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Tests of current algebra and partially conserved axial-vector current in the subthreshold region
of the pion-nucleon system
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The recently availablepN elastic, phase-shift analysis SP98, and interior dispersion relations are used to
obtain the invariant amplitudes in the subthreshold crescent where they can be compared directly to the
predictions of chiral theories.@S0556-2813~99!05210-3#

PACS number~s!: 13.75.Gx, 11.55.Fv, 11.30.Rd
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I. INTRODUCTION

Current algebra and partially controlled axial-vector c
rent ~PCAC! make powerful predictions in the threshold a
subthreshold regions of thepN system@1#. Some of the most
important examples are the Adler consistency condition@2#
~which predicts a zero in the pole-subtracted isospin-e
amplitude for one soft pion!, the Weinberg-Tomozawa pre
diction of pN scattering lengths@3#, the Adler-Weisberger
sum rule@4# ~which constrains the isospin-odd amplitude
n5t50 for massless pions!, and thepN s term ~which
measures the chiral-symmetry breaking in thepN system!.
The values of these quantities are determined from am
tudes evaluated within the small subthreshold ‘‘crescent’’
gion in the Mandelstam diagram shown in Fig. 1@5#. Be-
cause the crescent lies below the physical threshold of a
the crossed reactions (pN→pN, p̄N→p̄N, and
NN̄→pp!, the invariant amplitudes are real in this region

In this article we report on an application of a rece
Virginia Polytechnic Institute phase-shift analysis SP98@6#
and interior dispersion relations~IDR’s! @7# to map the rel-
evant amplitudes within the entire crescent@8#. Hence, this
analysis provides current tests of several predictions of ch
symmetry. The present work is an extension and updat
work done at the beginning of the era of the meson facto
@9#; since then, new high-precisionpN data have been ob
tained, from which improved low-energy phase shifts ha
been extracted. The general structure of the pion-nucl
invariant amplitudes has long been known@10#, of course,
but the IDR method is especially well suited for studies
the subthreshold region, especially when coupled with
high-precision VPI phase-shift analyses.

II. IDR AND THE SUBTHRESHOLD REGION

We will use two sets of independent variables: (a,t) and
(n,t), wheren[s2u, anda is the IDR path parameter de
fined by a52@su2(m22m2)2#/t @7,11#. m is the proton
mass, andm is the charged pion mass. IDR’s are ‘‘dis
persed’’ in t along curves of constant negativea, so (a,t)
are natural choices as independent variables. In these
ables we haven25(t24m2)(t24m2)14at[@ t2t2(a)#@ t
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2t1(a)#. The portion of a typical curve of constanta in the
neighborhood of the crescent is shown in Fig. 1. Fort,0 the
path lies entirely within thes-channel physical region an
passes through thes-channel threshold point. In the interva
t2(a),t,t1(a), n is pure imaginary, and fort.t1(a) the
path lies entirely within thet-channel physical region.

Interior dispersion relations are written for amplitud
which are su crossing symmetric:F(n,t)5F(2n,t). In
terms of the variables (a,t), the unsubtracted form of an IDR
is

F~a,t !5FN~a,t !1
1

p E
4m2

` Im F~a,t8!dt8

t82t

1
1

p E
(m1m)2

`

Im F„a,t~s8,a!…

3F 1

s82s
1

1

s82u
2

1

s82aGds8, ~1!

FIG. 1. Mandelstam diagram for thepN system. The crescent i
the small-lenslike region lying between the linet50 and the hyper-
bola su5(m22m2)2. Curves are shown with path parametersa
520.3 GeV2 ~long-dashed line!, 20.86 GeV2 ~dash-dotted line!,
22.0 GeV2 ~dash-double-dotted line!, and 25.0 GeV2 ~short-
dashed line!. The curve witha520.86 GeV2 intersects then axis at
the Cheng-Dashen point.
©1999 The American Physical Society04-1
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or simply

F~a,t !5FN~a,t !1DF~a,t !1I F~a,t !, ~2!

where FN is an appropriate IDR Born term to be define
shortly, s5s(a,t)5 1

2 @S2t1n(a,t)#, u5u(a,t)5 1
2 @S2t

2n(a,t)#, t(s8,a)5@2s8(S2s8)1(m22m2)2#/(a2s8),
and whereS[2m212m2. The integral over thet-channel
cut,DF(a,t), is called the ‘‘discrepancy function.’’ Since th
data needed for thes-channel integral, i.e., the last term
Eq. ~2!, are available only up to some valuesmax, in practice
one defines the data integral by

I F~smax;a,t !5
1

p E
(m1m)2

smax
Im F„a,t~s8,a!…

3F 1

s82s
1

1

s82u
2

1

s82aGds8 ~3!

and the ‘‘effective discrepancy function’’ by

DF~smax;a,t ![F~a,t !2FN~a,t !2I F~smax;a,t !. ~4!

