1 Nonnegative Matrix Factorization

- An overview of SVD
 - Let A be an $m \times n$ matrix, with $m \geq n$. It can be factorized as
 \[A = U \begin{pmatrix} \Sigma \\ 0 \end{pmatrix} V^T, \]
 where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal, and $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal
 \[\Sigma = \text{diag} (\sigma_1, \sigma_2, \ldots, \sigma_n), \quad \sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0. \]

- Weak interpretability: The entries in U and V may be negative, even when A contains nonnegative entries only, such as term-document matrix.

- Nonnegative Matrix Factorization
 - Let A be an $m \times n$ matrix, with nonnegative entries. NMF computes two matrices $W \in \mathbb{R}^{m \times k}$ and $H \in \mathbb{R}^{k \times n}$, which solve the following optimization problem:
 \[\min_{W \geq 0, H \geq 0} \| A - WH \|_F. \]
 - Here, $W \geq 0$ indicates that all entries in W are nonnegative.

- (Lee and Seung, nature 1999) started a flurry of research into the Nonnegative Matrix Factorization. There are hundreds of papers in the area since 1999.
 - NMF is shown to induce parts-based representation.

- Many applications:
 - Image Processing and Computer Graphics
 - Text analysis
 - Bioinformatics

1.1 Alternating Least Squares (ALS) Algorithm

- This minimization problem above is nonlinear considered as an optimization problem for W and H at the same time. However, if one of the unknown matrices were known, W, say, then the problem of computing H, would be a standard, non-negatively constrained, least squares problem with a matrix right hand side. Therefore the most common way of solving it is to use an alternating least squares (ALS) procedure:
 - Guess an initial value $W^{(1)}.$
for $k = 1, 2, \cdots$ until convergence
(a) Solve $\min_{H \geq 0} ||A - W^{(k)} H||_F$, giving $H^{(k)}$.
(b) Solve $\min_{W \geq 0} ||A - WH^{(k)}||_F$, giving $W^{(k+1)}$.

- The solution is not unique: if (W, H) is the solution, then $(WD, D^{-1}H)$ is also the solution for any diagonal matrix D with positive diagonal entries.

- How to solve $\min_{H \geq 0} ||A - W^{(k)} H||_F$?
 - Let a_j and h_j are the j-th columns of A and H, respectively.
 - Writing out the columns one by one, we see that the above matrix least squares problem is equivalent to n independent vector least squares problems:
 $$\min_{h_j \geq 0} ||a_j - W^{(k)} h_j||_F, \quad j = 1, 2, \cdots, n.$$
 - The vector least squares problem can be solved by an active-set algorithm. MATLAB function: \texttt{lsqnonneg}.
 - The resulting algorithm for vector least squares problem is time-consuming.
 - As a cheaper alternative, one can take the unconstrained least squares solution, and then set all negative elements in H equal to zero.

1.2 A Multiplicative Update Algorithm

- Let $J = ||A - WH||_F$.

- The objective function J can be re-written as:
 $$J = \text{trace} \left((A - WH)(A - WH)^T \right)$$
 $$= \text{trace} \left(AA^T - 2AH^TW^T + WHH^TW^T \right)$$
 $$= \text{trace}(AA^T) - 2\text{trace}(AH^TW^T) + \text{trace}(WHH^TW^T).$$

- Let $W = (w_{ij})$ and $h = (h_{ij})$. All w_{ij} and h_{ij} are constrained to be nonnegative. This leads to a constrained optimization problem.

- Let α_{ij} and β_{ij} be the Lagrange multiplier for constraints $w_{ij} \geq 0$ and $h_{ij} \geq 0$, respectively, and $\alpha = (\alpha_{ij}), \beta = (\beta_{ij})$, the Lagrange L is defined as follows:
 $$L = J - \text{trace}(\alpha W^T) - \text{trace}(\beta H^T).$$

- The derivatives of L with respect to W and H are:
 $$\frac{\partial L}{\partial W} = -AH^T + WHH^T - \alpha,$$
 $$\frac{\partial L}{\partial H} = -W^TA + W^TWH - \beta.$$
• Using the Kuhn-Tucker condition $\alpha_{ij}w_{ij} = 0$ and $\beta_{ij}h_{ij} = 0$, we get the following equations for w_{ij} and h_{ij}:

$$(AH^T)_{ij} w_{ij} - (WHH^T)_{ij} w_{ij} = 0,$$

$$(W^T A)_{ij} h_{ij} - (W^T WH)_{ij} h_{ij} = 0.$$

• These equations lead to the following updating formulas:

$$w_{ij} \leftarrow w_{ij} \frac{(AH^T)_{ij}}{(WHH^T)_{ij} + \epsilon},$$

$$h_{ij} \leftarrow h_{ij} \frac{(W^T A)_{ij}}{(W^T WH)_{ij} + \epsilon}.$$

• It is proven by Lee and Seung that the objective function J is non-increasing under the above iterative updating rules, and that the convergence of the iteration (to a local minimum) is guaranteed.

• Software package:

• Survey articles:

1.3 Initialization Issue

• One problem with several of the algorithms for non-negative matrix factorization is that convergence to a global minimum is not guaranteed. It often happens that convergence is slow and that a sub-optimal approximation is reached.

• An efficient procedure for computing a good initial approximation based on the SVD of A.

1.4 NMF for Clustering

• A non-negative factorization $A = WH$ can be used for clustering: the data vector a_j is assigned to cluster i if h_{ij} is the largest element in column j of H.

• Related articles on document clustering based on NMF:

