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The energy dependence of forward angle pion double charge exchange is calculated in the energy range of
0-250 MeV. The most striking feature is a peak around 40 MeV which is in excellent agreement with the data
when distorted waves obtained from a realistic optical model are used. Two possible short-range corrections to
the reaction mechanism are addres$86556-28138)07410-X]

PACS numbd(s): 25.80.Gn, 24.10.Ht

[. INTRODUCTION are computed from truncated Klein-Gordon equations which
incorporate the optical potentials for the initidlr™*

Pion double charge exchangBCX) on nuclear targets +(Z,A)], final [# +(Z+2A)], and intermediate] 7°
has been extensively studied, both experimentally and theot (Z+ 1,A)] systems. In addition to the conventional optical
retically, throughout the last two decades. Because at leagbtentials[16], we include imaginary effective potentials
two nucleons must be involved in the process, the study ofvhich model pion true absorptio@nnihilatior). One of the
DCX is a natural tool for exploring nucleon-nucleon corre- major changes in the present calculation compared with pre-
lations. In the course of these studies at low energies, gious work, involves the use of realistic pion elastic scatter-
prominent peak in the#™,7~) cross section in the neigh- ing wave functions. These new wave functions were ob-
borhood of T ;=40 MeV was observed by a number of ex- tained by including a new parametrization of the correction
perimental group$1—3]. The peak occurs for a variety of for pion true absorption to the potential, increasing the num-
nuclear targets and seemingly independent of the final statber of independent partial waves from two to six and fitting

It has been claime@3] that this peak provides evidence the remaining parameters to measured elastic scattering and
for the existence of a dibaryon at this energy. Before accepteaction cross sectioffd7]. Since we use the distorted pion
ing such an interpretation, it is important to consider thewave functions from these fits without modification the DCX
more conventional ones. In this paper we will sh@s has cross sections obtained are predictions.
been previously suggestdd—8|) that such a peak arises  Thew° Green function is less certain since it is calculated
naturally because of the pion propagation in the conventionalsing the same theory for the external waves, but the state of
“sequential process,” in which DCX occurs through two the nucleus during the propagation of the neutral pion is not
successiverN charge exchange reactions on two neutronsvell defined, nor is it directly testable as are the external
[9-11]. Our calculation is based on the conventionalwaves. We have chosen an effective nuclear excitation en-
distorted-wave impulse approximatidbWIA), which we  ergy (=0), and used closure over the intermediate nuclear
briefly outline. Calculations of the reaction leading to bothstates. The uncertainty in this “closure approximation” af-
the double isobaric analog stdf2IAS) and the ground state fects more greatly processes which lead to the analog final
are made. state, which involve longerr® propagation distances. The

While other reaction mechanisms have been studiedeneral DWIA procedure is outlined in Sec. Il A, and the
[7,12-15, we treat DCX as a two-step sequential process. Itechnique for the numerical solution is given in Appendix A.
is generally accepted now that this is likely to be the domi-This intermediate distortion has been considered in a number
nant mechanism for the types of transitions treated here abf other works[9,18-21.
though the other mechanisms could alter the picture some- We have used somewhat realistic shell model wave func-
what. In contrast to most nuclear reaction calculations, theions for the initial ground state, the final ground state, and
DCX amplitude must be evaluated in second order so that wehe final analog states. For the Ca isotopes we use the senior-
will need to compute, not only the distorted incoming™() ity model within thef,, shell as well as more accurate wave
and outgoing ¢~ ) pion wave functions, but also the dis- functions for the final ground stat¢22] as described in Sec.
torted 7% Green function, which describes the propagation ofll B. In the seniority model DCX for all the isotopes is given
the pion between two nucleons. in terms of two complex amplitudes. One amplitude is pri-

The distorted pion wave functions and Green’s functionsmarily sensitive to the short-range correlation of the valence
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nucleons and spin dependence of the DCX amplitude; thehange of a neutral particle at very short distances. Indeed,
other amplitude to the long-range behavior. Furthermore, thence the nucleons are overlapping, it is possible that the
relative importance of these two amplitudes depends veryeaction takes place on the level of quarks and gluons. Since
much on the pion energy. Fol'C we use a mixture of the volume of the region of overlapping nucleons is not
(1p12)? and (1psy)? configurations. large, we may expect the effect to be small, but since we are
Aside from questions involving the propagation and theable to enhance the sensitivity to the short range region, by
nuclear wave functions, there are those that surround thehoosing a particular transition, it becomes interesting to
interaction operator itself. While this operator is taken to bemake an estimate of the size of an effect that might be caused
two separate charge exchanges, the off-shell iteration involvby the static exchange of a single gluon.
ing two p-wave basic interactions createg-dunction inter-
action[23] much as in the case of the nucleon-nucleon inter- [l. SEQUENTIAL CALCULATION
action [24]. The removal of this unphysicab function
provides a correction to the reaction operator. Thi&inc-
tion has been previously treated in the setting of pion propa- The basic method used for the calculation of the DCX
gation in a nuclear mediuf25,26]. reaction is the same as that employed in a number of other
Once the very short range part of the interaction is conpresentation$9,2]. It involves the evaluation of the matrix
sidered, one is led to question the mechanism of the exelement