Combining its definition with Eq.~1!, DF(smax;a,t) is the
sum of DF(a,t) and the high-energy part of thes-channel
integral. Both parts can be expected to vary slowly in t
portion of the s-channel physical region whereutu
!ut(smax,a)u.

The effective discrepancy function defined in Eq.~4! var-
ies slowly even if a subtracted form of the dispersion re
tion, Eq. ~1!, were required for convergence. From its de
nition and the subtracted version of Eq.~1!, DF(smax;a,t) is
the sum of subtraction terms~e.g., amplitudes andI F evalu-
ated at the subtraction point! and subtracted forms of thet
channel and the above-data part of thes-channel integrals.
These integrals, and so alsoDF(smax;a,t), vary slowly for
small utu, just as in the unsubtracted case. The discrepa
method we will employ depends only on this smootht de-
pendence.

The strategy for determiningF(a,t) in the subthreshold
region will be to evaluate from experimental da
DF(smax;a,t) in the regiont,0 by Eqs.~3! and~4!, extrapo-
late it to the subthreshold region@which, by Eq.~1! or its
subtracted counterpart, is relatively safe because the ne
singularity ofDF is at t54m2#, and then use Eq.~4! again to
evaluateF(a,t) in the subthreshold region. We will discus
the procedure more fully later in this section. First, howev
we define our choice of invariant amplitudes.

PCAC predictions are often expressed in terms of the
plitudes

D (6)~n,t !5A(6)~n,t !1
n

4m
B(6)~n,t !, ~5!

whereA(6) and B(6) are the standard invariant amplitud
@12#. These amplitudes satisfy the crossing relatio
D (6)(2n,t)56D (6)(n,t). For applications of IDR’s we
adopt the crossing-symmetric amplitudesD1 and D̃ (2)

[D (2)/n.
The IDR Born terms are
05520
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DN
(1)5

g2

4m

~ tN22m2!2

~m22a!~ t2tN!
, ~6!

D̃N
(2)5

g2

4m

tN22m2

~m22a!~ t2tN!
, ~7!

where g, the pion-nucleon coupling constant, is given
g2/4p5(2m/m)2f 2'13.7 ~i.e., f 2'0.076!, nN5t22m2,
and tN5t(s5m2,a)5m2(4m22m2)/(m22a) is the posi-
tion of the nucleon pole on the curve defined by the p
parametera.

Because the pole terms are singular within the subthre
old region, it is desirable to plot the much smoother po
subtracted ~‘‘barred’’ ! amplitudes D̄ (1)(n,t)[D (1)(n,t)

2DN,t
(1)(n,t) and D̃̄ (2)(n,t)[D̃ (2)(n,t)2D̃N,t

(2)(n,t), where
the fixed-t dispersion-theoretic Born terms are

DN,t
(1)~n,t ![

g2

m S nN
2

nN
2 2n2D 5

g2

4m

~ t22m2!2

~m22s!~m22u!
~8!

and

D̃N,t
(2)~n,t ![

g2

m S nN

nN
2 2n2D 5

g2

4m

t22m2

~m22s!~m22u!
. ~9!

The ‘‘barred’’ amplitudes are finite everywhere in the su
threshold crescent, independent of whether IDR or fixet
Born terms are subtracted. The latter are more conventio
however, so it is these that are plotted in our figures. ID
Born terms must, of course, be used in the actual evalua
of the dispersion relations. The two types of Born terms
related by

DN
(1)2DN,t

(1)5
2g2

m22a S t1tN24m2

4m D , ~10!

D̃N
(2)2D̃N,t

(2)5
2g2

4m~m22a!
. ~11!

These equations obviate the numerical cancellation of p
in our reconstruction of the barred amplitudes.

Since ImF can be evaluated in thes channel by the use o
experimental phase shifts for (m1m)2,s,smax, the data
integralI F(smax;a,t) can be computed for all negative value
of a and for any~positive or negative! value of t. On the
other hand thet-channel integral requires knowledge of ImF
for the t-channel reactionNN̄→pp in the regiont.4m2. In
the regiont.4m2, Im F is related to the experimental cros
section forNN̄→pp, but in the interval 4m2,t,4m2 this
process is unphysical, and a model is needed for the eva
tion of ImF.

In the region 4m2,t,16m2, F is related to thepp elas-
tic scattering amplitude forI 50,1, or turning it around,
knowledge ofF will lead to values of these phase shifts. Th
ability to determinepp scattering lengths from elasticpN
scattering data results from extended unitarity@13# which
ensures thatpN, t-channel partial-wave amplitudes have t
4-2
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TESTS OF CURRENT ALGEBRA AND PARTIALLY . . . PHYSICAL REVIEW C60 055204
same phase aspp partial-wave amplitudes for 4m2,t
,16m2. Since the lowest partial-wave amplitude in th
t-channel dominates the invariant amplitude@14# near the
pp threshold att54m2, the behavior of thepN invariant
amplitudes at this point can be used to extractpp scattering
lengths@15#. We will make use of this technique to obta
the a00 anda11 scattering lengths in the next section.

Even though we cannot evaluateDF(smax;a,t) within the
crescent directly from experimental data, there is a stand
method which allows us to inferDF(smax;a,t), and hence
F(a,t), within this region. As outlined earlier, the first ste
is to evaluate the effective discrepancy function within t
thes-channel physical region@smax@s>(m1m)2, t<0# along
a curve of constanta,0. Hence, all of the quantities on th
right side of Eq. ~4! may be determined from know
s-channel data and the reasonably well-known value of
pion-nucleon coupling constantg.

The recent phase-shift analysis SP98@6# is employed to
evaluate the amplitudesF and the data dispersion integr
along a curve with fixeda within this region. In some of our
calculations the well-known KH80 phase shifts are us
above the region of the validity of SP98. For example, c
culations performed withAsmax54.4 GeV ~with SP98 from
threshold toAs52.0 GeV and KH80 from 2.0 to 4.4 GeV!
produced subthreshold amplitudes nearly indistinguisha
from those which usedAsmax52.5 GeV ~with SP98 alone!.
This near equality does not imply that the dispersion in
grals abovesmax are small, but rather it confirms that they a
smooth functions oft, when t is in the low-energy or cres
cent region.

The next step is toanalytically continuethe effective dis-
crepancy function into the crescent region along this curve
fixed a. This procedure is relatively safe because, as is s
from its definition and Eq.~1!, DF has no singularities within
the crescent. Typical curves, shown in Fig. 1, enter the c
cent region at thes-channel threshold point att50 and ar-
rive on the n axis at the pointsn50, t5t2[S22a
2A(S22a)22(4mm)2.

As a is varied from 0 to2`, then50 intersection of the
curves moves fromt254m2 to 0. Thus, by varyinga, we
are able to map the effective discrepancy function throu
out the entire crescent region. OnceDF(smax;a,t) has been
analytically continued within the crescent, the amplitudeF
can be reconstructed by rewriting Eq.~4! as

F~a,t !5DF~smax;a,t !1FN~a,t !1I F~smax;a,t !. ~12!

@As shown earlier,I F(smax;a,t) may be calculated from the
experimental data for any valuet at any value ofa<0.#

III. SUBTHRESHOLD EXTRAPOLATIONS

To perform the analytic continuation,DF(smax;a,t) is ex-
panded in a suitable basis setSn50

N cn(a)fn(t), wherefn(t)
are analytic functions to be chosen. The coefficientscn(a)
are determined for each value ofa via a least-squares fit to
the known values ofDF(smax;a,t) in the s-channel physical
region. Typical choices of the basisfn(t) are~a! tn, ~b! tn,
wheret[A12 t/4m252 ippp /m is proportional to thepp
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momentum, and~c! functions obtained by modeling th
imaginary part ofF by t-channel resonance forms~s, r, f 0 ,
etc., mesons! @16#. For this work we will adopt method~b!,
which is simple and flexible; in addition it incorporates th
pp threshold behavior, associated with the branch poin
t54m2, which is the nearest singularity. We emphasize t
the effective discrepancy function has no nearbys-channel
singularities; it involves a dispersion integral over t
t-channel cut running from 4m2 to `, and hence an expan
sion about thepp threshold in thepp center-of-mass mo-
mentum~or equivalently int! is a sensible approach. Onc
contributions from Born terms are removed@15#, the func-
tions are expected to be smooth in this region and an exp
sion in t should be adequate. We have used the sma
value of N which gives an acceptable fit to the functio
DF(smax;a,t) in the s-channel physical region. UsuallyN
53 or 4 is adequate as is explained shortly.

