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Tests of current algebra and partially conserved axial-vector current in the subthreshold region
of the pion-nucleon system
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The recently availablerN elastic, phase-shift analysis SP98, and interior dispersion relations are used to
obtain the invariant amplitudes in the subthreshold crescent where they can be compared directly to the
predictions of chiral theorie$S0556-28189)05210-3
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[. INTRODUCTION —t.(a)]. The portion of a typical curve of constaatin the
neighborhood of the crescent is shown in Fig. 1. <00 the
Current algebra and partially controlled axial-vector cur-path lies entirely within thes-channel physical region and
rent(PCAC) make powerful predictions in the threshold and passes through thechannel threshold point. In the interval
subthreshold regions of theN systenT1]. Some of the most t_(a)<t<t,(a), v is pure imaginary, and far>t,(a) the
important examples are the Adler consistency condif®n  path lies entirely within the-channel physical region.
(which predicts a zero in the pole-subtracted isospin-even Interior dispersion relations are written for amplitudes
amplitude for one soft pion the Weinberg-Tomozawa pre- which are su crossing symmetricF(v,t)=F(—v,t). In
diction of =N scattering length$3], the Adler-Weisberger terms of the variablesa(t), the unsubtracted form of an IDR
sum rule[4] (which constrains the isospin-odd amplitude atis
v=t=0 for massless piopsand thewN o term (which
measures the chiral-symmetry breaking in thi systen).
The values of these quantities are determined from ampli-
tudes evaluated within the small subthreshold “crescent” re-

Flat)—F . 1 Jw ImF(a,t’)dt’
(a=Fy@t+— W -t

gion in the Mandelstam diagram shown in Fig[3]. Be- i l ” IMF(@at(s’,a))

cause the crescent lies below the physical threshold of all of T J(m+ )2 R

the crossed reactions mN\—aN, 7N—=N, and 1 1

NN— 7 ), the invariant amplitudes are real in this region. — + ——— — ds’, (1)
In this article we report on an application of a recent S-S s~-u s-—a

Virginia Polytechnic Institute phase-shift analysis SR68
and interior dispersion relation#DR’s) [7] to map the rel-
evant amplitudes within the entire crescé8l. Hence, this
analysis provides current tests of several predictions of chira
symmetry. The present work is an extension and update o
work done at the beginning of the era of the meson factories 2f
[9]; since then, new high-precisionN data have been ob- t(a—y
tained, from which improved low-energy phase shifts havey;
been extracted. The general structure of the pion-nucleor

o

invariant amplitudes has long been kno\t0], of course, ol o ~s’-éhannel ]

but the IDR method is especially well suited for studies of -\ ?;‘gﬁ,'ﬁ“.

the subthreshold region, especially when coupled with the : q\

high-precision VPI phase-shift analyses. [ '.\ﬁxeda\'
3\ ‘.\.

8 . . .
2 15 -1 05

II. IDR AND THE SUBTHRESHOLD REGION : S T B8

We will use two sets of |r_1dependent variables;tj and FIG. 1. Mandelstam diagram for theN system. The crescent is
(v.1), wherey=s—u, anda is the IDR path parameter de- he small-lenslike region lying between the line0 and the hyper-
fined by a=—[su—(m?—x?)?]/t [7,11]. m is the proton poja su=(m2— u?)2. Curves are shown with path parameters
mass, andu is the charged pion mass. IDR’s are “dis- — —0.3Ge\? (long-dashed ling —0.86 Ge\? (dash-dotted ling
persed” int along curves of constant negatiee so @,t) —2.0Ge\? (dash-double-dotted ling and —5.0 GeV? (short-
are natural choices as independent variables. In these vadashed ling The curve witra= —0.86 Ge\ intersects thes axis at
ables we have?=(t—4u?)(t—4m?) +4at=[t—t_(a)][t  the Cheng-Dashen point.

0556-2813/99/6(5)/0552047)/$15.00 60 055204-1 ©1999 The American Physical Society



WILLIAM B. KAUFMANN AND GERALD E. HITE PHYSICAL REVIEW C 60 055204

or simply 92 (ty—2p?)?