A. DCX cross section calculation

M(k,k'>=f drydro®F (ry, ) [WE (K1) F2(02,05) G(r 2, r) F1(ay,a0) P (k1) 1di(ry,10), (1)

where the momentg,=(%/i)V, andq,=(%/i)V, are op- nucleons in the shell. The seniority model is therefore exact
erators on the conjugate coordinates in the pion wave fundor transitions from*>444€a to the DIAS states of Ti. The
tions W) (k,r;) and ¥{(k’,r,) and the primed values ground states of““®li have T<n/2, and for these nuclides
operate on the corresponding coordinates in the Green fun¢he seniority model is an approximation. For these cases we
tion, G(r,,r,). The method for the evaluation of the effect have also used the more accurate McCullen-Bayman-Zamick
of the operators is described in Appendix A. (MBZ) [22] wave functions as discussed in the next section.
The single charge exchange operatbysand f, are de- For a nuclear wave function consisting of several orbitals,
rived from the pion-nucleon amplitudes and are expressed ithe concept of generalized seniority can be invoked and
momentum space as gives a similar resulf28]. We will see that the separation

N , , , into long- and short-range amplitudes plays an important role
£(0.0") =Xo(E)vo(@)vo(a’) +A1(E)q-q'va(A)va(q’) in understanding the energy dependence of DCX and had-

+o-qXq' MN(E)ve(q)vs(q’). 2) ronic propagation in the nucleus in general. Bramplitude
comes from configurations in which the two nucleons are
In the present calculation we take close together so that the propagation of the intermedifte
plays a small role, while in the amplitudeit is of significant
B B AP+ importance.
vo(@)=va(d)=vi(q)= A2+ QP © The quantity in square brackets is the DCX operator. In

Ref.[10] it was treated as arbitrary to investigate the behav-
for the off-shell extension. A value ot =400 MeV/c was ior as a function of the isotopic number. In R§23] this
used in the calculations presented later. Xreeare obtained operator alone was treated in the plane-wave limit to derive
from the pion-nucleon phase shifta7]. Representative val- its general characteristics. In R¢€] it was evaluated using
ues are given in Ref.23]. An improved calculation might the spectral representation for the Green function as ex-
take the three ranges distinct, the three functions distinct, oflained in Appendix A. A much more effective method, first
better yet, a different function for each of the six pion- applied in Ref[2], is to evaluate the Green function directly
nucleon partial waves important in this energy region. through numerical inversion of the Klein-Gordon operator,

The functionsb(ry,r,) are the wave functions of the two as is explained in Appendix A.
active nucleons. If there are more than two nucleons in the
valence shell, such as is the case fi€a and “®Ca, an
expansion in fractional parentage can be made as was treated B. Nuclear wave functions
in Ref.[9]. As is shown in that paper, the full amplitude can
be decomposed into an uncorrelated amplitude, denoted as
A, and a correlated amplitude, knownBsThis separation is The calcium isotopes provide a relatively good example
based on the seniority model, which is exact for a shell-of nuclei whose valence nucleons lie in a pure single shell.
model wave function consisting of a single shell wjts 5 For this reason the wave functions are simple and reliable. In
and maximal isospinT=n/2, wheren is the number of the seniority model, Eql) can be used to express the am-

1. Calcium



2294 MUTAZZ NUSEIRAT et al. PRC 58

plitude to either the double isobaric analog stdAS) or 10°
the ground state in terms of two amplitudésandB, defined F2Ca(mt,m7)**Ti(107) ]
as[9] . -]
L Ve ~
/ ~
1 (Q-1) i / il
A=Fyo— = F.; B= FL— Fo, — L / _
0 QL:Eodd L Lzo - Q Lzzodd L s 100 ¢ / ]
(@) 3
with Q=J+1/2. If there is no spin dependence, i.E, g
=0, L odd, then the amplitudd is the long-ranggmono- ) o° 1
pole) part of the DCX reaction while is the short-range 5 1 1
part. The analog and ground state transition amplitudes can ]
be expressed in terms of these amplitudes: - { 1
L .
d—U(DIAS)—n(n_1)|A+XB|2' 10t L ||J/{/%|¥
daQ B 2 ' 0 50 100 150 200 250
T (MeV)
do n(n—1) )
m(g.s.) ~T o [YB%, ) FIG. 1. Cross section for pion double charge exchangé’ca
leading to the analog state. The dotted curve displays the results of
wheren=2T is the number of valence neutrons and the calculation with plane waves and the solid curve with distorted
waves.
(5-n)