To model the discrepancy function for the amplitu
D (2), the term linear int must be omitted. This follows from
an examination of thet-channel partial-wave expansion@15#.
Above thepp thresholdt54m2, t is pure imaginary, and
the imaginary part of the discrepancy function and rec
structed amplitude are given entirely by terms with odd po
ers oft. The leading term in thet-channel partial-wave ex
pansion is a linear combination of theJ51 helicity
amplitudesf 6

(1)(ppp). Near thepp threshold, Imf6
(J) is pro-

portional to ppp
2J11[( i tm)2J11; hence the lowest term o

odd power in the expansion is proportional tot3. Terms with
higher J have successively higher powers oft, and so the
term linear int is absent in the expansion. The leading te
in the t-channel partial-wave expansion ofD (1) has J50,
and so the term proportional tot is present in the expansion

To evaluate the amplitudes along the boundary linet
50, we have used a forward dispersion relation. As with
IDR’s, it is sufficient to use an unsubtracted form of th
discrepancy function:

DF~nmax;n![F~n!2FN,t~n!2I F,t~nmax;n!, ~13!

whereI F,t is defined by

I F,t~nmax;n![
2

p E
4mm

nmax
Im F~n8!

n8

n822n2 dn8, ~14!

FN,t is the appropriate Born term,nmax is the upper limit of
the validity of the phase-shift analysis, andF(n) could be
either D (1)(n,t50) or D̃ (2)(n,t50). These discrepancy
functions are very smooth in the low-energy part of t
s-channel physical region and are excellently fit by polyn
mials ~quadratic! in n2. Just as with the IDR’s, the extrapo
lated values ofI F(nmax,n) are combined with Eq.~13! and
solved for F(n) betweenn50 and the threshold pointn
54mm.

There are three easily identifiable sources of uncertain
in our results. First, there is the uncertainty in the experim
tally derived phase shifts and inelasticities used in compu
the discrepancy function in thes-channel physical region
The other two uncertainties derive from the procedure u
in the extrapolations: the choice ofN, the order of the poly-
4-3
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nomial in t, and the choice of the ranges5(sth ,sf) over
which the discrepancy function is fit. The corresponding li
its on t are (t f ,0), where t f(a)5@sf(S2sf)2(m2

2m2)2#/(sf2a).
The SAID database gives both global fits~such as SP98!

and, at energies where sufficient data exist, single-ene
fits. Because the uncertainties of the individual partial-wa
amplitudes are strongly correlated, it is difficult to use the
in estimating the errors in the corresponding invariant am
tudes and discrepancy functions. We placed crude ‘‘e
bars’’ on our reconstructed discrepancy functions by co
paring the scatter between the values obtained from sin
energy fits and those obtained from the smooth globa
SP98@17#. Next, the discrepancy functions~and the corre-
sponding values ofx2! are least-squares fit with a sequen
of polynomials int of increasing orderN. From these fits,
we select the one with the lowest order,N5N0 , which gives
a satisfactoryx2. N0 is chosen as the smaller of two num
bers: the value above which there is no significant impro
ment in thex2 or the value for which thex2 per data point

falls below 1. For bothD̄ (1) andD̄ (2), we findN054, i.e., a
cubic, if sf lies in the range 2.0– 2.5 GeV2. For the smaller
value sf51.75 GeV2, a quadratic is adequate (N053). We
generally prefer extrapolations with a larger value ofsf ; the
larger intervals serve to better determine the curvature of
discrepancy functions.