D)= i, (6)
F(at)=Fy(at)+ De(at) +1c(at), @) NoAm (mP-a)(t-ty)

_9 2wt
4m (m’—a)(t—ty)’

where Fy is an appropriate IDR Born term to be defined
shortly, s=s(a,t)=3[=—t+v(a,t)], u=u(a,t)=3[=—t
—v(a )], t(s’,a)=[-s'(E-s)+(m*—u??J(a-s'),
and where>=2m?+2u?. The integral over thé-channel where g, the pion-nucleon coupling constant, is given by
cut, De(a,t), is called the “discrepancy function.” Since the g%/4mw=(2m/u)?f?~13.7 (i.e., f2~0.076, vy=t—2u?
data needed for the-channel integral, i.e., the last term in and ty=t(s=m?a)=u2(4m?— u?)/(m?—a) is the posi-
Eq. (2), are available only up to some valsg,,, in practice tion of the nucleon pole on the curve defined by the path
one defines the data integral by parameteg.

Because the pole terms are singular within the subthresh-
old region, it is desirable to plot the much smoother pole-

subtracted (“barred”) amplitudes D*)(v,t)=D(")(1,t)
1 1 1 —D(v.t) and DO (v,)=D)(w,t) =D (w.t), where

I @

1 [ Smax ,
IF(Smax;a,t):; e 2 ImF(a,t(s’,a))
y23

Xlo—sto—u 5-a/95 @ the fixedt dispersion-theoretic Born terms are
and the “effective discrepancy function” by ) ¢ i B g (t—2u?)?
D=l 22| = am = ome—ay. ©
VN— VY m (m°—s)(m“—u)
De(Smaxsa,t)=F(a,t) —Fy(a,t) =l g(Spaa,t).  (4)
and
Combining its definition with Eq(1), De(Smax:at) is the
sum of Dg(a,t) and the high-energy part of trechannel <) 9/ vy g2 t—2u?
integral. Both parts can be expected to vary slowly in that Dy {(v,t)= E(W) = am (m2=s)(m=u)” 9

portion of the s-channel physical region whergt|

<[t(Smax, )| The “barred” amplitudes are finite everywhere in the sub-
_The effective discrepancy function defined in &4). var-  y,eqhold crescent, independent of whether IDR or fixed-
ies slowly even if a subtracted form of the dispersion rela-gop, terms are subtracted. The latter are more conventional,
tion, Eq. (1), were required for convergence. From its defi- o yever, so it is these that are plotted in our figures. IDR
nition and the subtracted version of HQ), De(Smaxa.t) is Born terms must, of course, be used in the actual evaluation

the sum of subtraction ternis.g., amplitudes anti: evalu- ot the dispersion relations. The two types of Born terms are
ated at the subtraction pojnand subtracted forms of the  (g|5ted by

channel and the above-data part of giehannel integrals.

These integrals, and so aldd-(Spay;at), vary slowly for . —g?

small [t], just as in the unsubtracted case. The discrepancy Dfu )_DNTt):mz_a

method we will employ depends only on this smootte-

pendence. 2
The strategy for determining(a,t) in the subthreshold 'f)g\l*)_f)(N*t):—%_

region will be to evaluate from experimental data © o 4m(mT-a)

De(Smax;at) in the regiont<0 by Egs.(3) and(4), extrapo- . . . .

Ia't:eg iﬁ);a th)e subthregshold regi{[mv?]ic(h) by E(q).(l) or Fi)ts These equations obviate the numerical cancellation of poles

subtracted counterpart, is relatively safe because the neardd{our reconstruction of the bar_red amplitudes.

singularity of Dy is att=4u2], and then use Ed4) again to Sln_ce ImF can be eva_lluated in the;:hannel by the use of

evaluateF(a,t) in the subthreshold region. We will discuss experimental phase shifts fomt u)°<s<Sp,, the data

the procedure more fully later in this section. First, however Nt€grall e(Smax;a,t) can be computed for all negative values
we define our choice of invariant amplitudes.

of a and for any(positive or negativevalue oft. On the
PCAC predictions are often expressed in terms of the am@ther hand thé-channel integral requires knowledge of Fm
plitudes for thet-channel reactioNN— 777 in the regiont>4u?. In
the regiont>4m?, ImF is related to the experimental cross
(5) section forNN— 77, but in the interval 4?<t<4m? this
process is unphysical, and a model is needed for the evalua-
tion of ImF.
where A®*) and B(i)_ are the standard invariant amplitudes | the region 4.2<t<16u?2, F is related to therr elas-
[12]. These amplitudes satisfy the crossing relationsjc scattering amplitude fot=0,1, or turning it around,
D) (=»,)=+DE)(p,t). For applications of IDR's we knowledge ofF will lead to values of these phase shifts. The
adopt the crossing-symmetric amplitud&" and D) ability to determinerw scattering lengths from elastieN
=D/, scattering data results from extended unitafity] which
The IDR Born terms are ensures thatrN, t-channel partial-wave amplitudes have the

