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Abstract

There are only two independent isospin amplitudes for pion-nucleon scat-

tering if isospin is assumed to be a good symmetry. In those cases in which

isospin symmetry is broken (but time-reversal symmetry is valid) six more are

needed to express an on-shell amplitude and two more to express an o®-shell

amplitude or potential. An independent set of these operators is constructed

and analyzed.
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I. Introduction

The charge states of the pion-nucleon system are characterized by t, the pion isospin

operator, and ¿=2, the nucleon isospin operator. If the interaction of the pion with a

nucleon is assumed to be charge independent, then the amplitudes or potentials describing

the interactions must depend only on the scalar combinations of these operators and on

the identity operator. The only isospin-conserving combinations which can be formed from

these operators are a1 and bt ¢ ¿ where a and b are space- and spin-dependent coe±cients.

These two operators describe eight di®erent reactions (or ten reactions in the absence of

time-reversal symmetry, see Table 1), and so the predictive power of the symmetry is very

great. It is known, however, that charge independence is broken. Examples are the ¼+¼0

mass di®erence, the np mass di®erence, the Coulomb interaction between charged pions and

the proton, magnetic interactions, and more exotic mechanisms such as those arising from

½! and ¼´ mixing. To describe these mechanisms we must introduce additional operators. If

isospin-symmetry is totally broken an additional six amplitudes are needed to characterize all

eight of the reactions, where we assume that charge conservation and time-reversal symmetry

hold. It is the purpose of this article to de¯ne and analyze these isospin-symmetry-breaking

amplitudes.

The article is arranged as follows. In Sec.II we count the number of independent ampli-

tudes for several systems, with particular attention given to the pion-nucleon system. As

a warm-up exercise the operators describing three simpler systems (N®, ¼®, and KN ) are

constructed in Sec.III. In Sec.IV the operators for the ¼N system are de¯ned (Table 2) and

their matrix elements evaluated in both charge (Table 3) and isospin (Table 4) bases. The

contribution of some of the simpler isospin-breaking mechanisms to these amplitudes is ex-

amined in Sec.V. In Sec.VI we give an introductory account of what current experiments tell

us about the isospin-breaking amplitudes. The article closes with appendices on on-shell vs.

o®-shell amplitudes, unitarity, and further mathematical aspects of the isospin operators.

II. The Number of Independent Amplitudes
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A multiplet of isospin T is a set of 2T + 1 particles with integer-spaced charges but with

otherwise identical quantum numbers. The particles need not be degenerate in mass, and

interactions of di®erent members of the multiplet need not be identical. In this section we

count the number of independent isospin amplitudes for scattering and charge-exchange of

two particles belonging to isotopic multiplets T1 and T2. The system has (2T1 +1)£(2T2 +1)

possible channels. For example, the KN system has 2£ 2 = 4 and the ¼N has 3 £ 2 = 6

channels [1]. The channels may be grouped into 2 (T1 + T2) + 1 sets according to their

total charge Q. CQ is de¯ned to be the number of channels in the set with charge Q. (If

we choose T1 · T2, then CQ · 2T1 + 1.) The number of isospin amplitudes necessary

to describe elastic and charge-exchange reactions among channels of a given Q equals the

total number of elastic and charge-exchange processes connecting them. This number is

NQ = 1
2
CQ(CQ + 1) if we assume that the isospin amplitudes corresponding to i ! j and

j ! i are equal (time-reversal symmetry of the isospin operators). If the isospin amplitudes

are not symmetric under time-reversal, then NQ = C2
Q. It is, of course, possible to have

time-reversal symmetry satis¯ed for the overall amplitude provided that the product of the

isospin amplitude and the space-spin coe±cient is invariant. Such space-spin coe±cients

may be constructed for the potentials (or o®-shell T -matrices) describing the NN [2,3], ¼N ,

and KN systems. For parity-conserving on-shell amplitudes, however, no such coe±cients

exist for the ¼N and KN systems (see Appendix 1).

We denote by N =
P
QNQ the total number of elastic and charge-exchange reactions

among all of the channels. For example, in KN scattering there are four channels: K+p,

K+n, K0p, and K0n. Since C1 = 2 and C2 = C0 = 1, we ¯nd N = 3+1+1 = 5; there are ¯ve

independent isospin amplitudes which are invariant under time-reversal. This is increased

to N = 4+1+1 = 6 when isospin amplitudes which are odd are used in conjunction with an

odd space-spin coe±cient. Finally, for pion-nucleon scattering there are 3£2 or six channels:

¼+p, ¼+n, ¼¡p, ¼¡n, ¼0p, and ¼0n. Thus we have C2 = C¡1 = 1, and C1 = C0 = 2, and so

the number of independent isospin amplitudes is eight (N = 1 + 1 + 3 + 3). If time-reversal
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odd isospin amplitudes are also used this becomes ten (N = 1 + 1 + 4 + 4).

We have mentioned conditions due to time-reversal invariance, parity, and the conserva-

tion of charge, but not due to unitarity. This is because unitarity restricts the number of

real parameters necessary to describe the coe±cients of the isospin amplitudes, but places

no constraint on the number of independent isospin amplitudes. See Appendix 2.

We will next turn to the explicit construction of isospin operators from which to construct

these on- and o®-shell amplitudes.

III. Introductory Examples of Isospin Amplitudes

a) T1 = 1
2
, T2 = 0

As a warm-up exercise we begin with the scattering of an isospin 1
2

particle from an isospin

0 particle (such as N® or N´ scattering, where ® is treated as an elementary particle).