Figure 2 illustrates the extrapolation procedure for
case of theD (1) amplitude. For this example, we have tak
a5aCD52m21m2/2. In this case the path intersects t
point (t52m2, n50! at t51/&. ~This is the Cheng-Dashe
point, to which we return shortly.! From this figure it is seen
that the quadratic fit is inadequate, but the cubic gives
excellent fit in thes-channel physical region:t.1. The

FIG. 2. Discrepancy function forD1 with sf52.5 GeV2 anda
5acd'20.87 GeV2. For this value ofa, the Cheng-Dashen~ca!
point occurs att5 1/& , and both IDR and fixed-t Born terms are
zero. Extrapolated values for the CD point are shown for quadr
~short-dashed line!, cubic~solid line!, and quartic~long-dashed line!
polynomials int. The boxes represent the discrepancy function
the s-channel physical region (t.1), evaluated using SP98. A
rough estimate of error bars on the latter is60.1m21. The value of
D (1) at the CD point is the sum of the extrapolated value of
discrepancy function andI D'20.17m21; see Eq.~12!.
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quartic fit gives no significant improvement ofx2, but it
gives us a crude estimate of the error associated with
extrapolation.

We now turn to the results of the calculation of the a
plitudesD (6). The overall features of the amplitudes are b
seen from the contour plots given in Figs. 3 and 4. A con
nient parametrization of these amplitudes is given in the A
pendix. The contour plots were calculated usingN54 ~cu-
bic! for bothD (1) andD (2). The amplitudes aresu crossing
symmetric, so only the region withn>0 is shown. Refer to
Figs. 5 and 6 for an estimate of the error bars. An interes

ic

e

FIG. 3. The isospin-even amplitudeD̄ (1) in unitsm21. The null
curve passes near both the Adler point (n50, t/m2[1! and the
s-channel threshold point (n/4mm 51, t50!. This plot was com-
puted withsf52.5 GeV2 andN054. The uncertainty in these con
tours is reflected by the error bars given in Fig. 5.

FIG. 4. The isospin-odd amplitude 4mD̄̃(2) in units m22. The
Adler-Weisberger point isn50 andt50. This plot was computed
with sf52.5 GeV2 andN054. The uncertainty in these contours
reflected by the error bars given in Fig. 6.
4-4
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TESTS OF CURRENT ALGEBRA AND PARTIALLY . . . PHYSICAL REVIEW C60 055204
feature of D̄ (1) is the null line which passes through th
crescent. The Adler consistency condition statesD̄ (1)(n
50,t5m2)50 ~with one soft pion!. It is seen from Fig. 3
and Fig. 5 that the zero in our world is at the pointt
'(1.0460.03)m2 instead of at 1.0m2. At the pointt5m2 the
amplitude is very small,D̄ (1)(0,m2)'2(0.0560.05)m21.
The null line curves downwards with increasingn, passing
though zero at a point very close to threshold. This cor
sponds to the condition, which follows from current algeb
and PCAC, that the isospin-even scattering lengtha(1) is
zero in a world of massless pions@3#.

For D (1) there are~at least! three points of special inter
est, and the IDR calculation gives all of them within a sing
consistent analysis. The first is thes-channel threshold poin
s5(m1m)2, t50. At this point the isospin-even scatterin
length is found to be

FIG. 5. AmplitudeD̄ (1)(0,t) along the linen50. The param-
eters are as in Fig. 3.

FIG. 6. Amplitude 4mD̄̃(2)(0,t) along the linen50. The pa-
rameters are as in Fig. 4.
05520
-

a(1)5 1
3 ~2a31a1!5

1

4p~11m/m!
D (1)~4mm,0!

'20.00460.005m21

~note that this is not a ‘‘barred’’ amplitude, so the fixedt
Born term must be included! @18#. This very small number
results from the proximity of the null line mentioned in th
previous paragraph. The error bar is obtained by compa
the extrapolation to threshold with a broad range of values
the path parametera. The second is the pointn50, t
54m2 ~and hencea50! at which theI 50 pp scattering
lengtha00 may be evaluated. Using the method of Ref.@15#
with the invariant amplitudeD1, we obtain the quite reason
able valuea00'0.20m21 @19#. That the IDR’s give reason
able values ofa00 anda(1) at opposite points on the bound
ary of the subthreshold crescent adds confidence to
values in the central region. The third special point of int
est is the value at the Cheng-Dashen point (n50, t52m2! at
which the s term may be evaluated@20#. The relationship
between thes term and the amplitude at this point is give
by the equation@21#

s5D̄ (1)~n50,t52m2! f p
2 . ~15!