(10

t+ty—4u’
4m ’

(11

14
(+) — A(®) L g™
DY (v,t)=A""(v,t) 4mB (v,1),
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same phase asrm partial-wave amplitudes for #2<t momentum, and(c) functions obtained by modeling the
<16u?. Since the lowest partial-wave amplitude in the imaginary part ofF by t-channel resonance fornts, p, fg,
t-channel dominates the invariant amplitudied] near the etc., mesons[16]. For this work we will adopt metho¢b),

mr threshold att=4u?, the behavior of therN invariant ~ which is simple and flexible; in addition it incorporates the
amplitudes at this point can be used to extragtscattering m threshold behavior, associated with the branch point at
lengths[15]. We will make use of this technique to obtain t=4u?, which is the nearest singularity. We emphasize that
the agy anda,; scattering lengths in the next section. the effective discrepancy function has no neasbgshannel

Even though we cannot evaludf®(s,.,;at) within the  singularities; it involves a dispersion integral over the
crescent directly from experimental data, there is a standartichannel cut running from 42 to «, and hence an expan-
method which allows us to infeDg(Spax;at), and hence sion about thers threshold in therm center-of-mass mo-
F(a,t), within this region. As outlined earlier, the first step mentum(or equivalently in7) is a sensible approach. Once
is to evaluate the effective discrepancy function within thecontributions from Born terms are removgth], the func-
thes-channel physical regiofs,,,>s=(m+u)? t<0] along  tions are expected to be smooth in this region and an expan-
a curve of constara<0. Hence, all of the quantities on the sion in 7 should be adequate. We have used the smallest
right side of Eq.(4) may be determined from known value of N which gives an acceptable fit to the function
s-channel data and the reasonably well-known value of thér(Smax;at) in the s-channel physical region. Usually
pion-nucleon coupling constagt =3 or 4 is adequate as is explained shortly.

The recent phase-shift analysis SH88 is employed to To model the discrepancy function for the amplitude
evaluate the amplitudeB and the data dispersion integral D™, the term linear in-must be omitted. This follows from
along a curve with fixe@ within this region. In some of our an examination of the-channel partial-wave expansiphs].
calculations the well-known KH80 phase shifts are usedAbove the 7rrr thresholdt=4u?, 7 is pure imaginary, and
above the region of the validity of SP98. For example, calthe imaginary part of the discrepancy function and recon-
culations performed with/s,,.,=4.4 GeV (with SP98 from  structed amplitude are given entirely by terms with odd pow-
threshold toys=2.0 GeV and KH80 from 2.0 to 4.4 GgVv ers of 7. The leading term in thé-channel partial-wave ex-
produced subthreshold amplitudes nearly indistinguishabl@ansion is a linear combination of thé=1 helicity
from those which used/s, 2.5 GeV (with SP98 along  amplitudesf®(p,,.). Near thems threshold, It is pro-

This near equality does not imply that the dispersion inte-portional to p22**=(i7u)***; hence the lowest term of
grals aboves,, are small, but rather it confirms that they are odd power in the expansion is proportionakfo Terms with
smooth functions of, whent is in the low-energy or cres- higherJ have successively higher powers gfand so the
cent region. term linear in7is absent in the expansion. The leading term

The next step is tanalytically continuethe effective dis-  in the t-channel partial-wave expansion Bf™) hasJ=0,
crepancy function into the crescent region along this curve oénd so the term proportional tois present in the expansion.
fixed a. This procedure is relatively safe because, as is seen To evaluate the amplitudes along the boundary fine
from its definition and Eq(1), Dr has no singularities within =0, we have used a forward dispersion relation. As with the
the crescent. Typical curves, shown in Fig. 1, enter the credDR’s, it is sufficient to use an unsubtracted form of the
cent region at the-channel threshold point @at=0 and ar-  discrepancy function:
rive on the v axis at the pointsy=0, t=t_=3-2a
—J(E—2a)*—(4mu)>. De(vimax; V)=F () =Fn (V) = lE t(Vmax; v),  (13)

As a is varied from 0 to—<0, thev=0 intersection of the
curves moves from_=4u? to 0. Thus, by varying, we
are able to map the effective discrepancy function through- max v
out the entire crescent region. ONEg(Smax;at) has been IF,t(Vmax;V)E_f IMF(v") —m——dv’, (19

. . L . T Jam v 14
analytically continued within the crescent, the amplituele "
can be reconstructed by rewriting E¢) as

wherel ; is defined by

!