The only available operators in isospin space are the identity, 1, and the isospin operator

for the isospin 1
2

particle, ¿=2. Because the representation for an isospin 1
2

particle is two-

dimensional no products of the components of ¿ are needed; e.g. terms such as ¿®¿¯ may

be reduced to either the identity or to a single component of ¿ .

The operator must have a z-component of zero in order that charge be conserved. The

most general charge-conserving operator will be a linear combination of 1 and ¿0. Of these,

only 1 conserves isospin symmetry. ¿0 violates both isospin symmetry and charge-re°ection

symmetry. As an example, the operator structure for the Coulomb interaction for N® scat-

tering is 1
2
(1 + ¿0). In the charge basis (i.e. the basis with ¿0 diagonal) the operators

are diagonal with diagonal elements 1 = (1; 1) and ¿0 = (1;¡1). There are two indepen-

dent operators simply because there are two independent diagonal 2£ 2 matrices, or, more

physically, because there are just two independent reactions: p ®! p ®, n ®! n®.

b) T1 = 1, T2 = 0

The operators available in isospin space for a pair of particles with isospins 1 and 0 (such

as the ¼® system) are the identity and the isospin operator for the isospin one particle,
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t. The representation space of a particle with isospin one is three-dimensional, and so

nine independent operators are available for the construction of the scattering amplitude

in isospin space. These could, for example, be chosen as 1, t, and (t  t)2
M where M =

2; 1; 0;¡1;¡2. The tensor product is de¯ned as

(V T1  UT2)TM = §®;¯ C
T1T2T
®¯M V T1

® UT2
¯

where V T1 and UT2 are tensor operators of rank T1 and rank T2. CT1T2T
®¯M is a Clebsch-Gordan

coe±cient. We have used the conventional spherical basis: U+1 = ¡(Ux+iUyp
2

), U¡1 = (Ux¡iUyp
2

),

and U0 = Uz. Charge conservation limits us to operators with total Tz = M = 0, assuming

that there is no strangeness change. The operators with M 6= 0 will be useful when the

second particle has nonzero isospin, as in the case of pion-nucleon scattering. We conclude

that the most general charge-conserving amplitude or potential is a linear combination of

the three operators [4] 1, t0, and (t  t)2
0. (The operator (t  t)1

0 is proportional to t0,

and (t  t)0
0 is proportional to the identity, so these operators are redundant.) As in the

previous example, there is only one isospin-conserving operator, 1. The tensor product

(t t)2
0 violates isospin symmetry, but is invariant under charge re°ection. The remaining

operator, t0, violates both isospin symmetry and charge-re°ection symmetry.

There are three independent operators because there are three independent diagonal

matrices, or, more physically, because there are only three independent reactions among the

three charge channels: ¼+®! ¼+®, ¼0®! ¼0®, and ¼¡®! ¼¡®.

c) T1 = 1
2
, T2 = 1

2

As a ¯nal warm-up exercise, we study the scattering of two isospin 1
2

particles, such as a KN

system. As discussed in Sec.II, six amplitudes are required to describe all elastic and charge

exchange scattering in this system. This is consistent with the fact that there are four elastic

reactions and one charge exchange reaction (with two possible directions): K+p, K+n, K0p,

K0n, K+n $ K0p. An independent set of six operators is 1, ¿10, ¿20, and (¿ 1  ¿ 2)
I
0,

where I = 0; 1; 2. The ¯rst label on the symbol ¿ refers to the particle and the second,

the z-component. The tensor product with I = 1 is odd under time-reversal symmetry,
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and reverses sign under interchange of the initial and ¯nal charge labels. As discussed in

Appendix 1, the on-shell amplitude is independent of (¿ 1  ¿ 2)1
0 while the potential could

depend upon it. Of these operators, only the identity and the term (¿ 1¿ 2)0
0 will conserve

isospin symmetry (Class I in the nomenclature of Henley and Miller [2]). The terms ¿10 and

¿20 violate isospin symmetry and charge-re°ection symmetry (Classes III and IV of Henley

and Miller). The term with I = 2 violates isospin symmetry, but is invariant under charge

re°ection. By the Wigner-Eckart theorem the operator of rank two has nonzero matrix

elements only between isospin one states of the KN system; it does not mix isospins (Class

II of Henley and Miller [2]).

IV. The ¼N System

We now turn to our major application, the pion-nucleon system. Table 1 itemizes the

independent reactions for each total charge Q. Reactions 7 and 8 are time-reversals of each

other as are reactions 9 and 10.

Table 1. Charge states for ¼N Scattering.

R=Reaction no. Q Process

1 2 ¼+p! ¼+p

2 1 ¼+n! ¼+n

3 0 ¼¡p! ¼¡p

4 -1 ¼¡n! ¼¡n

5 1 ¼0p! ¼0p

6 0 ¼0n! ¼0n

7,8 1 ¼+n$ ¼0p

9,10 0 ¼¡p$ ¼0n

The most general operator in isospin space can be expressed as a function of t®, ¿¯ , and

the identity operator 1. In line with the previous examples it will then contain at most

linear factors of the components of ¿ and at most quadratic factors of the components of t.

A complete set of operators [6] and their matrix elements in a charge basis are listed in
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Table 2.

