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pp scattering amplitudes in the subthreshold region
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pp scattering amplitudes inside the subthreshold triangle (0<s<S, 0<t<S, 0<u<S54m2) are studied
using interior dispersion relations. The dispersion integrals are evaluated above a center-of-mass energy
Wpp50.6 GeV by using a standard phase shift analysis and from this value down to threshold by using unitary
models consistent with existing low-energy experimental data. It was found that by restricting thes-wave
scattering lengths to lie on a ‘‘universal curve’’ all crossing properties and appropriated threshold sum rules
were reasonably well satisfied. The invariant amplitudes are found to be in good qualitative agreement with the
predictions of Weinberg’s chiral model and its corrections derived from chiral perturbation theory.
@S0556-2813~98!04602-0#

PACS number~s!: 13.75.Lb, 11.55.Bq, 11.55.Fv, 11.30.Rd
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I. INTRODUCTION

The reactionpp→pp is theoretically the most elemen
tary hadronic process@1#. The simplicity of its kinematics
coupled with its beautiful crossing properties has intrigu
theorists for over 30 years. In addition to its intrinsic intere
the process is an important building block in the theory
nuclear forces, neutron and proton form factors, and p
production reactions. Because of its unique role as
pseudo-Goldstone boson of chiral symmetry, chiral mod
@from current algebra and partially conserved axial vec
current~PCAC! of the 1960s to the more recent chiral pe
turbation theory# are the theories of choice for understandi
the low-energy dynamics of this system. These models
dict the structure of thepp scattering amplitude within~and
somewhat beyond! the subthreshold triangle (0<h<S
[4m2, h5s,t,u, andm is the pion mass!. It is the purpose
of this article to use interior dispersion relations~IDR’s! @2#,
experimental phase shifts, and crossing symmetry to exp
the invariant amplitudes throughout the subthreshold reg

The usefulness of IDR’s is due to the fact that they
written along paths~hyperbolas! which run through the
physicals-channel region, the subthreshold triangle, and
physicalt-channel region. If parametrizations of the expe
mental phase shifts are used to construct the absorptive
of the amplitudes in thes- andt-channel dispersion integrals
then the IDR’s can be used to evaluate the invariant am
tudes throughout most of the subthreshold triangle. T
IDR’s represent an excellent tool to test the predictions
chiral models provided that sufficient data exist to allow t
evaluation of the dispersion integrals.

Through a series of experiments and analyses, mostl
the 1970s, phase shifts and inelasticities forpp scattering
have been determined indirectly through studies of pion p
duction and kaon decay up to a center-of-mass energ
nearlyWpp52 GeV @3–8#. Aided by the rapid convergenc
of our subtracted dispersion relations, these data are s
ciently accurate to allow us to perform the dispersion in
570556-2813/98/57~2!/931~10!/$15.00
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grals above about 600 MeV. The low-energypp scattering
amplitudes are still not precisely known, although strid
have been made in that direction over the past few years@9#.
By choosing scattering lengthsa00 anda20 (aIJ) within cur-
rently accepted bounds, we are able to find unitary para
etrizations which are consistent with the sparse low-ene
phase-shift data (Wpp,600 MeV! and which join onto the
more abundant higher-energy data. Two different~but re-
lated! theoretical constraints are used to restrict the para
eters in these fits. The first is to impose crossing symme
and the second is to enforce scattering-length sum rules.
results of the two methods are nearly identical and lead to
approximately linear relation between the scattering leng
a00 anda20 which closely resembles the well-knownuniver-
sal curve @10#. Our choice of IDR automatically satisfie
s↔u crossing symmetry, buts↔t and u↔t crossing sym-
metries for the calculated amplitudes are not automa
However, for each value ofa00 we were able, through judi-
cious choice ofa20, to accommodate crossing symmet
quite satisfactorily throughout the triangle. Once the pha
shift parametrizations were chosen, we then were able
perform the dispersion integrals and, by varying the p
parameter, evaluate the amplitudes throughout most of
subthreshold triangle. We conclude that the subthreshold
plitudes as revealed by the IDR analysis are in good ag
ment with chiral models ofpp scattering amplitudes. A pre
liminary version of this work is found in Ref.@11#.