Fn,t is the appropriate Born termy,,y is the upper limit of
F(a,t)=Dr(Spacart) + Fry(at) +1e(Smpcart). (12) the valldEy of the phasg-s_hlft analysis, aRqv) _could be
either D(Y)(»,t=0) or D(7)(»,t=0). These discrepancy
[As shown earlier) ((Smax;at) may be calculated from the functions are very smooth in the low-energy part of the

experimental data for any valueat any value ofa<0.] s-channel physical region and are excellently fit by polyno-
mials (quadrati¢ in »2. Just as with the IDR’s, the extrapo-
IIl. SUBTHRESHOLD EXTRAPOLATIONS lated values of c(vyax,») are combined with Eq(13) and
solved for F(v) betweeny=0 and the threshold point
To perform the analytic continuatio®(Sypaat) is ex-  =4mu.
panded in a suitable basis &_,c,(a) ¢n(t), Whereg,(t) There are three easily identifiable sources of uncertainties

are analytic functions to be chosen. The coefficienia) in our results. First, there is the uncertainty in the experimen-
are determined for each value afvia a least-squares fit to tally derived phase shifts and inelasticities used in computing
the known values oDg(Sax;a,t) in the s-channel physical the discrepancy function in the-channel physical region.
region. Typical choices of the basjs,(t) are(a) t", (b) 7, The other two uncertainties derive from the procedure used
wherer=\1— t/4u’=—ip. ./ is proportional to ther in the extrapolations: the choice b, the order of the poly-
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FIG. 2. Discrepancy function fab* with s;=2.5 Ge\* anda
=a.q~—0.87 GeV. For this value ofa, the Cheng-Dashefta) 0.5
point occurs at= 1#/2, and both IDR and fixed-Born terms are —
zero. Extrapolated values for the CD point are shown for quadratic o T T T T . ‘ ‘ . ‘

0 0.1 0.2 03 0.4 0.5 0.6 0.7 08 0.9 1

(short-dashed line cubic(solid line), and quartiqlong-dashed ling Vam
L

polynomials in7. The boxes represent the discrepancy function in
the s-channel physical region7(>1), evaluated using SP98. A
rough estimate of error bars on the latteri®.1x 1. The value of
D{") at the CD point is the sum of the extrapolated value of the
discrepancy function anth~—0.17x"1; see Eq(12).

FIG. 3. The isospin-even amplitud® ™ in units x~*. The null
curve passes near both the Adler poimt=0, t/u?=1) and the
s-channel threshold pointy{4mu =1, t=0). This plot was com-
puted withs;=2.5 Ge\? andN,=4. The uncertainty in these con-
tours is reflected by the error bars given in Fig. 5.
nomial in 7, and the choice of the range=(s,,S;) over

which the discrepancy function is fit. The corresponding lim-guartic fit gives no significant improvement of, but it
its on t are @;,0), where t;(a)=[s/(3—s5)—(m> gives us a crude estimate of the error associated with the

— u?)?]/(s,—a). extrapolation.

The saID database gives both global fitsuch as SP98 ‘We n0\(/\i)turn to the results of the calculatl_on of the am-
. . . . litudesD'~’. The overall features of the amplitudes are best
and, at energies where sufficient data exist, single-energ

fits. Because the uncertainties of the individual partial—waven
amplitudes are strongly correlated, it is difficult to use thempendix. The contour plots were calculated ushig 4 (cu-

in estimating the errors in the corresponding invariant amplibic) for bothD*) andD(~). The amplitudes arsu crossing
tudes and discrepancy functions. We placed crude “e”%ymmetric, so only the region with=0 is shown. Refer to

bars” on our reconstructed discrepancy functions by comgigs 5 and 6 for an estimate of the error bars. An interesting
paring the scatter between the values obtained from single-