Table 2. Isospin Operators and Matrix Elements in the Charge Basis.

i (µi)
I
0 I < ¼cNdjµij¼aN b >

1
q

1
6
1 0

q
1
6
±ca±db

2
q

1
6
¿0 1

q
2
3
b±ca±db

3 1
2
t0 1 1

2
a±ca±db

4
q

1
2
(t t)2

0 2
q

5
6
C121
a0c ±db

5; (9); 6 1
2
(¿  t)I0 0; (1); 2

q
3
2
C11I
®¯0 C

111
a¯c C

1
2

1 1
2

b®d

7; (10); 8
q

1
2
(¿  (t t)2)I0 1; (2); 3

q
5
2
C12I
®¯0 C

121
a¯c C

1
2

1 1
2

b®d

In the expression for the matrix elements we have de¯ned ® = d ¡ b and ¯ = c ¡ a

where a and c are T¼z and b and d are TNz. The operators are classi¯ed by their total

isospin I. The two rank-0 operators µ1 and µ5 are the only operators which conserve isospin.

The traditional \isoscalar" operator 1 is proportional to µ1. The \isovector" operator ¿ ¢ t,

which transforms as a scalar under isospin rotations, is proportional to µ5. Operators of

the form of terms 7-10, but with a t and a ¿ reversed, are related by a recoupling to other

operators in the set. Operators of the form of term 4 but with I equal to 0 or 1 are linear

combinations of operators 1 and 3 as was discussed in Sec.IIIb.

In the charge basis the matrix elements of operators 1-8 are symmetric under the inter-

change of charge indices: (a; b) $ (c; d), while the matrix elements of operators 9 and 10

reverse sign under the interchange. For time-reversal symmetry to hold the coe±cients of

operators 1-8 must be even under time reversal while those of operators 9 and 10 must be

odd. These last two operators are needed only for o®-shell T-matrices or for potentials. See

Appendix 1.

The ¯nal column of Table 2 indicates the matrix elements of the corresponding operators

in the charge basis. Operators 1-4 do not contribute to charge exchange because they do not

involve both t and ¿ . The most general potential or on-shell amplitude for an individual

partial wave is a linear combination of these operators: V =
P10
i=1 vi µi and T =

P8
i=1 ai µi.
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In addition to having simple properties under time reversal, the operators de¯ned in

Table 2 are simple under charge re°ection:

ei¼Tyµie
¡i¼Ty = (¡1)Iµi:

Thus in Table 2 operators i = 1 and 5 conserve isospin, operators i = 4, 6, and 10 do not

conserve isospin but are invariant under charge re°ection, while operators i = 2; 3; 7, and

9 neither conserve isospin nor are invariant under charge re°ection. Operator 8 does not

conserve isospin and is not invariant under charge re°ection, but because it has isospin 3 it

connects only I = 3
2

states.

An amplitude (or potential) §i ai < ¼cNdjµij¼aN b > may be constructed from the

coe±cients given in the ¯nal column of Table 2. Each set (a; b; c; d) may be identi¯ed with a

reaction number R de¯ned in Table 1. The T -matrix corresponding to a particular reaction

may be written as

TR =< ¼cN djT j¼aN b >= §i£Ri ai

where we have de¯ned £Ri =< ¼cNdjµij¼aN b >. The explicit values of £Ri for all pion-

nucleon elastic and charge-exchange reactions are given in Table 3. A square root must be

taken of the magnitude of each entry. For example, the entry - 1
20

means -
q

1
20

.
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Table 3. Values of £Ri =< ¼cNdjµij¼aN b >

Reaction µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 µ10

¼+p! ¼+p 1
6

1
6

1
4

1
12

- 1
12

1
6

- 1
30

1
20

0 0

¼+n! ¼+n 1
6

- 1
6

1
4

1
12

1
12

-1
6

1
30

- 1
20

0 0

¼¡p! ¼¡p 1
6

1
6

-1
4

1
12

1
12

-1
6

- 1
30

1
20

0 0

¼¡n! ¼¡n 1
6

- 1
6

-1
4

1
12

- 1
12

1
6

1
30

- 1
20

0 0

¼0p! ¼0p 1
6

1
6

0 -1
3

0 0 2
15

-1
5

0 0

¼0n! ¼0n 1
6

- 1
6

0 -1
3

0 0 - 2
15

1
5

0 0

¼+n! ¼0p 0 0 0 0 -1
6

- 1
12

- 3
20

- 1
10

-1
4

- 1
4

¼0p! ¼+n 0 0 0 0 -1
6

- 1
12

- 3
20

- 1
10

1
4

1
4

¼¡p! ¼0n 0 0 0 0 -1
6

- 1
12

3
20

1
10

1
4

- 1
4

¼0n! ¼¡p 0 0 0 0 -1
6

- 1
12

3
20

1
10

-1
4

1
4

If the amplitudes TR are known and we wish to determine the coe±cient ai corresponding

to a given isospin operator µi, we need the inverse of £Ri: The operators µi have been

normalized to make the matrix £Ri orthogonal [5]. Consequently, we have

ai = §R TR £Ri

i.e. the inverse of £Ri is its transpose. Thus the columns of Table 3 give the linear

combinations of the reaction amplitudes needed to extract the coe±cients ai of the individual

isospin-space operators.

For the computation of on-shell T -matrices the ¯nal two columns of Table 3 may be

omitted. In this case rows seven and eight are equal (¼+n$ ¼0p), as are rows nine and ten

(¼¡p$ ¼0n).

From the ¯rst column of Table 3 we see that the sum of the six elastic reactions gives
p

6a1. The di®erence of the three elastic reaction with proton targets and the three with

neutron targets isolates
p

6a2. 2a3 is isolated by taking di®erences in the ¼+ and the ¼¡

elastic processes. 2
p

3a4 is determined by the di®erence of the sum of the charge-pion

elastic amplitudes and twice the sum of the ¼0 elastic amplitudes. a5 and a6 measure the
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di®erence in the sum of the charge-exchange reactions and di®erences in the elastic scattering

amplitudes. The next two isospin amplitudes are similar but require the di®erences of the

charge-exchange amplitudes. The ¯nal pair of isospin amplitudes contribute only to charge

exchange potentials; they are antisymmetric under time reversal.