V(n—=2)(10—n). (6)

~3(n—-1)"  9(n—-1) very different. Just above threshold the energy of the final-
Exolicitly. th . ¢ log t ii th state 77~ is very small, as before, but with the attractive
Xplicitly, the cross sections for analog transttions on €e, 1omp interaction the cross section tends to infinity. This
calcium isotopes are given by .
is a very low energy phenomenon, however, and the cross

“CalA+B|% *“Ca:A+B/9? (7)  section quickly drops. Apparent in the calculation is an in-
terference effect which causes the cross section to pass

46Ca: 13A— B/15|2; 48Cq: 28A— B/7|2. 8 through zero around 20 MeV, after which it rises rapidly.

This effect is shown on a larger scale in Fig. 2. The cross

2. Carbon wave functions section will tend to infinity at the threshold because of the

In thi h ¢ on is | I d _ dCoulomb interaction of the finadr~ for all isotopes except
h n this (k:)asl_e 1 g wzéve_ unction 'Sd ess we fegggne “48Ca, where theQ value is positive. Above 50 MeV the
ere are believed to be important admixtures ofs absorption of the pioboth types quasifree and “tru@’sets

14
shells as well as thp,, andpgy, shells. For™C we take the i, and the cross section falls rapidly. In the region below 100
two valence patrticles as two proton holes in a fillggshell.

There are two independent basis vectors for a €ate,

which we choose aspk, and 1p,,,. Since the two configu- 6 [ LT T T T T
rations have similar energies, the ground state is better rep- r Ca(m*,m7)*Ti(107) ]
resented by a normalized combination of the two: 5 [ N
|®)=cosx|(1psn)?) +sinx|(1p12)?), 9) i ]
wherey is the mixing angld29]. We have calculated foy o 4 - ]
equal to 66° which is essentially the value given by fhe 3 - .
state calculations of Cohen and Kur80]. 33 - .
Ill. RESULTS NS i
5R [ ]
Figure 1 shows a comparison of the distorted-wave calcu- r 1
lation with the plane-wave version. From this figure we can - / .
get a general overview of the energy dependence. For the Le E
plane-wave calculations the cross section goes to zero at low C ~
energies because of the factor of momentum of the final 0 Lol o]
state. Since th€ value of the reaction is-12.4 MeV in this 0 20) 40 60 80
case, the cross section must vanish below 12.4 MeV. The T (MeV)

cross section rises rapidly and then decreases slightly before

rising into the 33 resonance region. The plane-wave Cross F|G. 2. Cross section for pion double charge exchangé?6a

section is more than a factor of 100 larger than the measuregading to the analog state. The dotted curve displays the results of

cross section in this region. the calculation without a Coulomb potential and the solid curve
The factors governing the distorted-wave calculation aréncludes it.
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FIG. 3. Cross section for pion double charge exchangé’ca FIG. 4. Cross section for pion double charge exchangé‘a

leading to the analog state. The dotted curve displays the results @fading to the ground state 4fTi. The dashed curve is calculated

the calculation without the double spin flip included and the solidwithout double spin flip and with the seniority model, the dash-dot

curve with. curve is calculated with double spin flip and the seniority model and
the solid is calculated with double spin flip and the MBZ model

MeV the resonances observgl?] in the elastic amplitudes [22].

also play a role.

In the figures to follow there is a comparison of the datayise of the cross section at low energies followed by flat-
[1,31-33 with calculations including and omitting the (5yned peak. The shape we predict is quite different from
double spin flip(DSF contribution. This is done because the ot of a single Breit-Wigner resonance. The qualitative
DSF cancels against the term with no spin flip and reducegqgreement between predictions of the sequential model and
the cross sectiorfin almost all casgs Since each of the he existing low-energy data supports the interpretation of
transitions in the double spin flip is of a Gamow-Teller na-yhis peak as an optical effect which does not require the
ture it is natural to ask if the suppression of this type ofjnioduction of a dibaryon resonance. Additional data at
transition can play a role. We do not take a position on thismaler energy intervals will be of great interest in determin-
issue but simply indicate the results with and without theing the shapes of the low-energy peaks, and are essential in