energy fits and those obtained from the smooth global fit — s+——

ient parametrization of these amplitudes is given in the Ap-

SP98[17]. Next, the discrepancy functiorignd the corre-

sponding values of?) are least-squares fit with a sequence sl T

of polynomials in7 of increasing ordeN. From these fits,

we select the one with the lowest ordir= Ny, which gives 3'_\

a satisfactoryy?. Ny is chosen as the smaller of two num- 25 0.9
bers: the value above which there is no significant improve-

ment in they? or the value for which the? per data point w2 2_\
falls below 1. For bottD(*) andD(7), we findNy,=4, i.e., a oe
cubic, if s¢ lies in the range 2.0—2.5 GEVFor the smaller 1'5_‘\
values;=1.75 GeV, a quadratic is adequat®lg=3). We . R
generally prefer extrapolations with a larger valuesgf the \_0_6
larger intervals serve to better determine the curvature of the  os-

discrepancy functions. o5

Figure 2 illustrates the extrapolation procedure for the o . w . w . . w . w
case of thed(*) amplitude. For this example, we have taken S o
a=acp=—m>+u?/2. In this case the path intersects the
point (t=2u?, »v=0) at 7= 1V2. (This is the Cheng-Dashen  FiG. 4. The isospin-odd amplitudem®( ) in units . 2. The
point, to which we return shortlyFrom this figure it is seen Adler-Weisberger point is=0 andt=0. This plot was computed
that the quadratic fit is inadequate, but the cubic gives amith s;=2.5 GeV? andNy=4. The uncertainty in these contours is
excellent fit in thes-channel physical regionr>1. The reflected by the error bars given in Fig. 6.

V/idmp
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alV=3(2az+a;) = D) (4mpu,0)

1
47(1+ p/m)
~—0.004+0.005. !

(note that this is not a “barred” amplitude, so the fixed-
Born term must be included18]. This very small number
results from the proximity of the null line mentioned in the
previous paragraph. The error bar is obtained by comparing
the extrapolation to threshold with a broad range of values of
the path parametea. The second is the point=0, t
=4u? (and hencea=0) at which thel =0 =7 scattering
lengthagy, may be evaluated. Using the method of Réb]
2 ' ' : : ' : ' with the invariant amplitud® *, we obtain the quite reason-
‘ ' ‘ ‘ able valueagy~0.20w "1 [19]. That the IDR’s give reason-
vp? able values ofiy, anda‘™) at opposite points on the bound-
_ ary of the subthreshold crescent adds confidence to the
FIG. 5. AmplitudeD(*)(0}) along the linev=0. The param-  yalyes in the central region. The third special point of inter-
eters are as in Fig. 3. est is the value at the Cheng-Dashen point 0, t=2u2) at
_ which the o term may be evaluatef?0]. The relationship
feature of D(*) is the null line which passes through the between ther term and the amplitude at this point is given
crescent. The Adler consistency condition stas)(» by the equatiori21]
=0t=u?) =0 (with one soft pion. It is seen from Fig. 3
and Fig. 5 that the zero in our world is at the point _
~(1.04*0.03)u? instead of at 1.22. At the pointt= u? the o=DM(v=0t=2u?f2. (15
amplitude is very smallp{™)(0,u?)~ —(0.05=0.05)u L.
T sohas s e eXUapOton 0 this o s st 1 Fig. 2. Te
sponds to the condition, which follows from current algebraCUbIC is the lowest-order polynomial inthat gives a satis-

; . . : factory fit; the corresponding value db(™)(0,2u?) is
and PCAC, that the isospin-even scattering lengfth is 7, . _ S
zero in a world of massless piof3]. 1.35¢" %, corresponding ta~83.6 MeV. A quatrtic fit gives

-1 . ..
For D(*) there are(at least three points of special inter- 1.61u"", or 0~100 MeV. Combining these results and

est, and the IDR calculation gives all of them within a singlethose from calculations with smaller values %f, we esti-