Finally, we evaluate the matrix elements of the 10 independent isospin operators in a

basis of de¯nite total isospin. The matrix elements are related to those of the charge basis

by

< 1
1

2
T 0T3jµj1

1

2
TT3 > =

X

abcd

C
1 1

2
T

abT3
C

1 1
2
T 0

cdT3
< ¼cN djµj¼aN b >

where the symbols 1 1
2

refer to the pion and nucleon isospin. The matrix elements are given

in Table 4. Note that this matrix, like that in Table 3, is orthogonal. As before, the square

root of the magnitude of each entry should be taken.

Table 4. Matrix Elements of µi in the Isospin Basis

T T 0 T3 µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 µ10

1
2

1
2

-1
2

1
6

1
54

- 1
9

0 1
3

0 -10
27

0 0 0

1
2

1
6

- 1
54

1
9

0 1
3

0 10
27

0 0 0

1
2

3
2

-1
2

0 - 4
27

1
18

-1
6

0 1
12

- 5
108

0 1
4

-1
4

1
2

0 - 4
27

1
18

1
6

0 - 1
12

- 5
108

0 1
4

1
4

3
2

1
2

-1
2

0 - 4
27

1
18

-1
6

0 1
12

- 5
108

0 -1
4

1
4

1
2

0 - 4
27

1
18

1
6

0 - 1
12

- 5
108

0 -1
4

-1
4

3
2

3
2

-3
2

1
6

- 1
6

- 1
4

1
12

- 1
12

1
6

1
30

- 1
20

0 0

-1
2

1
6

- 1
54

- 1
36

- 1
12

- 1
12

-1
6

1
270

9
20

0 0

1
2

1
6

1
54

1
36

- 1
12

- 1
12

-1
6

- 1
270

- 9
20

0 0

3
2

1
6

1
6

1
4

1
12

- 1
12

1
6

- 1
30

1
20

0 0

Because the operators µ1 = 1p
6
1 and µ5 = 1

2
(¿t)0

0 conserve isospin their matrix elements

vanish when the initial and ¯nal total isospins are unequal. Operator µ8 = 1p
2
(¿  (t t)2)3

0

contributes only if both initial and ¯nal isospins are 3
2
, as was noted earlier. The operators
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µ4 = 1p
2
(t  t)2

0 and µ6 = 1
2
(¿  t)2

0 have isospin 2, and their matrix elements vanish if the

initial and ¯nal isospins are 1
2
. The matrix elements with T and T 0 interchanged are the

same except for the ¯nal two amplitudes, for which there is a sign reversal. Under charge

re°ection T3 ! ¡T3 the matrix elements acquire the phase factor (¡1)T+T 0¡1+I , as can be

seen from the de¯ning equation earlier in this paragraph.

We end this section by applying the formalism to reproduce some of the standard results

in the case that isospin is conserved (for which only a1 and a5 are nonzero). In the usual

formalism the isospin-conserving T -matrix is expressed as T = As1+ Av¿ ¢ t where As is

the \isoscalar" amplitude and Av is the \isovector" amplitude. This is to be compared with

T = a1µ1 + a5µ5. Since

µ1 =

s
1

6
1

and

µ5 =
1

2
(¿  t)0

0 = ¡
s

1

12
¿ ¢ t

we identify As =
q

1
6
a1 and Av = ¡

q
1
12
a5. For example, from rows 3, 9, and 1 of Table 3

we then recover the standard forms:

T¼¡p!¼¡p =

s
1

6
a1 +

s
1

12
a5 = As ¡ Av

T¼¡p!¼0n = ¡
s

1

6
a5 =

p
2Av

and

T¼+p!¼+p = As + Av:

The isoscalar and isovector amplitudes are also easily expressed in terms of amplitudes of

pure isospin. From Table 4 we obtain, again assuming isospin conservation,

T1
2

=

s
1

6
a1 ¡

s
1

3
a5 = As ¡ 2Av
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and

T3
2

=

s
1

6
a1 +

s
1

12
a5 = As + Av:

We could, of course, have de¯ned µ1 to be the identity and µ5 to be ¿ ¢ t so that a1 and

a5 were the standard isoscalar and isovector amplitudes. The present de¯nitions have the

advantage that the matrices in Tables 3 and 4 are orthogonal so that their inverses are trivial

[7].

Further mathematical aspects of the isospin operators µi such as matrix representations,

trace theorems, and the multiplication table are developed in Appendix 3.

V. Elementary Examples of Isospin-Violating Processes

The classic example of an isospin-violating interaction is the Coulomb potential. For the

¼N system it is proportional to the product of the nucleon and pion charges, and so has the

structure 1
2
(1 + ¿0)t0. Expressed in terms of the tensor operators of Table 2 this interaction

is µ3 ¡
q

1
3
µ5 +

q
2
3
µ6. It is easily seen from Table 3 that this combination gives the product

of the nucleon and pion charge (in units of e2).

Based on current knowledge of charge-symmetry breaking in nucleon-nucleon scattering

[8] we expect that meson-mixing models will also lead to charge-symmetry violations in pion-

nucleon scattering. Our ¯rst example is ½! mixing. The lowest-order graph is the vector-

meson exchange graph which consists of factors corresponding to the !NN vertex, the !

propagator, the !½0 coupling, the ½ propagator, and the ½¼¼ vertex. The only nontrivial

isospin dependence is a factor t0 which accompanies the ½0¼¼ vertex. Thus the operator is

of class 3 in Table 2. Because the exchanged vector mesons are neutral, this process does

not contribute in ¯rst order to charge exchange. The graph with the ! and ½0 interchanged

does not occur because G-parity conservation eliminates the strong !¼¼ vertex. (In this

model the only isospin breaking is in the !½0 transition; all other vertices conserve isospin.)

Another similar example is ´¼ mixing. The pion-nucleon scattering process proceeds, for

example, through an eta-production process (¼; ´) followed by an isospin-symmetry breaking
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transition ´ ! ¼0. The process only occurs if at least one of the pions is neutral; on free

nucleons this process is experimentally possible only in charge exchange, although ¼0N !

¼0N could occur within a nuclear target. The amplitude is most easily evaluated in the

charge basis. Using the notation ¼aN b ! ¼cNd the amplitude is C
1
2

1 1
2

bad ±c0 plus a term in

which (a,b) is interchanged with (c,d) to enforce time-reversal invariance. The Kronecker

delta is necessary because the pion which mixes with the eta is necessarily neutral. In ¼0

elastic scattering the ´ could attach to either the incident or the outgoing leg, so both terms

will contribute. In charge-exchange processes only one or the other of the two terms will

contribute. Expressed in terms of the operators in Table 2, the ¼´ mixing graph is of the

form
q

8
9
µ2 +

q
40
9
µ7, as is shown in Appendix 4. Because it is a mixture of two of the

operators with isospin 1, it reverses its sign under charge re°ection.

As we have seen, the !½0 mixing graph transforms as µ3. This process may, however,

be preceded or followed (or both) by isospin-conserving strong interactions. These ¯nal-

and initial-state interactions (FISI) may renormalize the isospin-violating graph, inducing

other isospin-breaking operators. Working to lowest order in isospin-breaking interactions,

the FISI will conserve isospin, and so will induce only those operators which have the same

tensor properties as the original isospin breaking interaction. Since µ3 has isospin one, we

expect that the FISI will introduce at most an additional dependence proportional to µ2

and µ7. Similarly the ´¼0 mixing graph, which we have seen is a linear combination of µ2

and µ7, may have an induced µ3 dependence. Thus both meson-mixing graphs depend, in

principle, on the same three isospin-violating operators. It is conceivable that the FISI will

not induce all of the possible operators of the same isospin structure as the original graph,

however. For example, if the only isospin-conserving behavior in the FISI comes from the

term µ1 = 1 then it is obvious that although the magnitude of the graph may be altered,

there will be no new isospin structure induced. We have shown in Appendix 4 that if the

other isospin-conserving operator, µ5 = 1
2
(¿  t)0

0, is non-negligible all three of the rank

one (I = 1) amplitudes (2,3, and 7) can be expected to be present with the exception of
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the time-reversal odd isospin amplitude 9, which cannot be induced by time-reversal even

amplitudes.

VI. Tests of Isospin Symmetry Breaking

One advantage of the operators introduced here is that a partial hierarchy of strengths

is established according to the tensor ranks. The operators µ1 and µ5 have rank 0 and are of

order 0 in isospin-symmetry breaking. All of the other operators are at least of ¯rst order in

the smallness parameter, but can be mixed by the strong interactions with µ1 and µ5. Since

the ½-! and ¼-´ mixing are of rank 1, they can be spread among all operators of the same

rank by isospin-conserving initial- and ¯nal-state interactions, and hence they contribute (in

¯rst order) to a2, a3, and a7, as is described in the appendix.

The Coulomb interaction, being a combination of rank 0, 1, and 2 operators, is mixed by

the isospin-conserving conserving potentials (µ1 and µ5) among all operators of these ranks.

Except for mixing due to the Coulomb interaction, which contains a rank-0 component,

the coe±cients of µ1 and µ5, are free of ¯rst-order contributions from isospin-symmetry-

breaking terms. This follows because the lowest-order corrections to a rank-0 operator arise

when it is combined with the product of at least two isospin-breaking operators (of the

same rank) coupled to isospin zero. Hence, such corrections are at least quadratic in the

isospin-breaking parameter.

By means of a series of experiments one can, in principle, measure each of the isospin-

breaking terms and hope to infer the source of the breaking. A complete analysis of the

system and survey of the data is beyond the scope of the present work, but we present the

following as an introduction to this subject.

Extensive pion-deuteron scattering experiments have been performed to test isospin con-

servation in pion-nucleon interactions. In the impulse approximation the scattering is calcu-

lated by adding reactions 1 and 2 (or 3 and 4) together. The only contributing amplitudes

are a1, a3 and a4, because an isospin-zero target cannot have any dependence on ¿ . By

comparing ¼+ to ¼¡ scattering, one isolates the coe±cient a3, but not a4, since it has the
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same sign relative to a1 in all cases. From Table 2 one can observe that only the scattering

of a ¼0 will allow the separation of a4 from a1.

Using the optical theorem, we see that the di®erence in the total cross sections for ¼¡

and ¼+ on the deuteron is given by

¾¡ ¡ ¾+ =
16¼

k
Im(a3(0o)):

From the experiment of Pedroni et al. [9], which measured this di®erence of total cross

sections in the 3-3 resonance region, we ¯nd that the maximum value of Im(a3(0o)) is of the

order of .03 fm.

By comparing the di®erential cross section in the same energy region it is possible to get

another estimate of a3 but at ¯nite angles. >From the equation

y =
¾¡(µ)¡ ¾+(µ)

¾¡(µ) + ¾+(µ)
= ¡2Re(

a3

a1

);

a condition can be obtained on a3, but the absolute value depends on the relative phase of

a3 and a1. If they have the same phase there will be a maximal e®ect observed. While this

condition is useful, we must use speci¯c models to interpret the result of Smith et al. [10]

that jyj <» :01.

By using 3He and 3H targets the charge-exchange reaction cross section at 0± can be

measured both on protons and neutrons at the s-p interference dip [11,12], producing a very

precise determination of the di®erence in energy of the minimum for the two cases. As can

be seen from Table 3, the di®erence in the two amplitudes is given by

a¼¡p!¼0n ¡ a¼+n!¼0p =

s
3

5
a7 +

s
2

5
a8:

If we assume that a8 is small, then we can determine the value of a7 from this measurement.

(From mixing of the amplitudes a8 is of second order, and it is di±cult to ¯nd a particle

exchange to give it directly.)

Tests of the triangle relationship have been made by Wightman et al. [13]. These tests

compare 2¾cex with (
p
¾¼+p +

p
¾¼¡p)

2 and (
p
¾¼+p ¡ p¾¼¡p)2 to look for deviations from

the relation
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p
2Acex = A¼+p ¡ A¼¡p;

which results from isospin conservation. Subtracting the right side of this expression from

the left, we see that the isospin breaking implied by a failure of this equation is given by

¡a3 ¡
s

3

2
a6 +

s
3

10
a7 +

s
1

5
a8:

Using pion-deuteron scattering to determine a3 and charge exchange to ¯nd a7, we see that

the breaking of the triangle relation will give limits on a6.

The scattering of neutral pions can be studied in the nuclear medium [14], which is the

only way to determine a4, but it is not clear at this point if the experimental techniques

and/or theory are adaquate to extract a useful di®erence.

It is the same combination of amplitudes needed for deuteron scattering that is also

necessary for the extraction of the sigma term, so that a knowledge of the value of a4

is essential for the reliable estimation of this quantity. Hence, in the absence of neutral

pion scattering there is a correction to be made which can only be determined from model

calculations.
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Appendices

Appendix 1. O®-shell vs. On-shell Amplitudes

It is important to distinguish between potentials (or o®-shell T matrices) and on-shell

T -matrices. For an on-shell amplitude only the total energy E, the incident and outgoing

beam directions, and the spin projections are independent variables. We now restrict our

attention to the scattering of a spin 0 particle and a spin 1=2 particle. We will refer to

these particles as ¼ and N , but the results of this paragraph are equally applicable to KN

systems, for example. The vectors available for the construction of the on-shell amplitudes

are the unit vector in the incident direction k̂, the unit vector in the scattered direction k̂0,

and the nucleon spin operator ¾. For an on-shell amplitude the magnitudes of both k and

k0 are ¯xed by the total energy E although in charge-exchange reactions the magnitudes k

and k0 need not be equal. It is easy to see that there are no rotational invariants that can

be constructed from this set of vectors which are both even under parity and are odd under

time reversal. (Note that under time reversal k $ ¡k0 and ¾ ! ¡¾, while under parity

both k and k0 reverse signs and ¾ is unchanged.) Thus only those isospin amplitudes which

are even under time reversal are needed for the description of the on-shell pion-nucleon

amplitude. The o®-shell T-matrix depends on the initial and ¯nal momenta k;k0 as well

as on ¾. Since the magnitudes of the momenta are now independent we can introduce the

factor k2 ¡ k02, for example, to obtain a coe±cient which is odd under time-reversal but is

even under parity. As another related example, a coe±cient of the form V (r)r ¢p+p ¢rV (r)

is even under parity but is odd under time-reversal. We conclude that the most general

form for the pion-nucleon potential involves all independent isospin operators, whatever

their properties are under time reversal. In contrast, the most general form of the on-shell

amplitude for pion-nucleon scattering involves only those isospin operators which are even

under time reversal. Since in the NN system there are two independent spin operators, ¾1

and ¾2, the on-shell amplitude could contain a term proportional to

(k̂£ k̂0) ¢ (¾1 £ ¾2);

17



which is even under parity and odd under time-reversal [3].

Appendix 2. Unitarity

The coe±cients of each isospin amplitude may be composed of several partial wave or

spin amplitudes. As an elementary example, consider the case in which only the elastic and

charge-exchange scattering occurs, and further assume that the partial waves are uncou-

pled (as in pion-nucleon scattering, but unlike the coupled triplet states in nucleon-nucleon

scattering). A unitary S-matrix may be de¯ned by a hermitian (for unitarity), symmetric

(for time-reversal invariance) K matrix. Together these conditions require the K matrix to

be real and symmetric. Let us consider an example in which orbital angular momentum

is conserved. If there are CQ channels, then the K matrix will be a real and symmetric

CQ £ CQ matrix. Such a matrix possesses CQ(CQ + 1)=2 real parameters, a number equal

to NQ, the number of independent isospin amplitudes found in Sec.II.

For example, consider a single partial wave in pion-nucleon scattering below the pion-

production threshold. As discussed in Sec.II C¡1 = C2 = 1 and the Q = ¡1 and Q = 2

channels are each described by a single phase shift. There are two channels with Q = 1 and

two with Q = 0, so C1 = C0 = 3. These parameters are often taken as two phase shifts and

a mixing angle. Counting up, we need (1 + 1 + 3 + 3) real parameters per partial wave to

describe the S-matrix.

Appendix 3. Further Properties of µi:

The anticommutator product of the isospin operators de¯ned in Table 2 forms a closed

algebra. The multiplication table is given in Table 5ab. Table 5a gives the closed subalgebra

of operators 1-8, and Table 5b gives the additional anticommutators needed when operators

9 and 10 are required. These tables may be used, for example, in constructing iterates of a

potential, as in the Born approximation (see Appendix 4). As usual, a square root of the

magnitude of each term is necessary.
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Table 5a. Coe±cients Cijk:
1
2
fµi; µjg =

P
k Cijkµk

k 1 2 3 4 5 6 7 8

i j

2 2 1
6

2 3 - 1
18

1
9

2 4 - 1
15

1
10

2 5 - 1
18

2 6 1
9

2 7 - 1
15

2 8 1
10

3 3 1
6

1
12

3 4 1
12

3 5 - 1
18

5
72

3 6 1
9

- 1
720

3
40

3 7 5
72

- 1
720

3 8 3
40

4 4 1
6

- 1
12

4 5 - 1
24

4 6 - 1
24

1
48

4 7 - 1
15

- 49
1200

1
200

4 8 1
10

1
200

- 4
75

5 5 1
6

1
12

5 6 - 1
24

- 1
48

5 7 5
72

3
16

5 8 - 1
12

6 6 1
6

1
48

- 1
48

- 1
24

6 7 - 1
720

3
200

- 9
400

6 8 3
40

- 9
400

- 8
75

7 7 1
6

- 49
1200

3
16

3
200

1 9
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Table 5b. Coe±cients Cijk:
1
2
fµi; µjg =

P
k Cijkµk

k 1 2 3 4 5 6 7 8 9 10

i j

2 9

2 10

3 9 1
16

3 10 1
16

4 9 - 1
48

4 10 - 1
48

5 9 1
48

5 10 1
48

6 9 - 1
24

6 10 - 1
24

7 9 3
40

7 10 3
40

8 9 - 9
80

8 10 - 9
80

9 9 -1
6

1
48

- 1
48

1
24

9 10 - 1
16

- 3
40

9
80

10 10 -1
6

1
48

- 1
48

1
24

The coe±cients for which i = 1 are C1jk = 1p
6
±jk. The remaining coe±cients may be

obtained from the symmetry relation Cijk = Cjik.

An e±cient way of representing the matrix elements of < ¼cNdjµij¼aN b > in the charge

basis is given in Table 3. An alternative method is to express the matrix elements directly

as a set of 6 £ 6 matrices corresponding to the six channels. For this purpose it is most

convenient to order the channels as ¼+p, ¼+n, ¼0p, ¼¡n, ¼¡p, and ¼0n. With this ordering

the second three channels are obtained from the ¯rst three by charge re°ection. The matrix
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representation of the operators will be in the form of blocks along the diagonal: 1£ 1 (with

Q=2), 2£ 2 (with Q=1), 1£ 1 (with Q=-1), and 2£ 2 (with Q=0). The general operator

which conserves charge will then be

µ =

0
BBBBBBBBBB@

A 0 0 0

0 B +C ¢¾ 0 0

0 0 A0 0

0 0 0 B0 +C0 ¢ ¾

1
CCCCCCCCCCA

where A, B, A0, B0 are scalar parameters, C, C0 are vector parameters, (i.e. a total of 10

parameters), and the components of ¾ are the Pauli matrices. The primed quantities are

equal to the unprimed ones if the operator is even under charge re°ection, and they are the

negative of the unprimed ones if the operator is odd under charge re°ection. If time-reversal

invariance is imposed on these operators, they must be symmetric. In this case Cy and C 0y

will both be zero, and only the usual eight parameters remain. The explicit form of the

matrices, constructed from the Table 3, follows.

µ1 =
1p
6

0
BBBBBBBBB@

1

1

1

1

1

1

1
CCCCCCCCCA

µ2 =
1p
6

0
BBBBBBBBB@

1

¡1

1

¡1

1

¡1

1
CCCCCCCCCA

µ3 =
1

2

0
BBBBBBBBB@

1

1

0

¡1

¡1

0

1
CCCCCCCCCA

µ4 =
1p
12

0
BBBBBBBBB@

1

1

¡2

1

1

¡2

1
CCCCCCCCCA

µ5 =
1p
12

0
BBBBBBBBB@

¡1

1 ¡
p

2

¡
p

2 0

¡1

1 ¡
p

2

¡
p

2 0

1
CCCCCCCCCA

µ6 =
1p
12

0
BBBBBBBBB@

p
2

¡
p

2 ¡1

¡1 0
p

2

¡
p

2 ¡1

¡1 0

1
CCCCCCCCCA
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µ7 =
1p
30

0
BBBBBBBBB@

¡1

1 ¡ 3
p

2
2

¡ 3
p

2
2

2

1

¡1 3
p

2
2

3
p

2
2

¡2

1
CCCCCCCCCA

µ8 =
1p
20

0
BBBBBBBBB@

1

¡1 ¡
p

2

¡
p

2 ¡2

¡1

1
p

2
p

2 2

1
CCCCCCCCCA

µ9 =
1

2

0
BBBBBBBBB@

0

0 ¡1

1 0

0

0 1

¡1 0

1
CCCCCCCCCA

µ10 =
1

2

0
BBBBBBBBB@

0

0 ¡1

1 0

0

0 ¡1

1 0

1
CCCCCCCCCA

Notice that the ¯rst eight matrices are symmetric while the last two are skew-symmetric.

(The matrices could be made hermitian if the last two were multiplied by i). The matrices

satisfy the relation tr(µTi µj) = ±ij where the superscript T stands for transpose. The anti-

commutation relations in Table 5 may be veri¯ed directly from this representation from the

relation

Cijk =
1

2
Tr(µTk (µiµj + µjµi)):

The matrix product of µiµj also forms a closed algebra although operators 1-8 do not form

a subalgebra because the product of two symmetric matrices is not necessarily symmetric.

Since any operator in isospin space for the ¼N system can be written as a linear combination

of the operators µi we have

µiµj =
X

k

Dijkµk:

Using the orthogonality relation given above we have

Dijk = Tr(µTk µiµj):

The results are presented in Tables 6a and 6b where the format is the same as for Tables 5a

and 5b.
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Notes for Table 6a. We have given only those elements for which i · j. The portion of

the table for which k · 8 is identical to Table 5a and is valid even if i and j are interchanged.

The new entries in columns 9 and 10 reverse sign under interchange of i and j.
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Table 6a. Coe±cients Dijk: µiµj =
P
kDijkµk

k 1 2 3 4 5 6 7 8 9 10

i j

2 2 1
6

2 3 - 1
18

1
9

2 4 - 1
15

1
10

2 5 - 1
18

- 1
9

2 6 1
9

- 1
18

2 7 - 1
15

- 1
10

2 8 1
10

- 1
15

3 3 1
6

1
12

3 4 1
12

3 5 - 1
18

5
72

1
24

3 6 1
9

- 1
720

3
40

1
48

3 7 5
72

- 1
720

3
80

3 8 3
40

1
40

4 4 1
6

- 1
12

4 5 - 1
24

1
8

4 6 - 1
24

1
48

1
16

4 7 - 1
15

- 49
1200

1
200

9
80

4 8 1
10

1
200

- 4
75

3
40

5 5 1
6

1
12

5 6 - 1
24

- 1
48

1
16

5 7 5
72

3
16

5
144

5 8 - 1
12

6 6 1
6

1
48

- 1
48

- 1
24

6 7 - 1
720

3
200

- 9
400

- 1
90

6 8 3
40

- 9
400

- 8
75

- 3
80

7 7 1
6

- 49
1200

3
16

3
200

1 9 1
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Notes for Table 6b. Columns 9 and 10 and the rows for which i > 8 are identical to

those of Table 5b (this includes all of the nonzero elements of Table 5b) and are not altered

through the interchange of i and j. The new terms (with k = 1¡ 8 and i · 8) change sign

under the interchange of i and j.

Table 6b. Coe±cients Dijk : µiµj =
P
kDijkµk

k 1 2 3 4 5 6 7 8 9 10

i j

2 9 -1
9

- 1
18

2 10 - 1
10

- 1
15

3 9 1
24

1
48

1
16

3 10 3
80

1
40

1
16

4 9 9
80

3
40

- 1
48

4 10 1
8

1
16

- 1
48

5 9 1
9

- 1
24

5
144

1
48

5 10 -1
8

1
16

1
48

6 9 1
18

- 1
48

- 1
90

- 3
80

- 1
24

6 10 - 1
16

- 1
16

- 1
24

7 9 - 9
80

- 5
144

1
90

3
40

7 10 1
10

- 3
80

- 1
48

3
40

8 9 - 3
40

3
80

- 9
80

8 10 1
15

- 1
40

1
48

- 9
80

9 9 -1
6

1
48

- 1
48

1
24

9 10 - 1
16

- 3
40

9
80

10 10 -1
6

1
48

- 1
48

1
24

Appendix 4. Mixing via Final-State Interactions

We consider a general term in the Born series. Let V0 correspond to the isospin-conserving

potential and Vx, for example, correspond to a rank-1 isospin-violating potential. The Born
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series consists of a sum of powers of GV where G is the Green function and V is the

interaction potential. We have assumed that the Green function is proportional to the

identity operator in isospin space; i.e. all purely kinematical isospin violation such as mass

splittings have been incorporated into the potential V . So far as the isospin structure is

concerned, then, we may ignore G. Terms in the Born series to ¯rst order in the isospin-

violating interactions but to all orders in the isospin-conserving interactions may then be

grouped as

V m
0 VxV

n
0 + V n

0 VxV
m

0 :

By the multiplication table (Table 5a) it is seen that all powers of V0 may be reduced to

a sum of µ1 = 1 and µ5. The isospin structure of the above terms in the Born series may

then be reduced to a sum of terms proportional to Vx, fVx; V0g, and V0VxV0. The second

of these is seen from the multiplication table to be a linear combination of all three of the

I = 1 operators. To see that this is also true for the last term, we use the identity

µiµjµi =
X

`

dij`µ`

where

dij` =
X

k

(2CijkCik` ¡ CiikCkj`):

Combining this equation with Table 5 we ¯nd

µ5µ2µ5 = ¡ 1

18
µ2 +

1

63=2
µ3 ¡

s
5

324
µ7

µ5µ3µ5 =
1

63=2
µ2 +

1

12
µ3 +

s
5

216
µ7

µ5µ7µ5 = ¡
s

5

324
µ2 +

s
5

216
µ3 +

2

9
µ7:

Thus all three of the rank 1 tensor operators are involved due to the FISI.
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As promised in Sec.V we now determine the isospin composition of the ´¼0 mixing

amplitude. In the 6£ 6 matrix representation the operator is

µ´¼ =
1p
3

0
BBBBBBBBBBBBBBBBBB@

0

0 ¡
p

2

¡
p

2 2

0

0
p

2
p

2 ¡2

1
CCCCCCCCCCCCCCCCCCA

as may be found by direct evaluation of the Clebsch-Gordan coe±cients given in Sec.V. The

following traces are easily computed:

Tr(µT2 µ´¼) =

s
8

9
; Tr(µT7 µ´¼) =

s
40

9
;

and the other traces vanish. Thus we have

µ´¼ =

s
8

9
µ2 +

s
40

9
µ7:
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q

1
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q
2
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q

1
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