DSF. o ) . . further clarifying their nature.
We distinguish three cases in the seniority mddglB is Figure 9 shows the calculation of the DCX reaction on
the only amplitude(2) B is the dominant amplitude, an8)

A andB enter on an equal footing. FéfCa the analog state

is the ground state. The wave functions of the seniority 4 [T
model and those of MBZ are identical. Sinée>A over -, Ca(mT,mT)*Ti (107)
much of the energy rang® dominates. Figure 3 shows ex- LI \\ .
cellent agreement with the data. i /

Figures 4 and 5 show comparisons with the ground state Ly \\
transitions. HereB is the only amplitude, and the agreement "o [N ! ]
with the data in the seniority model is very good. With the { T ‘
use of the more accurate MBZ wave functions, the agree- 'gg Choa
ment is excellent. ~ |
Figures 6 and 7 compare theory and data for the analog = I
transitions for*/Ca and“®Ca. The strength oB for these ey
two cases is reduced by a factor of 1/9 and/7, respec- 1
tively, so that the contributions ok andB are comparable. L
In the case of*®Ca there is a strong tendency for them to -
cancel. These cases show a great sensitivity to the values of

amplitudeA. For Ca a much more complicated structure 0 Lo .i. ;\\T{Iliﬁ:ﬂ—_m.—ms—_

than a single peak results. It is interesting that the data points 0 50 100 150 200 250

are consistent with itat least below 150 Me)although they T (MeV)

cannot be said to imply such a structwepriori. Figure 8 i

shows the absolute values of amplituseand B for “*Ca. FIG. 5. Cross section for pion double charge exchangé®6a

There are some interesting features to be compared witleading to the ground state 8%Ti. The meaning of the curves is the
the model of a dibaryon causing this peak. There is a rapidame as in Fig. 4.
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4 LA B 2.5 e 2.5 e e
3 _ ; . BCa(m*,m)yBTi(10°) | Bea(m*,m7)BTi(10°)
44 + 4
i Ca(ﬂ o7 ) 4T1A(10 ) i 20 L Amplitude A ] 20 [ Amplitude B ]
3, 7 15 [ 115 ]
T(i:‘\ L _
~ [ I 1 1.0 - 410 .
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i \ oo ] FIG. 8. AmplitudesA andB for pion double charge exchange on
| = . ] “8Ca leading to the ground state &iTi without double spin flip.
0 T I PR E iR 3 I B The un|ts are ﬂb)llzl
0 50 100 150 200 250
T, (MeV) dominant contribution to the pion-nucleon amplitude in this

energy region i$ wave in nature.

FIG. 6. Cross section for pion double charge exchangé‘a The appearance of thé function in the DCX operator
leading to the analog state fiTi. The meaning of the curves is the comes from the point of view of pointlike pion-quark cou-
same as in Fig. 3. pling, where the pion-nucleon interaction extends over a fi-

nite region of space because of the distribution of quarks
14C. The curves do not show the more detailed structure seenithin the nucleon. This view is developed more fully in
in the calcium isotopes, presumably because the resonancBef. [24] for the case ofp charge exchange. Since ti&e
in the elastic phase shifts are less pronour{d&f. function arises from th@ wavep wave part of the interac-
tion, we need only consider that part of the DCX operator
IV. SHORT RANGE CORRECTIONS Ky Oq
(a®+qp)’
(10)

ko Oz
Fop(r1,r2) = (a®+k§)?———5-G

(gl T

In this section we discuss possible corrections due to ef-
fects of short range on the order of the size of the nucleon or
the pion.

whereq; andq, are to be treated as operatorsrqrandr in
the Green function. Since we anticipate that the correction is

of very short range, we will maké&or the purposes of this

The DCX operator resembles the one-pion-exchange pQsprrection only the approximation that the neutral pion is
tential between two nucleons in certain respects, since the

A. The é function in the DCX amplitude

. 15 ' L T T
T ol o\ ldng e
[ - L C{m™,m7)*0(0 -
- *Ca(m*,m7)*Ti,(107) ) ( o)
I i 12 - |
4 B 7] —
i ] £ r
~ - z
[ L | 9 _
<3 7 El
el i i ~ L
3 [ il <
~— i ] S 6 -
T2 ] N
5 L 4 <
C i 3
1
C / | | 0 :
O 11 1 | /I 11 1 | 11 1 | 11 1 1 O 20 40 60 80 100 120
0 50 100 150 200 250 T (MeV)
T (MeV)