The extrapolation to this point is illustrated in Fig. 2. Th
cubic is the lowest-order polynomial int that gives a satis-
factory fit; the corresponding value ofD (1)(0,2m2) is
1.35m21, corresponding tos'83.6 MeV. A quartic fit gives
1.61m21, or s'100 MeV. Combining these results an
those from calculations with smaller values ofsf , we esti-
mate that D (1) at the Cheng-Dashen point is (1.4
60.25)m21 ~or s'88615 MeV!. This value is somewha
larger than the usually quoted value of about 65 MeV.
check that the larger value is not an artifact of our ID
technique, we have repeated our evaluation of thes term
using the KH80 amplitudes. Usingsf51.75, 2.0, and
2.5 GeV2 we obtain 65.2, 65.7, and 65.3 MeV, respective
in agreement with the traditional value. In this case quadr
fits were adequate, but essentially the same results were
tained using cubic fits. We conclude that the large value
the s term is an intrinsic property of the modern SM95 a
SP98 phase-shift analyses@22#. At the point n5t50 the
amplitude is (21.3060.02)m21'2s/ f p

2 , the ‘‘anti-
Cheng-Dashen’’ value, as is expected from the soft-p
theorem for both pions soft. The behavior ofD̄ (1)(0,t) is
shown in Fig. 5. It is seen that the amplitude has a posi
slope in t with increasing curvature ast approaches the
pp→NN̄ pseudothreshold at 4m2, and D̄ (1)(0,0)'
2D̄ (1)(0,2m2) @9#.

The D̃ (2) amplitude is also of great interest. As is seen

Fig. 4 the contour lines ofD̃̄ (2), like those ofD̄ (1), are also
smooth and bend downwards with increasingn, but the am-
plitude is negative for all points within the crescent. At th
s-channel threshold it yields the isospin-odd scattering len
4-5
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a(2)5
1

3
~a12a3!5

4mm

4p~11m/m!
D̃ (2)~4mm,0!

'~0.08560.030!m21

in reasonable agreement with Sigget al. @23#. At the point
t54m2 andn50 ~i.e., in the limita→0! we obtainp-wave
pp scattering lengths ofa11'(0.03560.015)m23 using the
invariant amplitudesB(2) and A(2) @15#. In addition the
point n50, t50 gives a version of the Adler-Weisberg
relation @9#:

4mD̄̃(2)~n50,t50!'~12gA
2 !/2f p

2 '2~0.69060.014!m22.
~16!

~Here we have usedgA51.267060.0035 and f p592.42
60.26 MeV.! This relation is true for massless pions, but
is seen from Fig. 4 and Fig. 6 that the approximation
approximately satisfied even in our world. In particular, t
t50 intercept in Fig. 6 is (20.45060.025)m22, not very
distant from the value given by the Adler-Weisberger re
tion, and very close to the values found many years ag
Ref. @9#.
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APPENDIX

The contour plots in Figs. 3 and 4 may be reproduced
good approximation by the following expansions:
A

s
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nd
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a

mD̄ (1)~n,t !'6.743627.0564t11.2516n̄210.1979n̄4

20.1087t220.0198n̄2t220.9298t3,

m24mD̄̃(2)~n,t !'21.0435~110.030t3!20.5559n̄2

20.1690n̄410.6135t210.4841t2n̄2,

wheren̄[n/4mm andt5A12t/4m2, which is proportional
to the t-channelpp momentum. The variablet is used in
this expansion instead of the conventionalt to model the
branch point att54m2. The large number of digits given in
the coefficients is not significant, of course, but is includ
only to allow accurate reconstruction of the contour plo
These results are obtained from a cubic extrapolation.
forms of the expansions are consistent with the correspo
ing t-channel partial-wave expansions. An estimate of
uncertainty of these amplitudes is given in Figs. 5 and 6.

the parametrization ofD̄ (1)(n,t), it is easy to verify that
a(1)520.005m21, s584.2 MeV, anda0050.22m21. The
amplitude at the ‘‘Adler point’’t5m2, n50 (t5A3/4) is
20.053m21 and at the pointt5n50 is 21.35m21. These
are all in reasonably good agreement with the values de
mined in the body of the paper. For the parametrization

m24mD̄̃(2)(n,t) it follows that a(2)50.085m21; the ampli-
tude at t5n50 is 20.465m22. The latter differs slightly
from the value given in the body of the text: (20.450
60.025)m22. The factor (110.030t3) was fixed to make
a11'0.03m23. In calculating this scattering volume, the c
efficient of thet3 term is modified by the nucleon Born term
as is explained in Ref.@15#, Sec. 2.3.
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