This article is organized as follows: Section II introduc
the IDR’s, and includes a discussion of the amplitudes, ki
matics, and the paths in the Mandelstam diagram al
which IDR’s are written. In this section we also demonstra
that two familiar sum rules follow naturally from IDR’s
Section III is devoted to the parametrization of the lo
energy phase shifts through formulas that satisfy elastic
tarity and correctly describe resonance contributions. T
evaluation of the dispersion relations and their compari
with chiral models are given in Sec. IV. Further discussi
of interesting features of the phase-shift parametrization
presented in an appendix.
931 © 1998 The American Physical Society
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II. DISPERSION RELATIONS

A. Interior dispersion relations

Interior dispersion relations@2# can be written for ampli-
tudes that are symmetric unders↔u crossing. In the vari-
ablesn[s2u and t, suitable amplitudes which must satis
A(2n,t)5A(n,t) can be easily constructed from the set
t-channel invariant amplitudesAI 50,1,2

t in which I is the iso-
spin in thet channel. Thet-channel amplitudes have partia
wave expansions

AI
t5S l ~2l 11! f I l ~ t !Pl ~zt!, ~1!

f I l [~h I l e2id I l 21!/2ir, ~2!

wherer[q/Aq21m2, q is thet-channel center-of-mass pio
momentum, andm is the charged pion mass. Similar expre
sions exist fors- and u-channel amplitudes. By Bose sym
metry,l is even ifI 50 or 2 and is odd ifI 51. Unders↔u
crossingzt[cosut5n/(t2S) is odd, and so

AI
t~n,t !5~21! I AI

t~2n,t !. ~3!

Consequently,su-even amplitudes suitable for IDR’s ar
Ã0

t [A0
t , Ã1

t [A1
t /n, and Ã2

t [A2
t , i.e., ÃI

t5AI
t /n I , where

n0,251 andn15n.
IDR’s are written by dispersing int along curves of fixed

path parametersa52f(s,t)/t2 where f(s,t)5stu is the
Kibble boundary function ands1t1u5S. Typical curves
of constant path parameters are shown in Fig. 1, where
are seen to pass through both thes- and t-channel physical
regions, and the subthreshold triangle. It is this latter fea
that makes IDR’s attractive for this work. The IDR’s in the
unsubtracted form are

FIG. 1. Mandelstam plot forpp scattering. The solid, dot
dashed, long-dashed, and short-dashed curves correspond ta5
212.4m2, 28m2, 20.75m2, and20.25m2, respectively. The curve
a50 lies along the curveu50. Thus for a in the region
212.4m2,a,0 nearly all of the triangular region is accessible.
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ÃI
t~a,t !5

1

pES

`

dt8
ÃI

t~a,t8!

t82t
1CI ,I 8

st 1

pES

`

ds8
AI 8

s
„a,t~a,s8!…

n I8

3S 1

s82s
1

1

s82u
2

1

s82a
D , ~4!

where 2s(a,t)5S2t1n and 2u(a,t)5S2t2n with n
5n(a,t)5A4at1(S2t)2. In the above expression the lef
hand cut int has been transformed into an integral over t
physicals channel.CII 8

st is thest isospin-crossing matrix@1#,
and a sum overI 8 is implied. The threshold points5S, t
50, is common to all curves. This fact will be exploited
writing subtracted dispersion relations.

In the s-channel integral, fora,0 the cosine of the
center-of-mass scattering angle,zs[cosus5(a1s8)/(a2s8), is
physical, i.e.,21,zs,1. In the t channelzt[cosut5n/(t8
2S) is for a,0 unphysical only fort8 betweenS and t1

[S22a1A4a(a2S). In order to use partial-wave expan
sions of the imaginary parts of the amplitudes occurring
the integrands, it is necessary to be sure thatzt is inside the
Lehmann ellipse determined by the boundary of the dou
spectral functionrst . In particular, one must demand th
uzt

2u,ztB
2 21 whereztB is the value ofzt at the boundary of

rst . This results in24a,nB
2/t8 wherenB is the value ofn

at the boundary ofrst . Using the known boundary ofrst @1#,
one finds the minimum value ofnB

2/t8 to be approximately
12.4S. Consequently, only for212.4m2,a<0 is it certain
that a partial-wave expansion of the amplitude in the in
grand is convergent. The curvea5212.4m2 and others are
shown in Fig. 1, and it is clear that almost all of the su
threshold triangle is accessible@12#.

Subtracted IDR’s are easily obtained by evaluating E
~4! at the s-channel threshold (t50, s5S for all a) and
subtracting it from Eq.~4! at arbitraryt:

ÃI
t~a,t !5ÃI

t~a,0!1
t

pES

`dt8ÃI
t~a,t8!

t8~ t82t !

1CII 8
st 1

pES

`

ds8
AI 8

s
„a,t~a,s8!…

n I8

3S s2S

~s82S!~s82s!
1

u

s8~s82u!
D , ~5!

where t(a,s8)522q2@12zs(a,s8)# and AI
t(a,0)

5mCII 8
st aI 8 l 50. This set of equations, which is more conve

gent than Eq.~4!, is our major tool for determining thepp
amplitudes within the subthreshold region.

The convergence of the dispersion integrals in Eq.~5! was
first tested by comparison of its predictions along the rig
side of the subthreshold triangle with those of the more c
vergent fixedu50 dispersion relation:

ÃI
u~nu!5ÃI

u~S!1
nu

22S2

p E
S

` dn82ÃI
u~nu8!

~n822S2!~n822nu
2!