FIG. 9. Cross section for pion double charge exchangé“en
FIG. 7. Cross section for pion double charge exchangé®ea leading to the ground state 6fO. The solid curve has double spin
leading to the analog state fiTi. The meaning of the curves is the flip included and no short range corrections while the dotted curve
same as in Fig. 3. omits the double spin flip contribution.
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undistorted in the intermediate state. In this case, expressifgr two quarks closer than the diameter of a pion the inter-

G(rq,r»,) in terms of its transform, we have

dg k,-gki-g eld-(r1—ry)
(2m)2 (a?+0?)2 >~ Ki+ie

Fop(f1.r2)~a’+ kg)zf

(11
=(a2+kg)2f da_ Kz @kad joyry
(27)3 (a?+q?)?
q2
- 12
g’>—ka+ie (12

The expansion ok,-gk;-q will yield an s wave and ad
wave part:

ko-0ky-q=3 (Ko k1)G%+ 3 Spo, (13
where the tensor operat&, is
S12=[3(kq- @) (ko @) — (Kq-kp) g1, (14

Because the nucleons are assumed to be close to each other
(for the purposes of this correctipwe keep only the relative

s wave. Thes wave part of thep-wavep-wave amplitude is
given by
dq eiq-(rlfrz) q2
(2m)% (a®+ 0?2 -k +ie
(15

5 ko ky(a®+ kg)zf

As discussed in Ref24] there is aé function atr;=r, in
Eqg. (15) in the limit asa—oc. This singularity is unphysical

action would pass from that of pion exchange to one based
on quark-gluon degrees of freedom in some continuous man-
ner. The generation of this short-range interaction merits a
thorough study, beyond the scope of the present paper. How-
ever, it is possible to make a rough estimate of the size of the
effect by adopting results from calculations of the nucleon-
nucleon case in the static linfi84]. The nonrelativistic two-
body one-gluon-exchangéOGE) potential is expected to
have the form

(Ni-N)

Voeeij) = 7 as (19

where\; is the color SU3) generators for theth quark,a; is
the strong coupling constar(for this work we usedag
=0.6), andrj; is the relative distance between thé and
the jth quarks.

We wish to replace the one-pion exchar@®E) with the
one-gluon exchange at short distances. We will do so with
the use of a Gaussian transition function
T(N=e " Toge+ (1-e #)Tope. (20
The rms radius of the Gaussian provides a convenient mea-
sure of the distance at which the transition takes place, i.e.,

/3
RT: ﬁ

We assume that only th® state of the two nucleons is in-
volved so that only the spin-spin part of the one-pion ex-
change contributes. Thus at smalboth OGE and OPE in-

(21)

because of the finite size of the pion. If we neglect the inter{€ractions are proportional to r}/, and the transition
action within the quark-quark range of less than the size of #Etween the two interactions in the neighborhoodRaf
pion (and then take the limit of the pion size going to 2ero changes only its strengttWe will keep the momentum car-

we find that the corrected interaction becomes

—(a?+k§)? 5 ka Ky

f dg ernr [ g2
(2m)3 (24922 g2~ Ke+ie

—1). (16)

Thus, the correction to the operator is

L ) 222 dq eiq(frfz)
Co=— Sk, ky(a?+k f - 1
o 3 Ko ky(a 0) (277)3(a/2+q2)2 17)
== 1kp ks YO (PO (F) L (re,Fo).
(18

rying part of the propagata’" in what follows, but it plays
little role at these low energies and short distances.
Thus the correction to the interaction can be written

ikr

AT(1)=Sopee *"(Soce/Sope=1.0——, (22

where this expression is to be added to the previous OPE
result before the correction for the finite size of the nucleon.
The quantitiesSypg and Spe are the strengths of the OPE
and OGE, respectively. While the tri&pg is known (at
least in the present modehe Syce is more difficult to ob-
tain. We will estimate the ratio in the parenthesis from the
ratio that would obtain in the case of a potential.

One gluon cannot be exchanged between two color sin-
glets(such as a pair of nucleonsnless it is accompanied by

This integral can be evaluated by contour integration, Théluark exchange or an additional gluon exchange. This ex-

development of the expressions for the distorted waves i

given in Appendix C.

B. One gluon exchange

ghange of quarks can be quite complicated but should not be
of a small magnitude when the nucleons are strongly over-
lapping as is the cas@nost of the tim¢ when the quarks
exchanging a gluon are in close proximity. In order to esti-
mate this probability we use the result that there is a hidden

In the preceding section the short-range quark-quark ineolor component generated when the nucleons are overlap-
teraction was neglected. After the limit was taken, onlydhe ping [35]. The gluon can then be exchanged between these
function was eliminated. One might believe, however, thathidden color componen{84].



