
Inductive Anomaly Detection on Attributed Networks

Kaize Ding1 , Jundong Li2,3 , Nitin Agarwal4 and Huan Liu1

1Computer Science and Engineering, Arizona State University, USA
2Electrical and Computer Engineering, University of Virginia, USA

3Computer Science & School of Data Science, University of Virginia, USA
4Information Science, University of Arkansas Little Rock, USA

kaize.ding@asu.edu, jundong@virginia.edu, nxagarwal@ualr.edu, huan.liu@asu.edu

Abstract

Anomaly detection on attributed networks has at-
tracted a surge of research attention due to its
broad applications in various high-impact domains,
such as security, finance, and healthcare. Nonethe-
less, most of the existing efforts do not naturally
generalize to unseen nodes, leading to the fact
that people have to retrain the detection model
from scratch when dealing with newly observed
data. In this study, we propose to tackle the
problem of inductive anomaly detection on at-
tributed networks with a novel unsupervised frame-
work: AEGIS (adversarial graph differentiation
networks). Specifically, we design a new graph
neural layer to learn anomaly-aware node represen-
tations and further employ generative adversarial
learning to detect anomalies among new data. Ex-
tensive experiments on various attributed networks
demonstrate the efficacy of the proposed approach.

1 Introduction

In a variety of real-world applications (e.g., social spam de-
tection, financial fraud detection, and network intrusion de-
tection), detecting anomalies from networked data plays a vi-
tal role in keeping malicious behaviors or attacks at bay. With
the increasing usage of attributed networks for modeling vari-
ous information systems, anomaly detection on attributed net-
works has become a fundamental learning task, which aims to
accurately characterize and detect anomalies (i.e., abnormal
nodes) whose patterns (w.r.t., structure and attributes) deviate
significantly from the majority reference nodes.

As it is costly and labor-intensive to obtain the label in-
formation of anomalies, anomaly detection on attributed net-
works is predominately carried out in an unsupervised man-
ner [Li et al., 2017; Ding et al., 2019b]. Due to the fact that
real-world attributed networks are rapidly growing, the prob-
lem of anomaly detection on attributed networks can be fur-
ther divided into two settings based on the way how new data
is handled: (1) transductive setting and (2) inductive setting.
The former performs anomaly detection on a single, fixed at-
tributed network that includes new nodes and the latter an-

ticipates to handle newly observed nodes or (sub)networks
with a previously learned model. Though extensive research
has been conducted on the first setting and achieved im-
mense success [Gao et al., 2010; Perozzi and Akoglu, 2016;
Li et al., 2017], inductive anomaly detection on attributed net-
works has heretofore received little attention. Restricted by
their upfront access to global network structure (e.g., meth-
ods based on matrix factorization and spectral convolution),
transductive anomaly detection methods need to retrain the
model when new data arrives, which tends to be computation-
ally expensive. Hence, we are motivated to make the initial
investigation on the problem of inductive anomaly detection
on attributed networks and develop a novel inductive anomaly
detection algorithm.

Given its capability of learning representations on newly
observed nodes without retraining the whole model from
scratch, a series of graph neural networks [Hamilton et al.,
2017; Bojchevski and Günnemann, 2017; Velickovic et al.,
2017] have drawn great interests from researchers lately. In-
stead of training a distinct embedding vector for each node,
those methods learn a set of aggregator functions to aggre-
gate features from a node’s local neighborhood. Inspired by
their success, we propose to tackle the studied problem by
virtue of inductive representation learning. However, building
a principled inductive anomaly detection model for attributed
networks remains a daunting task due to the following two
challenges: (1) The existing graph neural networks are inef-
fective to characterize the node abnormality since they are not
tailored for anomaly detection problems. On the one hand, as
malicious users might build spurious connections with nor-
mal nodes to camouflage their noxious intentions, directly
aggregating features from neighboring nodes may cause the
learned representations of anomalies to be inexpressive for
detection; On the other hand, due to the fact that network
structures of many real-world attributed networks are highly
sparse, solely relying on the context information aggregated
from the local neighborhood could be less informative and
noisy [Cao et al., 2015; Chen et al., 2019]. The above is-
sues necessitate a new design of graph neural network, which
allows the model to learn anomaly-aware node representa-
tions from arbitrary-order neighbors. (2) Unseen anomalies
that emerged in the newly added data could incur the infeasi-



bility of previously learned detection models. For an induc-
tive anomaly detection model, its training network is only
partially observed. Though normal data tends to be stable,
anomalies in the observed and unseen data could be from very
different manifolds [Pang et al., 2019]. Thus the previously
learned anomaly detection model might lose its discrim-
inability on newly observed nodes [Lawrence et al., 1997;
Caruana et al., 2001]. As such, how to improve the general-
ization ability of inductive models for detecting those unseen
anomalies is imperative to solve.