,

wherenu[s2t. The tilde represents division bynuI , so that
these amplitudes are even underst crossing. This dispersion
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57 933pp SCATTERING AMPLITUDES IN THE . . .
relation has been subtracted at thes-channel threshold,nu

5S, resulting in ÃI
u(S)5mCII 8

su aI 8 l 50 /S I . By comparing
this integral to that of the once-subtracted IDR, it is seen t
this integrand has an extra energy-squared factor to sp
convergence. Once the amplitudes on the lineu50 were
determined, their values within the interior of the triang
were found from strongly convergent dispersion relations
tained by subtracting Eq.~5! with generala from a similar
expression witha50 and the same value oft, the subtrac-

tion constantÃI
t(0,t) being obtained fromÃI

u(nu) of Eq. ~6!
by applications of thetu crossing matrix.

Figure 2 compares the convergence of these two meth
by showing the accumulative integrals for the Che
Mandelstam amplitudes as functions of the cutoff energyW,
i.e., the highest center-of-mass energy included in the i
grals. In all cases, we have found convergence in the do
subtracted method well belowW52.0 GeV, the highest en
ergy for which experimental phase shifts are available~see
Sec. III!. The convergence is poorer, but still satisfactory
evaulations using Eq.~5!. The two methods yield nearly
equal amplitudes, providing a good consistency check,
cause they weigh the regions of integrations differently.

B. Threshold sum rules

IDR’s simplify to boundary dispersion relations@13#
when they are evaluated at path parametersa50 wherezs

5zt521. By its definition,Ã1
t includes an additional facto

of n215(S2t)21, and thus its integrals converge as if th
were subtracted. In its unsubtracted form, it can be written

FIG. 2. Convergence of the dispersion integrals. Boths- and
t-channel integrals were truncated at a center-of-mass energW.
The value at the left side of each graph corresponds to setting
dispersion integrals to zero, the value at the right, the integral u
W52 GeV.~a! shows theW dependence of the subtracted IDR,~b!
that of the fixed-u dispersion relation. Although the latter has bet
convergence properties, both are seen to converge to the sam
ues. For this particular examplet52.16m2 andn51.04m2, but the
results are typical for other points within the triangle.
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A1
t ~0,t !/n5

1

p
S l ~2l 11!F E

S

` dt8 f 1l ~ t8!

~ t82t !~ t82S!

1~21! IC1I
stE

S

`ds8 f I l ~s8!

s8~s82n!
G . ~6!

This amplitude can be evaluated att5S, n50 to obtain the
Olsson sum rule or att50, n5S to obtain the sum rule
involving 2a0025a20; see Ref.@1#, p. 262. Doing this and
changing the integration variable tor yields

3a11m
35

2

p
S l ~2l 11!E

0

1

dr~r23f 1l 2rC1I
suf I l ! ~7!

and

2a0025a20

6
m5

2

p
S l ~2l 11!C1I

stE
0

1dr

r
f I l , ~8!

respectively. Subtracting these two sum rules yields

1

6
~18a11m

222a0015a20!m

5
2

p
S l ~2l 11!E

0

1dr~12r2!

r3
~ f 1l 2C1I

sur2f I l !. ~9!

The factor of (12r2) in the last integral ‘‘pinches off’’ the
high-energy contributions, leading to improved convergen
This sum rule is equivalent to one first proposed by Wand
@14#. This combination of scattering lengths vanishes
Weinberg’s chiral model@15#, and so it is expected to b
quite small.

III. PARAMETRIZATION OF pp PARTIAL-WAVE
AMPLITUDES

To evaluate the dispersion integrals, it is necessary
have parametrizations of partial-wave amplitudes~PWA’s!
for each isospin state. For the low-energy region (W5As
,0.6 GeV orr,0.93), we will use parametrizations for th
s- and p-wave amplitudes that correctly describe resona
contributions: They have resonance poles on the unphys
sheet, have correct threshold behavior, and are real be
threshold. As shown in the Appendix these parametrizati
can be used to generate solutions of partial-wave disper
relations and form factors. In the region above approximat
0.6 GeV and ford and f waves, we use the parametrizatio
of Hyamset al. @6#.

Effective-range parametrizations of PWA’s normally a
written as expansions of the formq2l 11cotdl (q)
5( l cl q2l where the series is truncated at a conveni
point. For low-energypp scattering, we replaceq in this
expression by the variabler. The variabler is a natural
variable in which to write resonance parametrizations t
satisfy elastic unitarity and also, as seen in the previous
tion, to write dispersion relations. We will begin by listin
simple parametrizations for the first few PWA’s.

he
to

val-
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A. s-wave partial-wave amplitudes

Defining f 0[t0 /r[(S021)/2ir, in the elastic region it
follows that

f 0
2152 ir1rcotd0 ~10!

~isospin labels are omitted!. Keeping the first three terms o
an effective-range expansion gives

rcotd0
~2!5c01c2r21c4r4, ~11!

where the constantsc0, c2, andc4 are real. The constantc0 is
the inverse of the scattering lengtha0 in pion mass units, and
c2 is twice the ‘‘effective-range’’ parameter for an expansi
in r2. This parametrization can give good fits to experime
tal data for a reasonable range ofc051/ma0. Substituting
Eq. ~11! into Eq. ~10! results in a polynomial inr whose
roots are poles of the PWA’s. Resonance poles are the
which correspond tor in the interval~0,1! with small nega-
tive r. The model of Eq.~11! does not describe two reso
nances; the right-hand side is finite, and hence the phase
cannot pass throughp. Once the parametersci are found by
fitting phase-shift data, the roots off 0

21 can be found and the
appropriate one inverted vias5S/(12r2)5M22 iM G to
give the mass and width of the resonance.

Although it will not be required in the low-energy regim
where the previous fits are adequate, we could obtain
appropriate expression for two resonances~or two bound
states! by use of the well-known, crude, but unitary, mod
S2r5Sr 1

Sr 2
, whereSr i

5112ir f r i
, to obtain

f 2r
2152 ir1

~c101c12r
2!~c201c22r

2!2r2

c101c201~c121c22!r
2

, ~12!

where f r i

2152 ir1ci01ci2r2. A change of parameters ma

be made to yield

f 2r
2152 ir1~ma0!21~12r2/rp/2

2 !

3~12r2/r3p/2
2 !/~12r2/rp

2 !. ~13!

For some values of the parametersci j ~e.g., for two reso-
nances! the constantsrp/2 , rp , andr3p/2 are real. This form
clearly illustrates the pole and zeros ofrcotd5f212ir at d
5p and d5p/2, 3p/2, respectively. Once the four param
eters are found by fitting phase-shift data, the roots of
2r2/rp

2 ) f 2r
21 can be found as before to give the masses

widths of the two resonances. The procedure is easily
tended to include additional resonances.

1. d00

For I 50 amplitudes we have adopted the phase-s
analysis of Estabrooks and Martin@5# for the higher-energy
data and that of Rosseletet al. @7# for the lower-energy data
The data of Rosseletet al. ~below r250.5) have relatively
large error bars, and so do not strongly constrain the fit in
low-energy region. A parametrization of the form

rcotd00
~3!5

1

ma00
1c2r21c4r4 ~14!
-

es

hift

n

l

1
d
x-

ft

e

was fit to data below 0.9 GeV witha00 as an input parameter
The best-fit parameters for each choice ofa00 were found to
vary linearly in a00

21: c257.1422.56(ma00)
21, c4528.10

11.62(ma00)
21 for 0.10,ma00,0.35.~The coefficients are

given to three places to allow the reader to reproduce
numbers.! This parametrization has a ‘‘sigma meson’’ wit
mass in the general region of 0.5 GeV and width of 0.7 G
for a broad range ofa00. The fit is shown in Fig. 3. Devia-
tions from the data that begin nearW50.9 GeV are irrel-
evant as it is used only below 0.60 GeV.

To test the dependence of the effective-range parame
on the data set used to model the phase shift between
GeV and 0.9 GeV, we have also obtained values ofc2 andc4
by replacing the low-energy data of Ref.@5# by those of two
others, with the following results: Ref.@8#, c255.08
22.58(ma00)

21, c4525.8011.64(ma00)
21; Ref. @6#, c2

56.2822.52(ma00)
21, c4527.0011.57(ma00)

21. This
should give some indication of the uncertainty of these
rameters.

In all of our parametrizations, the predicted mass a
widths of the ‘‘sigma meson’’ are fairly consistent. To¨rnqvist
and Roos have recently advocated the interpretation ofs as
a real, physical particle@16#, and the resilience of the pol
position of our fits for several~admittedly simple! parametri-
zations is in agreement with their view.

2. d20

To allow a variation ofa20 as used in the dispersion wor
in the next section, a parametrization of the formrcotd20
5(ma20)

211c2r21c4r4 was fit to the data of Hoogland
et al. @4# for 20.20,ma20,20.02. As functions of the scat
tering length, the best-fit parameters were found to bec25
222.6222.41(ma20)

21 and c4521.6411.43(ma20)
21.

Corresponding curves and the data are shown in Fig
These fits are used only forW,0.6 GeV.

B. p-wave partial-wave amplitude d11

For l 51, the reduced PWAh11[(S1121)/2ir3 could be
parametrized in the elastic region by usingr3cotd11

FIG. 3. s-wave isospin-0 phase shiftd00 vs Wpp . Experimental
phase shifts are from Refs.@5# and@7#. The three fits correspond to
ma0050.16 ~short-dashed line!, 0.26 ~long-dashed line!, and 0.36
~solid line!.
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57 935pp SCATTERING AMPLITUDES IN THE . . .
5(m3a11)
211c2r25(12r2/rp/2

2 )/(m3a11). Fitting this to
the phase shifts of@5# results in the resonance poles2rr*
and rr50.93120.014i and a distant satellite pole atrs
531.67i . The mass and width of the resonance pole
M r5751 MeV andGr5144 MeV. The scattering volume
for this fit is m3a1150.036.

To describe the contribution of two resonances where
phase can vary from zero to 2p, a better parametrization
would be

r3cotd11
~2r !5~m3a11!

21~12r2/rp/2
2 !

3~12r2/r3p/2
2 !/~12r2/rp

2 !. ~15!

Once the parameters are found from fitting data, the ma
and widths of the resonances can be found from the root
h11

21(r)52 ir31r3cotd11.

IV. pp SCATTERING AMPLITUDES
IN THE SUBTHRESHOLD TRIANGLE

A. Crossing, sum rules, and a universal curve

The next step is to insert the imaginary parts of t
partial-wave amplitudes into the subtracted IDR, Eq.~5!, to
evaluate the amplitudesAI

t inside the subthreshold triangle
For each choice ofs-wave scattering lengths, we evaluat
them at a fine grid of points (n,t) within the subthreshold
triangle as described below. With this set of amplitudes,
were able to test the crossing symmetry.

The crossing properties of thepp scattering amplitude
are most simply and elegantly expressed in terms of the
variant amplitudes of Chew and Mandelstam~CM! @17#,
which are defined by T(s,t,u)5dabdgdA(s,t,u)
1dagdbdB(s,t,u)1daddbgC(s,t,u) in terms of Cartesian
isospin indices. The crossing properties of the CM am
tudes are summarized as follows: unders↔u, A(s,t,u)
5C(u,t,s) and B(s,t,u)5B(u,t,s); under s↔t, A(s,t,u)
5B(t,s,u) and C(s,t,u)5C(t,s,u); and under t↔u,
A(s,t,u)5A(s,u,t) and B(s,t,u)5C(s,u,t). The CM am-
plitudes are related to thet-channel invariant amplitudes, b

FIG. 4. s-wave isospin-2 phase shiftd20 vs Wpp . Experimental
phase shifts are from Ref.@4#. The four fits correspond toma205
20.02 ~short-dashed line!, 20.04 ~long-dashed line!, 20.06 ~dot-
dashed line!, and20.08 ~solid line!.
e

e

es
of

e

n-
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A0
t 53B1A1C, A1

t 5A2C, andA2
t 5A1C. Inverting these

equations, we can determineA, B, and C in terms of the
AI

t ’s, which were previously calculated within the subthres
old triangle.

Because thet-channel invariant amplitudes obeyAI
t(n,t)

5(21)IAI
t(2n,t) @see Eq.~3!# unders↔u ~i.e.,n→2n), it

follows immediately that the resulting CM amplitudes e
actly satisfy the desiredsu crossing properties. On the othe
hand, we have no assurance that the amplitudes gene
from the IDR’s will possess the correct crossing propert
under the permutationss↔t and t↔u, and in general they
do not. If, for example, typical valuesa00m50.20 and
a20m520.10 of thes-wave scattering lengths are chose
the s↔t relations are poorly satisfied. However, a rath
small modification of either scattering length can produ
amplitudes which do possess to a reasonable approxima
the desired crossing properties for pairs of points related
s↔t crossing. Consequently, to ensure a rather accu
crossing symmetry within the subthreshold triangle,
chose a uniform grid of points within the subthreshold t
angle ~‘‘uniform’’ means equal spacing in the Dalitz vari
ablesx andy wheren5A3x and t5y). Points for whicha
,28m2 are eliminated so that the partial-wave expansio
of the t-channel amplitudes lie well within their ellipses o
convergence, as was discussed in Sec. II A. For the se
such pointsc5(n,t)5(s,t,u) we form the sum of the
squares of the difference of the CM amplitudes ats↔t
crossing symmetric points throughout the right-hand h
(n.0) of the subthreshold triangle„e.g., all terms such as
@A(s,t,u)2B(t,s,u)#2 and @C(s,t,u)2C(t,s,u)#2, etc.….
Using the automatics↔u crossing properties of the ampl
tudes this sum can be written asX5(cXc , where

Xc[~Ab2Ac!
21~Bb2Cc!

21~Cb2Bc!
21~Ad2Cc!

2

1~Bd2Ac!
21~Cd2Bc!

21~Ad2Bb!21~Bd2Ab!2

1~Cd2Cb!2, ~16!

FIG. 5. ‘‘Universal curve.’’ The relation betweena00 and a20

which produces acceptable crossing symmetry. The contours c
spond to lines of constant 104X. The jitter at the bottom of the
trough is an artifact of the grid spacing.
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936 57GERALD E. HITE AND WILLIAM B. KAUFMANN
d5(u,s,t), b5(s,u,t), and c is restricted to lie in the
smaller triangle bounded byt50, u5t ands5u. The same
expression results from summing overu↔t crossing sym-
metric points. By construction,X vanishes for a fully
crossing-symmetric set of CM amplitudes. For each value

FIG. 6. Contours ofB(s,t,u) throughout the subthreshold tr
angle.~a!, ~b!, and~c! correspond to the Weinberg amplitude (W),
the amplitude of Gasser and Leutwyler~GL!, and the IDR result for
the casema0050.20,ma20520.0325.
f

a00, we have selected the value ofa20 which best minimizes
X. A plot of X as a function ofa00 anda20 is given in Fig. 5.
The points preferred by crossing symmetry lie on the de
trough seen in the figure. The values ofa00 anda20 found in
this manner lie roughly along the ‘‘universal line’’

a20520.090m2110.288a00. ~17!

This equation differs slightly from the result we presented
Ref. @11# because an earlier version of the partial waves
Estabrookset al. was used in that work and crossing sym
metry was enforced on a more limited grid. If a fit to
combination of the data of Rosseletet al. and the 15 lowest-
energy points of the data Hyamset al., the result is

a20520.089m2110.275a00, ~18!

in reasonable agreement with Eq.~17!. A measure of the
excellent quality of crossing symmetry compliance
AX/9N'0.0002, whereN is the number of sample points
usually taken to be 330, and 9 is included because there
nine terms inX. This number is to be compared with th
sizes of the CM amplitudes, which lie approximately with
the interval (20.02,0.08).

Next we test the consistency of the points on the ‘‘univ
sal’’ curve with the sum rules, Eqs.~7! and~8! found in Sec.
II B. The sum rules were evaluated through the parametr
tions discussed in Sec. III. As an example we takea00
50.20m21; the corresponding value ofa20 chosen from the
‘‘universal curve’’ is a20520.0325m21. The left-hand side
of Eq. ~8! yields 2a0025a2050.56m21 while evaluating the
right-hand side from the phase shifts yields 0.55m21. With
this choice of scattering lengths then there is reasonable
sistency. Using the same choice of parametrization Eq.~7!
yields a1150.033m23. The effective-range formula~Sec.
III B ! used to model the low-energyp waves gives
0.036m23. The right-hand side of the Wanders sum rule, E

FIG. 7. B amplitude along the lineu50: B(t)5B((2t,t,0).
The three curves correspond to scattering lengthsma0050.16~solid
line!, 0.20 ~long-dashed line!, and 0.24~short-dashed line!.
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FIG. 8. Contours ofA1B1C corresponding top0p0 elastic
scattering.~a! and ~c! correspond to two IDR calculations corre
sponding to two different fits to the low-energy data~kinks at bot-
tom are artifacts!, and ~b! corresponds to the amplitude of Gass
and Leutwyler. Weinberg’s amplitude is a constant~approximately
0.022! everywhere.
FIG. 9. Partial-wave amplitudes.f 00, f 11, andf 20 correspond to
solid, dot-dashed, and dashed lines.~a!, ~b!, and ~c! correspond to
ma0050.16, 0.20, and 0.24, respectively.
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~9!, yields (2a0025a20)m218a11m
350.55420.5895

20.035, and so, as expected, the cancellation between
two contributions is quite strong.

B. Comparison to models with chiral symmetry

The study of low-energy pion processes leads naturall
the realization that chiral symmetry is a good approxim
symmetry of strong interactions. Low-energypp scattering
is an especially attractive process for testing chir
symmetry-breaking models. As early as 1966 Weinberg@15#,
employing current algebra and PCAC, derived the followi
approximate expression the CM amplitudeB:

B~s,t,u!5~ t2m2!/~16p f p
2 !, ~19!

where f p'93A2 MeV is the pion decay constant. Corr
sponding expressions for the amplitudesA andC are found
by replacingt by s andu, respectively. This amplitude ha
three distinct features:~a! It is a linear function oft alone,~b!
its slope is 1/(16p f p

2 ), and ~c! it has a null line att5m2.
More recently, corrections to Weinberg’s amplitude ha
been derived within the framework of chiral perturbati
theory@18–21#. These corrections produce slight nonlinea
ties in the amplitudes which are interesting to compare w
our results.

As was seen in Sec. IV A, the amplitudeB can be con-
structed from thet-channel isospin amplitudes, i.e., (A0

t

2A2
t )/3, which have been evaluated via the dispersion re

tions inside the subthreshold triangle. Figure 6 compares
contour plot ofB @Fig. 6~c!# with the chiral amplitudes of
Weinberg @Fig. 6~a!# and of Gasser and Leutwyler@Fig.
rs
is

ri
he

to
e
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e

-
h

-
ur

6~b!#. In our calculation we have used the case (a00,a20)m
5(0.20,20.0325) which lies on the universal curve E
~17!. The similarity of our contours to those predicted b
Weinberg’s model is evident. Closer inspection shows, ho
ever, that the contours are slightly bowed, implying as2

1u2 or higher dependence, and are not equally spaced,
plying a t2 or higher dependence qualitatively similar to th
higher-order corrections of Refs.@18,19#.

As Fig. 7 shows more clearly,B(s5(2t,t,u50), ~a! is
nearly linear int, ~b! has a slope on the order of 1/(16p f p

2 ),
and~c! has a null line att'm2 for a00'0.20m21. The figure
also indicates that, to lowest order, variation ofa00 translates
the curves slightly int.

A more sensitive test of the corrections to Weinberg
amplitude is provided byp0p0 elastic scattering, for which
the amplitude isA1B1C. This amplitude is symmetric un
der any permutation ofs, t, andu. Weinberg’s amplitude for
this process is the constantm2/16p f p

2 '0.022, and so devia
tions from constancy are a direct measure of the correc
terms. Figure 8 compares the results of the chirally correc
amplitude @19# with our result. The figure also includes
contour plot using an effective-range formula fit to the da
of @8# to show an indication of the our uncertainties. T
values ofa20 are different because the ‘‘universal’’ lines
imposed by crossing symmetry, are slightly different for t
two fits. All three plots show a minimum at the symmet
point s5t5u54m2/3, in accordance with a rigorous theo
rem of A. Martin @22#.

As another example, Knechtet al. @20# by including one-
loop graphs in ‘‘generalized chiral perturbation theory’’ o
tain
16pB~s,t,u!5FbS t2
4

3
m2D1

1

3
am2G Y f p

2 1@l1~ t22m2!21l2~s22m2!21l2~u22m2!2#/ f p
4

1 J̄ ~s!H 8FbS t2
4

3
m2D1

5

6
am2G2

22FbS t2
4

3
m2D2

2

3
am2G2J Y ~12f p

4 !

1 J̄ ~ t !H 3FbS s2
4

3
m2D2

2

3
am2G2

1b2~ t2u!~ t24m2!J Y ~12f p
4 !

1 J̄ ~u!H 3FbS u2
4

3
m2D2

2

3
am2G2

1b2~ t2s!~u24m2!J Y ~12f p
4 !,
-

-
he
ave
where J̄ (s)[@12rQ0(r)#/8p2 and Q0 is the zeroth-order
Legendre function of the second kind, i.e.,

Q0~r!5
1

2F lnS 11r

12r D2 ipG
sincer>0.

The first term dominates and, fora5b51, reproduces
Weinberg’s result. Values of the four paramete
(a,b,l1 ,l2) can be found for which the contours for th
model are indistinguishable from those shown in Fig. 6~c!.
The parameter sets corresponding to three typical scatte
 ng

lengths are @a00m50.16: (0.409,0.938,20.0036,0.0115)#,
@a00m50.20: (1.246,0.947,20.0036,0.0117)#, and @a00m
50.24: (2.068,0.953,20.0039,0.0118)#. These may be com
pared with the results of Knechtet al. @21#, who give l1
5(26.466.8)31023, l25(10.861.2)31023, a52.6, and
b51.19 as representative values.

C. Comparison of partial-wave amplitudes

Pennington and Protopopescu@23# used the Roy equa
tions @24# to evaluate the lowest partial waves in each of t
three isospin channels in the subthreshold region. We h
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performed a partial-wave projection of our evaluation of t
full subthreshold amplitudes for comparison with their r
sults. Our results are plotted in Fig. 9 and are in reason
agreement with Ref.@23# for the case (a00,a20)m5(0.16,
20.044). We also present the cases for whicha00m50.20
and 0.24. For the first casef 00 and f 20 have zeros at approxi
matelyt'0.7m2 and 2.4m2, respectively. The correspondin
points in the model of Weinberg are 0.5m2 and 2.0m2. f 00(t)
has a steep positive slope which leads to largeI 5J50 am-
plitudes at a few hundred MeV even though the scatter
length is itself rather small.f 20(t) has a shallower negativ
slope. The expansions of the partial-wave amplitudes
powers ofqt

2 are Ref I0(t)m215aI01bI0qt
21••• near the

t-channel threshold, whereaI0 are the scattering lengths an
bI0 are the slope parameters. The results correspondin
Fig. 9~a! are b0050.29m23 and b20520.07m23. The scat-
tering volume for the p wave is given by m3a11
5 limr→0r22f 1150.033. The corresponding numbers
Weinberg’s model areb0052L'0.18m23, b2052L'
20.09m23, andm3a115m3L/3'0.03.

V. SUMMARY AND CONCLUSIONS

We have used interior dispersion relations~IDR’s! to
study thepp scattering amplitudes within the subthresho
region. Our conclusions are~1! that IDR’s provide an excel-
lent tool to evaluate the invariant amplitudes within the su
threshold triangle using as input data within the physi
region such as scattering lengths and phase shifts. Also
the case ofa50, IDR’s lead naturally to the Olsson an
Wanders sum rules. It was seen that the resulting amplitu
were particularly sensitive to the input parameters in the lo
energy region and for various choices of input parame
did not always satisfy the expected crossing properties.~2! It
was determined that all crossing properties were reason
well satisfied if thes-wave scattering lengthsa00 and a20
were correlated, i.e., lie on a ‘‘universal curve.’’~3! The
invariant amplitudes thus found are strikingly similar to t
chiral-model predictions of Weinberg and others. T
partial-wave amplitudes resulting from these invariant am
tudes below threshold agree with those of Pennington
Protopopescu for similar choices ofa00 anda20.
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APPENDIX: DISPERSION RELATIONS FOR PWA’S AND
THEIR SOLUTIONS

The partial-wave amplitudef I l and the reduced partial
wave amplitudehI l are defined by

f I l [~SI l 21!/~2ir![r2l hI l ,

whereSI l is the scattering matrix.
According to the Mandelstam representation, redu

partial-wave amplitudes have a left- and right-hand cut a
satisfy a dispersion relation@25#. In its once-subtracted form
-
le

g

in

to

-
l
in

es
-

rs

ly

i-
d

.

d
d

f I l 5 f I l ~s50!1
s

pE2`

0 ds8 f I l /s8

s82s
1

s

pES

`ds8 f I l /s8

s82s
.

~A1!

If the variables is replaced byr5(12S/s)1/2, the right-
hand cut corresponds to 0<r<1 and the left-hand cut to 1
<r<`, yielding a single dispersion integral:

f I l ~r!2 f I l ~`!5
1

pE0

` dr82

r822r2
f I l ~r8!. ~A2!

This form is particularly attractive, since it says that fun
tions that satisfy dispersion relations inr are also solutions
of the original dispersion relation ins.

To illustrate the importance of this result, consider t
simple one-resonance parametrization for thel 50 ampli-
tude:

f I0
2152 ir1c01c2r2. ~A3!

The real constantsc0 andc2 are given by the condition tha
the amplitude have a resonance pole atsr5M22 iGM , i.e.,
at r5r r[r(sr), c252c0 /ur r u25(2r r)

21. By writing f I0
21

5c2(r2r r)(r1r r* ) it is seen that this function actually ha
a pair of resonance poles atr r and2r r , both located in the
lower half r plane, i.e., unphysicals plane. The two reso-
nance poles are complex conjugates~i.e., sr , sr* ) and are
both on the unphysical sheet as appropriate for a reson
@26#. Thus f I0 is a solution of the partial-wave dispersio
relation. It also satisfies elastic unitarity,f I05ru f I0u2.

Consequently, the expression forf I0 given by Eq.~A3!
for real constantsc0 and c2 describes a resonance, satisfi
elastic unitarity, partial-wave dispersion relations, and is r
analytic; i.e., it is real between its cuts. If the prescripti
used in Sec. II A is used to create an amplitude appropr
to describe two resonances, e.g.,s and f 0, the resulting am-
plitude also has satisfies elastic unitarity, partial-wave d
persion relations, and is real analytic. The obvious shortco
ing of this model forf I0 is that it fails to include inelastic
effects.

If for l >1 a resonance parametrization for the reduc
partial-wave amplitude is assumed to have the form

hl
2152 ir2l 111cl01cl2r252 iPm51

2l 11~r2rm!,

where therm’s are the roots ofhl
2150, then forhl to be real

analytic, the constantscl0 and cl2 must be real and can b
found by demanding that there be a resonance pole ar
5r(sr). hl also satisfies elastic unitarity. However, it can
shown that at least one of the nonresonance polesrm8 is on
the physical sheet and consequently this parametriza
does not satisfy the appropriate dispersion relation. Fo
narrow width resonance such as ther meson this ‘‘satellite’’
pole is far from the physical region.

A solution dl of the subtracted dispersion relation can
found by assumingdl5hl along the cuts. Dropping the sub
traction constants to avoid a pole ats50 in f l , the solution
dl can be written as
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dl5 i (
m51

2l 11

bm Y ~r1«mrm!,

where rm
2lbm

21[Pm8Þm(rm
2 2rm8

2 ) and «m[sgn(rm), «5

11 for the normali« convention. If one assumesdl5hl
only along the right-hands cut, then

dl
~rh !52 (

m51

2l 11

bm

h~r!2h~rm!

r22rm
2

,

where
er

,

.

nt

n

rd

ev

y

h~r![
r

pF lnS 11r

12r D2 ipG
and

h~rm!5
rm

p F lnS 11rm

12rm
D2 i«mp G

are the Chew-Mandelstam functions. This latter form is a
propriate for describing a resonance contribution to a fo
factor and can be easily generalized to include more re
nance contributions.
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