2298 MUTAZZ NUSEIRAT et al. PRC 58

For the color symmetric pairs the matrix elements 6 M
(N\i-\j) have been calculated in the physical basis of hidden i 20a(m*,m)2Ti(10°)
color states and were found to be equaktd/3 for bothS - ’ .
=0,1=1 andS=1, | =0, the two possible nucleon states for °or E
Swave nucleon$34]. For the OPE the strengths are also the i 1
same in these two states. —4 | ]

Hence we can estimate that the ratio z - ]

/ a3 (23) \%3 - ]

Soce/ Sope= 0.6f 2/4m’ § C ]

b2 - -

where f?/47=0.0756 is the pion-nucleon coupling constant C ]
and the factor of 0.6 comes from an estimate, with symmet- r ]
ric quark model wave functions, of L 7
[f2/47T]Quark: 0.6 f %/47 Inucieon- (24) s P ,‘ TR P v ‘,;

]

The ratio of strengths from this estimate is 4.4. We empha- 3060 90 120 150
size that this is a very rough number. T (MeV)

The next step is to include the convolution of the propa-
gator with the finite size of the nucleon. To this end we
calculate the Fourier transform for the correction, multiply it
with the form factor for the nucleon and transform back to
coordinate space

FIG. 10. Cross section for pion double charge exchang&6a
leading to the ground state 6fTi. All of the curves are calculated
with the &-function correction included. The dash-dot curve has this
correction alone. The dashed curve has a transition radius of 0.14
fm, the solid curve 0.23 fm, and the dotted curve 0.39 fm.

2
g %K (ry,r)=(a?+k2)?— result from the elimination of the unphysicélfunction and
77 from an estimate of a short-range quark-quark interaction
. i(arDiar,) treated in a one-gluon-exchange approximation are not large
Xf 92d %AT(Q)- (25)  but clearly visible in any comparison with the measured
0 (a”+qg9) cross section.

This correction can then be added on in the same manner as This work was supported by the U. S. Department of En-
the §-function correction. ergy.

C. Results APPENDIX A: TECHNIQUE OF CALCULATION

The results of the short-range correction are shown in P - : : .
. . . S The initial and final pion wave functions are expanded in
Figs. 10-12. Thes-function correction(dot-dashed lingis the usual manndi3s] ag P

seen to worsen the agreement with the data on the high-
energy side of the peak. The estimate made of the OGE

correction tends to restore the agreement, depending on the 4 ]
radius chosen. From the arguments given previously, one - MCa(mTmT)MTI, (107) 1
expects this distance to correspond to the size of the pion. Of " ]
course, a change in the value of the rdtim. (23)] would 3 B - ]

bring about a corresponding change in the radius obtained, -
so the reader should be cautioned against drawing any abso- o
lute conclusions from the curves. The purpose of this calcu- {
lation is only to show the order of magnitude of such a <5
correction. One correction that has not been included in the =
present calculation is the suppression of the short-range =)
nucleon-nucleon wave function due to the strong repulsion at SR
short distances which can be expected to decrease the size of 1
the effect seen here. -

V. CONCLUSIONS I NN |

IR RN \ \"l"|»-\—-\ T
We find that the peak in low-energy pion double charge 0 0 30 60 90 120 150
exchange is naturally given by the calculation of the two-step T (MeV)

mechanism with realistic distorted waves. The sharper peak

obtained in this work than previous work is due to the use of FIG. 11. Cross section for pion double charge exchang&©a
realistic (fitted) pionic wave functions constrained by elastic leading to the ground state 61Ti. The meaning of the curves is the
and reaction data. Corrections to the reaction mechanism thaéime as in Fig. 10.
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3.0

/(/+1) 2k
[ *Ca(m*,m7)*Ti (107) ] u’(r)+ (—)+ - U,(r)
25 B ) r2 r
7 R0 ‘ ‘ —rf rrdr'w(r,r’ YU (r')+k?U (r)=0, (Ad)
N F 1 0
316 .
= ; ] where
5 1.0 - ]
E ] 2w
05 F AN 3 w(r,r’)z—2V(r,r’) (A5)
r o\ 1] fi
0.0 PR I TP R e L e e |
0 30 60 90 120 150 is calculated by the means of REf6]. Putting the system on

T (MeV
(MeV) a discrete mesh of stepfor r andr’ we have the following

FIG. 12. Cross section for pion double charge exchang®@a  set of equations:
leading to the ground state 8%Ti. The meaning of the curves is the
same as in Fig. 10. N

ZO (Hom—k28,mU™=0; n=1,2,.N-1, (A6)
-
/

V(k,r)y=4m Z YPF () YR(K) i, (k,r). (A1) whereU"=U(ne). For our calculations a typical value bf
/om==s was 80.