: : e : te that D(*) at the Cheng-Dashen point is (1.40
consistent analysis. The first is teechannel threshold point ma 21 . :
s=(m+u)?, t=0. At this point the isospin-even scattering |i0.25)tlﬁ Eﬁr a‘~88”i 15 Mtetj/). Tlh's v?luk()a 'St z%ml\jw\f;at_r
length is found to be arger than the usually quoted value of abou eV. To

check that the larger value is not an artifact of our IDR
0 . . . . . . technique, we have repeated our evaluation of gherm
using the KH80 amplitudes. Using;=1.75, 2.0, and
2.5GeVf we obtain 65.2, 65.7, and 65.3 MeV, respectively,
ozr ] in agreement with the traditional value. In this case quadratic
fits were adequate, but essentially the same results were ob-
tained using cubic fits. We conclude that the large value of
the o term is an intrinsic property of the modern SM95 and
SP98 phase-shift analys¢22]. At the point v=t=0 the
amplitude is 1.30-0.02u ‘~—o/f%, the “anti-
Cheng-Dashen” value, as is expected from the soft-pion

theorem for both pions soft. The behavior +)(O,t) is
shown in Fig. 5. It is seen that the amplitude has a positive
slope int with increasing curvature as approaches the

mm—NN pseudothreshold at ##, and D(*)(0,0)~
—D)(0,24%) [9]
0 05 1 15 2 25 3 35 4 The D) amplitude is also of great interest. As is seen in

4mp)
w?

" Fig. 4 the contour lines dd( ™), like those ofD"), are also
o smooth and bend downwards with increasindut the am-
FIG. 6. Amplitude 4nD(")(0}) along the linev=0. The pa- plitude is negative for all points within the crescent. At the
rameters are as in Fig. 4. s-channel threshold it yields the isospin-odd scattering length
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mu
4 (1+ wl/m)

uD()(v,t)~6.7436-7.0564+ 1.25162+0.1979*
—0.1087%2%—-0.019827°—0.9298",

(=) 1 D)
a =§(al—a3)= D'/(4mu,0)

~(0.085-0.030 ¢

in reasonable agreement with Siggal. [23]. At the point
t=4ux2 andv=0 (i.e., in the limita— 0) we obtainp-wave
a7 scattering lengths ofi;;~(0.035+0.015)u 2 using the
invariant amplitudesB(~) and A(") [15]. In addition the
point =0, t=0 gives a version of the Adler-Weisbherger
relation[9]:

©24mD) (1)~ — 1.04351 +0.030r%) — 0.55532
—0.1690+0.6135°+0.4841°%12,

wherev=v/4mu and 7= \/1—t/4?, which is proportional
to the t-channel## momentum. The variable is used in
(16) this expansion instead of the conventionalo model the
branch point at=4u?. The large number of digits given in
(Here we have used,=1.2670+0.0035 andf,=92.42 the coefficients is not significant, of course, but is included
+0.26 MeV,) This relation is true for massless pions, but it only to allow accurate reconstruction of the contour plots.
is seen from Fig. 4 and Fig. 6 that the approximation iSThese results are obtained from a cubic extrapolation. The
approximately satisfied even in our world. In particular, theforms of the expansions are consistent with the correspond-
t=0 intercept in Fig. 6 is {0.450-0.025)u "2, not very  ing t-channel partial-wave expansions. An estimate of the
distant from the value given by the Adler-Weisberger rela-yncertainty of these amplitudes is given in Figs. 5 and 6. For

Elz()er;'[g?d very close to the values found many years ago i, parametrization ob{")(v,t), it is easy to verify that
T alt)=-0.005."%, ¢=84.2MeV, andag=0.22u"*. The
amplitude at the “Adler point"t=u?, v=0 (r=/3/4) is
—0.053 ! and at the point=v=0 is —1.35." 1. These
The authors thank Professor R. Jacob and Professor Mire all in reasonably good agreement with the values deter-
Scadron for helpful discussions, and Professor R. Arndt an¢hined in the body of the paper. For the parametrization of

Professor G. Holer generously providing us with computer- 24m6(‘)(v ) it follows thata()=0.0854": the ampli-

ized copies of the SP98 and KH80 phase shifts, and for theff" IR PN . .
encouragement. tude att=»=0 is —0.465«"~. The latter differs slightly

from the value given in the body of the text: —(0.450
+0.025) 2. The factor (1 0.030r°) was fixed to make
a;;~0.03x 3. In calculating this scattering volume, the co-

The contour plots in Figs. 3 and 4 may be reproduced to &fficient of ther® term is modified by the nucleon Born term
good approximation by the following expansions: as is explained in Refl15], Sec. 2.3.

4mDO)(»y=01=0)~(1—g2)/2f2~ — (0.690+ 0.014 1.~ 2.
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