log \hat{R}_i = \log \bar{R}_i + \varepsilon_i;\] expected return \(\bar{R}\) is known at \(t_1\)
Model: liquidity withdrawal payment equilibrium

Liquidity withdrawal payment equilibrium at t_1: withdrawals by banks W^L, by local depositors W^D, payments X^L, X^D, liquidation I^l, default I^{d1}:

- Costly liquidation $I^l_i = 1$: $C_i + \sum_j W^L_{ij} X^L_{ij} < \text{withdrawals}$

- Default $I^{d1}_i = 1$: $C_i + \sum_j W^L_{ij} X^L_{ij} + I^l_i \xi_l I_i < \text{withdrawals}$

- If default: *pro rata* payments to banks X^L, to local depositors X^D

- Withdrawals occur if

 - respondent itself has liquidity shortage (cash < withdrawals)
 - correspondent is likely to liquidate (dominating strategy)
 - correspondent is likely to default (Diamond, Dybvig 1983)
Model: final date payment equilibrium

Final date payment equilibrium at t_2: payments Y^L, Y^D, default \mathbb{I}^{d2}:

- If not liquidated, investment matures $I\tilde{R}$.
- Default \mathbb{I}^{d2}: cash + deposit redemptions + investment $<$ deposits due-to
- If default: *pro rata* payments to banks Y^L, to local depositors Y^D

The final date equilibrium always exists and is generically unique.
Quantitative Analysis

- Construct banking systems
 - balance sheet items \(\{C, I, K, D, L\} \) come from real data in 1862, 1867
- Simulate two types of banking crises
- Compare systemic risk measures before and after NBAs
- Extensions: New York City banks’ reactions to crises
Quantitative Analysis: top-to-bottom crises

- Investment loss in NYC banks \rightarrow spread out (1873, 1884, 1890, 1907)
 \rightarrow reduce \bar{R} of NYC banks
 \rightarrow depositors withdrawal
 \rightarrow NYC banks liquidate \rightarrow default
 \rightarrow PHL, PIT banks get withdrawals \rightarrow liquidate, etc.
Quantitative Analysis: top-to-bottom crises

- Investment loss in NYC banks \rightarrow spread out (1873, 1884, 1890, 1907)
 \rightarrow reduce \bar{R} of NYC banks
 \rightarrow depositors withdrawal
 \rightarrow NYC banks liquidate \rightarrow default
 \rightarrow PHL, PIT banks get withdrawals \rightarrow liquidate, etc.

Finding: a more concentrated network is *robust-yet-fragile*: more robust to small shocks, more vulnerable to large shocks

\[a. \text{Prob(Pct. liquidation > } \theta_l)\% \]

\[b. \text{Prob(Pct. default > } \theta_d)\% \]
Mechanism: downward withdrawal contagion

- **Small shocks**: diversification limits contagion
- **Large shocks**: concentrated links exacerbate contagion

![Graph showing the effect of shocks to NYC banks on withdrawal contagion](image-url)
Quantitative Analysis: bottom-to-top crises

- Panic withdrawals originated at country banks → spread out (1893)

 - local depositors’ withdrawal trigger runs.
 - country banks have shortage → withdraw
 - correspondents liquidate, withdraw, etc.
Quantitative Analysis: bottom-to-top crises

- Panic withdrawals originated at country banks → spread out (1893)

 → local depositors’ withdrawal trigger runs.
 → country banks have shortage → withdraw
 → correspondents liquidate, withdraw, etc.

Finding: Post-NBAs network is more robust.

Mechanism: NYC banks endogenously held more cash → LCR of SIFIs

\[
\begin{align*}
\text{a. Prob}(\text{Pct. liquidation} > \theta_1)\% \\
\text{b. Prob}(\text{Pct. default} > \theta_2)\%
\end{align*}
\]
Extensions: NYC banks’ reactions to crises

- NYC banks collectively issued clearinghouse loan certificates in 1873, 1893.
 - Risk-sharing significantly alleviates top-to-bottom crises.

- NYC banks suspended cash payments in panics of 1873, 1893, 1907.
 - Systemic risk reduces; “robust-yet-fragile” result remains.
We study bank networks and systemic risk.

We take a unique historical and quantitative approach:

- examine bank networks in 1862 and 1867
- quantify effect of bank network changes on systemic risk

Findings and insights:

- The NBAs reshaped the bank networks to be more concentrated.
- A more concentrated network is robust-yet-fragile to liquidity crises.
- Systemic risk depends on networks and the size, type, location of shocks.