We require thatJ°=0. This leavedN— 1 equations irN
unknowns. We establish a normalization for the wave func-
tion by setting arbitrarihfUN=1. There are noN— 1 equa-
tions inN—1 unknowns. The system expressed by E48)
is solved by standard numerical techniques to obtain the

The operation of the form factortsq) on the wave function
can be expressed as

2 |2 wave functions for the initial and final pion distorted waves.
P(k,r)= ———(K,r). (A2) At this point the true normalization may be obtained from
A%2-V? the scattering boundary conditions at infinity.

To compute the Green function which is needed for the
propagation between charge exchanges, we first note that,
Writing the Fourier decomposition for the wave function we because of its scalar nature, it can be written as
have

1 - -
~ A%+ K? gl (r'=n) E-H =G(rz,1)=2 Y (r)Y2(r)Ge(ra,ry).
= ok A7
p(k,r) (2w)3f qdr AT p(k,r’) (A7)

The spectral representation of a partial wave component of

A2+ K2 e Alr=r'| _ tral re
iy fdr’ Py P(k,r'). (A3)  this function will be

Y (ar) e (ar)
q k2_q2

rr),r{)=2w| g° . (A
Using the standard expansion @*"™"'l/ik|r—r'| for Culrary) f G (A8)
imaginary k in terms of the spherical Bessel and Hankel
functions, the integral can be calculated partial wave by parHere ¢{")(q,r) represents a wave function with unit
tial wave, eachy,(k,r) being transformed int@, (k,r). plane wave amplitude andutgoing spherical waves while
Hence each function involved may be transformed aaﬁ([)(q,r) represents a wave function with unit plane wave
above and then the rest of the calculations performed as @mplitude andncomingspherical waves. Since the form of
the form factors were not present. The rest of the operatord, (q,r) is uniquely given by the solution of the system of
are linear ing andq’. The dot product of the gradients can Egs.(A6), ! *)(q,r) and 4{)(q,r) can differ only in nor-
be simplified by using the mathematical identity q’ malization.
=3[(9+q")?—g°—q’?]. The angular momentum algebra  An inspection of the boundary conditions shows that
for the treatment of the spin-dependent part of the operator is
discussed in Ref9]. (+)
We write the wave function for a given partial wave in the SO = P (q,r) (A9)
form ¢, (k,r)=C, U, /r since we will first determine the LA S(q) '
functional form for the radial wave function with arbitrary
normalization and separately determine the coeffic@nt  which allows the writing of the spectral representation of the
The Schrdinger equation fotJ ,(r) can be written as Green function as
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GG 2) ()T 1) verted to the energy of the nucleons in the final state. The
GL(rz,rl)=2wJ g%dq ' 5 2 , (A10)  absorption process preferentially involves two or more
SL(a)(k“=q9) nucleons to reduce the mismatch between the momentum of

the absorbed pion and the Fermi momentum of the nucleons.

where (q,r)=y¢{"(q,r), i.e., the wave function with the We approximated the absorption correction by including a
usual boundary conditions for scattering. To apply thispurely imaginary term in the optical potential of the form
method the wave functions for the neutral pion must be
found for a sufficient range of intermediate momenta and the
integral over them performed numerically. Vaps= —1WpA(r), (B1)

While the spectral representation just given works for
many casesit was used for the calculations in R¢B]) it ~ Where p(r) normalized such thafgr?drp(r)=1. While
can lead to problems in a region of strong absorptEuch  perhaps better theories can be invok88,39 this method
as near thel resonance in the present cas@s has been was used for the global fit. The total cross section can be
discussed37] the S matrix has a series of polébelow the  separated into elastiert), quasifree ¢4¢), and true absorp-
real axi$ and zerogabove the real axis in mirror position to tion (o) pieces giveri38] by
the poles for a real potential but above or below the real axis
for a complex potential The zeros will cross the real axis as
the imaginary part of the complex potential becomes stron- :ﬂvz (2l +1)f [ (r)[2p2(r)r2dr (B2)
ger. That, of course, changes the value of the Green function Tam g [ ! p '
given by the spectral representation because the singularity
due to the zero ir5 (q) passes through the line of integra- 41
tion. In practice this first occurs in the energy region around o= — TE (21+1)
120 MeV and the crossing is different for each partial wave. !
When this happens a discontinuity as a function of energy is
observed in the calculated DCX cross section. By deforming xf f S ) IMIV(r,r ) Ty (r)r2drr’2dr’,
the integration contoufnumerically to dip below the real
axis, continuity can be restored. However, this method has (B3)
limited practical application; when the absorption becomes
very strong the zero in th& matrix goes far below the real whereV(r,r’) is the first-order optical potential.

axis and is difficult to locate. The parametelV was adjusted to reproduce the experi-
Fortunately, an alternativeand more diredtmethod ex- mental values for true absorption cross sections*f@a (the
ists. Egs.(A6) provide a matrix representation of{H)U. experimental dat§40] were interpolated in mass numiper

Instead of solving the equations forit is only necessary to This was done by calculating the absorption cross section
invert the matrix representing-H. However, we first need (=reaction cross sectigwith the real part of the quasifree
to incorporate the boundary conditions. The boundary condipart of the optical potential. By comparing with the data, a
tion at the origin is the same as before so we can remove, aglue of W can be found at each energy for which data exist.
before, the first column. However the conditioncatis dif-  The values oW were fitted to the following formula:

ferent since we now wish to require outgoing spherical

waves for large values af,. The second derivative in the

last equation is the only reference to the last value of the B Wy (I'/2)?
functionU(r). For purely outgoing waves, we have W= (E— E0)2+(F/2)2' (B4)
uN h(H(kry) No particular theoretical importance is attached to this form,
Ntl = +'- N =B. (A11) it simply gives a good representation of the results. The con-
UL hi"(kry-1) stants were found to b&/,=43.35 fnf (for 1°C), E,=215

MeV andI'=77 MeV. The scaling among nuclei was made
In both the case for the solution for the wave function andassuming that the parametf, was proportional tiNZ
the Green function, the first row refers to the value of the In the process of the fit to the elastic d4i&] these val-
wave function at =0 and the last row refers to the value of ues were renormalized. In these fits it was found that the
the wave function aty . Both of these references need to bedetermination of the best value W, for *°C was nearly as
eliminated to obtain a closed system. Thus by removing th@redicted by this procedure, but that the value®¥¢a was a
zeroth andNth equations we have a matrix of sikel to  factor of 2 too large.
invert. The technique of inversion of the matrix was tested
against the spectral method and found to give the same result APPENDIX C: THE &FUNCTION CORRECTION
(within numerical accuragywhen the later method was WI'.I'H DISTORTED WAVES
valid.

If the distorted pion waves are given by

APPENDIX B: PION ABSORPTION CORRECTION

In the pion absorption process no pion is left in the final

~ _ sk P T
state where the pion mass and energy are completely con- pikir) 472 YT (YLK da(kr) €D
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the distorted-wave version of the matrix element of the operator defined by Egsand (18) is
C=- %<4w>2f dradroxf (rir) xi(ra,rke ki 2 MM YA (F) YR (k) (ki 1)

XYf:(Fz)Yf:*(Rf)aw(kf arz)Y[Ar,(Fl)YEA:’*(Fz)gl_'(rl,"2), (C2

wherek; andk, are to be interpreted as operators acting on the pion wave functiong, éndr,) is defined in Sec. IV A.
For a single shell orbital with angular momentufnand a 0" — 0™ transition, the spin average of the nuclear wave function
can be written as

X)X,y =x2(r)x(r) > a YN YW (1), (C3

where thea, are given by the nuclear shell modél.
Defining one term in the above sum Ia‘,_i(k,k’) we have

Fo(kk')=— 3 (4m)? f drldrzx%rl)x?/(rz)% YM(E)YM(F,)

X X NN YERDYE F (ROYY (F) YN (F) a0 (r 1t )[R YE* (Fida(Ki o) - [k (T) dar(Ke a1 2)]-

(C4)
Using the definitions
e 9RO A dh(D) A1 e
x(r)—T_F NUE NOE dr B NG (CH
wheref, (r) is eitherg(k;,rq) or ¢(ks,r,) and
faL= J ridrar3drox 2 (r) X2 (1) Fa(r)Fa(r)gu(ry.ro) (CO)
L= f ridrar3drox2(r)x2(r2) Gy(r))Ga(ra)gu(ry.r) (o))
the contribution to the correction can be written as
[Cl1 P+ 1)? [CU17 PN
FC=—1> P, (cosh 2 gy . C8
L 520 Py )[ (20 +3)2 AL (20 —1)2 OnL (C9

The calculations for thé-function correction proceeded by calculating the functpfr,,r,) analytically and including it in
the distorted wave code. The functiohs, andg, , were calculated by integrating ovey andr , using the same nuclear and
pion initial and final wave functions and added to fhevave p wave part of the DCX amplitude.
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