To address the challenges above, in this paper, we pro-
pose an unsupervised framework: AEGIS (adversarial graph
differentiation autoencoders) for inductive anomaly detection
on attributed networks. Built upon our graph differentiative
layers, AEGIS first learns anomaly-aware node representa-
tions through an autoencoder network GDN-AE. Afterwards,
AEGIS trains a generative adversarial network (Ano-GAN)
to improve the model generalization ability on newly added
data. Specifically, the generator aims to generate informative
potential anomalies, while the discriminator tries to learn a
decision boundary that separates the potential anomalies from
the normal data. As such, the proposed framework eliminates
the restriction of transductive models and acquires strong ca-
pability in detecting anomalies among newly added nodes. In
summary, our main contributions are three-fold:

• To the best of our knowledge, we are the first to study
the problem of inductive anomaly detection on attributed
networks, which addresses the limitation of existing
anomaly detection methods.

• We propose a novel graph differentiative layer and fur-
ther develop a principled framework AEGIS that is ap-
plicable to perform anomaly detection in both inductive
and transductive settings.

• We evaluate our proposed approach on various bench-
mark datasets. Extensive experimental results demon-
strate its superior performance.

2 Related Work

Anomaly Detection on Attributed Networks. As attributed
network has been widely used to model a wide range of com-
plex systems, the studies of anomaly detection on attributed
networks have attracted increasing attention in the research
community. For instance, AMEN [Perozzi and Akoglu, 2016]

considers the ego-network information for each node and
discovers anomalous neighborhoods on attributed networks.
Radar [Li et al., 2017] characterizes the residuals of attribute
information and its coherence with network information for
anomaly detection. With the rocketing growth of deep neu-
ral networks, researchers also propose to solve the problem
of anomaly detection on attributed networks based on deep
learning techniques. Dominant [Ding et al., 2019a] achieves
superior performance over other shallow methods by building
a deep autoencoder architecture on top of the graph convolu-
tional networks. Despite their great progress, all the afore-
mentioned methods can only perform anomaly detection on a
single attributed network of fixed size, making the detection
model limited when dealing with newly observed nodes. As a

necessary supplement in the research field of anomaly detec-
tion on attributed networks, AEGIS is capable of performing
anomaly detection on newly observed nodes without retrain-
ing and achieves superior empirical results.

Graph Neural Networks. Driven by the momentous suc-
cess of deep learning, a mass of efforts have been devoted
to developing deep neural networks for graph-structured data
lately [Kipf and Welling, 2016; Hamilton et al., 2017; Velick-
ovic et al., 2017]. Among them, graph convolutional net-
works (GCNs) [Kipf and Welling, 2016], which extends the
operation of convolution on graph-structured data in the spec-
tral domain for network representation learning, has achieved
enormous success in various research fields [Zhou et al.,
2019; Liu et al., 2019; Guo et al., 2020; Wang et al., 2020].
More recently, the study of inductive representation learning
on graphs has attracted a surge of research interests. Instead
of training individual embeddings for each node, Graph-
SAGE [Hamilton et al., 2017] learns a function that gener-
ates embeddings by sampling and aggregating features from
a node’s local neighborhood. Similarly, graph attention net-
works (GAT) [Velickovic et al., 2017] is an attention-based
model that allows specifying different weights to nodes in the
local neighborhood, which greatly enhances the model capac-
ity compared to other graph neural networks. Nevertheless,
all these methods focus on network representation learning,
but it remains unclear how this power can be shifted to the
anomaly detection problem.

3 Problem Formulation

Throughout this paper, we use calligraphic fonts, bold lower-
case letters, and bold uppercase letters to denote sets (e.g., V),
vectors (e.g., x), and matrices (e.g., X), respectively. Gener-
ally, an attributed network can be represented by G = (A,X),
where A denotes the adjacency matrix and X denotes the at-
tribute matrix. The task of anomaly detection on attributed
networks can be classified into the transductive setting and
inductive setting. To make the results more interpretable, we
formulate them as two ranking problems:

Problem 1 Inductive Anomaly Detection on Attributed Net-
works: Given a partially observed attributed network G =
(A,X) for training and a newly observed (sub)network G′ =
(A′,X′) for testing, the task is to rank all the nodes in G′

according to the degree of abnormality, such that abnormal
nodes should be ranked on higher positions.

It is worth mentioning that, although we aim at developing
an inductive anomaly detection method, the proposed method
is able to handle the transductive setting as well.

4 Proposed Approach

In this section, we will first present the building block layer
used to construct the proposed framework AEGIS. We then
describe the architecture of AEGIS and its learning process
for inductive anomaly detection on attributed networks.

4.1 Graph Differentiative Layer

We will start by describing a single graph differentiative layer
(Figure 1(a)) used to construct any graph differentiation net-
works (GDNs) for inductive anomaly detection. Apart from
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Figure 1: (a) The graph differentiative layer. (b) The proposed inductive anomaly detection framework AEGIS. Note that AEGIS is trained
with the partially observed network G, and can directly detect anomalies on the new network G′ in a feed-forward way. The yellow arrows
denote the training flow and the blue arrows denote the inference flow. Figure best viewed in color.

the existing GNNs, GDN is capable of learning anomaly-
aware node representations from arbitrary-order neighbor-
hoods. Specifically, a GDN layer has an attention-based hi-
erarchical structure described as follows:

Node-level Attention. According to the principle of Ho-
mophily, instances with similar patterns are more likely to be
linked together in attributed networks [Li et al., 2017], and
the measuring of homophily has become an effective way to
detect anomalies [Perozzi and Akoglu, 2016]. Thus for each
node, we adopt attention mechanism to capture the feature
difference between it and its neighbors. In this way, it enables
the learned representation to differentiate a node if its fea-
tures deviate significantly from its neighbors’. Specifically,
for any graph differentiative layer l, it learns the representa-
tion of node i by:

h
(l)
i = σ

(

W1h
(l−1)
i +

∑

j∈Ni

αijW2∆
(l−1)
i,j

)

, (1)

where h
(l−1) ∈ R

F ,h(l) ∈ R
F̃ denotes the input and

output representation of node i, respectively. ∆
(l−1)
i,j =

h
(l−1)
i − h

(l−1)
j is the feature difference between node i and

j. W1,W2 ∈ R
F×F̃ are two trainable weight matrices and σ

is a nonlinear activation function. Ni denotes the neighboring
nodes of node i. Here αij is the attention coefficient between
node i and node j, which can be expressed as:

αij =
exp

(
σ(aTW2∆

(l−1)
i,j )

)

∑

k∈Ni
exp

(
σ(aTW2∆

(l−1)
i,k )

) , (2)

where a ∈ R
F̃ is the attention vector that assigns importance

to different neighbors of node i. Apart from the graph atten-
tion networks (GAT) [Velickovic et al., 2017], we generate
the attentional weights based on the feature differences rather
than the concatenation of two neighboring features, in order
to explicitly measure network homophily and characterize the
abnormality of each node.

Similarly, by extracting kth-order neighbors of node i from
A

k = A ·A . . .A
︸ ︷︷ ︸

k

, we can compute its kth-order node rep-

resentation h
(l,k)
i . As different neighborhoods encode differ-

ent context information, those neighborhood-specific repre-
sentations could be used for addressing the sparsity issue and
learning more powerful anomaly detector.

Neighborhood-level Attention. Then we propose to aggre-
gate K neighborhood-specific representations to a unified
representation. As neighbors from different distances con-
tribute differently to characterize a node, we propose to ap-
ply location-based attention [Luong et al., 2015] on those
neighborhood-specific representations, in order to capture the
significance of different neighborhoods. Formally, at each
layer l, the final embedding of node i can be integrated by:

h
(l)
i =

K∑

k=1

βk
i h

(l,k)
i , (3)

where βk
i denotes the attention coefficient on kth-order rep-

resentation h
(l,k)
i , which can be formulated as:

βk
i =

exp
(
σ(âTh

(l,k)
i )

)

∑K

k′=1 exp
(
σ(âTh

(l,k′)
i )

) . (4)

Note that â ∈ R
F̃ is the attention vector that allows our

model to specify different significance to different interme-
diate representations for learning the unified representation
of each node. In this way, our GDN layer is able to aggregate
expressive context information for characterizing node abnor-
mality from neighbors with various numbers of hops away.

4.2 Adversarial Graph Differentiation Networks

Following previous research [Ding et al., 2019a; Chalapathy
et al., 2017], we can directly build an unsupervised model
(e.g., autoencoders) using GDN layers for detecting anoma-
lies. However, it may not work as expected in our studied
problem: under the inductive setting, a previously learned
anomaly detection model may encounter unseen anomalies
among the newly added data, yielding poor performance in
practice. To counter this issue, we propose a joint framework
based on generative adversarial learning [Goodfellow et al.,
2014] to improve model robustness by generating informative
potential anomalies.

As depicted in Figure 1(b), the proposed framework AEGIS

consists of two learning phases. The first phase aims to
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Figure 2: Illustration of the learning mechanism behind Ano-GAN.
(a) At its early training stage, Ano-GAN cannot generate informative
anomalies; (b) After training, Ano-GAN is able to generate anoma-
lies that generally lie close to normal data.

learn node representations from the input attributed network
through an autoecoder network (w.r.t., GDN-AE), which is
built with the graph differentiative layers. Specifically, the
encoder Enc compresses the input attributed network to low-
dimensional node representations Z, and the decoder Dec re-
constructs the input data afterwards. The encoder of GDN-AE
learns anomaly-aware node representations, and is expected
to map the normal and abnormal nodes to different regions in
the latent feature space.

With the learned anomaly-aware node representations, the
second phase aims to train a generative adversarial network
(w.r.t., Ano-GAN) that can accurately model the distribution
of normal data. Specifically, the generator G takes noises
sampled from a prior distribution p(z̃) as input, and attempts
to generate informative potential anomalies. Meanwhile, the
discriminator D tries to distinguish whether an input is the
representation of a normal node or a generated anomaly. This
mini-max game can be formally defined as follows:

min
G

max
D

Ez∼Z[logD(z)]+Ez̃∼p(z̃)[log(1−D(G(z̃)))], (5)

where p(z̃) is the prior distribution. The previous re-
search [Makhzani et al., 2015] and our preliminary experi-
ments show that Gaussian prior is a robust option for different
datasets.

During the learning process, the generator G gradually
learns the generating mechanism and synthesizes an increas-
ing number of potential anomalies that may arise in the un-
seen data. As shown in Figure 2, the discriminator D can ac-
curately learn the real data distribution and describe the de-
cision boundary that encloses the concentrated normal nodes.
In other words, the generator G effectively improves the capa-
bility of the discriminator D to identify normal data by gener-
ating informative potential anomalies. To avoid the generated
anomalies being mixed with normal data, we follow the idea
in [Dai et al., 2017] to train the Ano-GAN.

4.3 Model Learning

In order to learn the proposed model, different components
of AEGIS are jointly trained in two phases and each phase
requires dedicated training objective functions. Specifically,
The reconstruction loss of GDN-AE can be formulated as:

LAE =
1

n

n∑

i=1

||Dec(Enc(xi))− xi||
2. (6)

Algorithm 1: The training process of AEGIS

Input: Attributed network G = (A,X), Training epochs
EpochAE , and EpochGAN

Output: Well-trained GDN-AE and Ano-GAN
1 i← 0;
2 while i < EpochAE do
3 Compute the reconstructed node attributes;
4 Update GDN-AE with the loss function Eq. (6);

5 i← 0;
6 while i < EpochGAN do
7 Sample P instances from the node representations Z;
8 Generate P instances from the prior distribution p(z̃);
9 Update the generator G with loss function Eq. (7);

10 Update the discriminator D with loss function Eq. (8);

11 return

# nodes # edges # attributes # anomalies

BlogCatalog 5,196 171,743 8,189 300
Flickr 7,575 239,738 12,047 450
ACM 16,484 71,980 8,337 600

Table 1: Summary of the attributed network datasets

The loss function of Ano-GAN can be represented by the
conventional cross-entropy loss for training a binary classi-
fier. In practice, the generator and the discriminator of Ano-
GAN are trained separately. For the generator G, the loss
function can be defined as:

LG = Ez̃∼p(z̃)[log(1−D(G(z̃)))], (7)

and the loss function of learning discriminator D is:

LD = −Ez∼Z[logD(z)]−Ez̃∼p(z̃)[log(1−D(G(z̃)))]. (8)

The detailed model training process is illustrated in Algo-
rithm 1. After the model converges on the training network,
the discriminator D learns the distribution of normal nodes,
and can be directly used to detect anomalies on any newly
observed nodes or (sub)networks.

4.4 Inductive Anomaly Detection

As our objective is to solve the problem of inductive anomaly
detection on attributed networks, now we will elaborate
on how to utilize the previously learned model to perform
anomaly detection on newly observed (sub)networks. Note
that after the training phase, AEGIS is capable of handling
newly added data without retraining the model. To compute
the anomaly scores of unseen nodes, we can retain the pa-
rameters of previously learned model and directly feed the
new (sub)network G′ = (A′,X′) into it. AEGIS will learn
the layer-wise representation of each unseen node in a feed-
forward way. Finally, we can compute the anomaly score of
node i according to the output of the discriminator D:

score(x′
i) = p(y′i = 0|z′i) = 1−D(z′i). (9)

5 Experiments

In this section, we perform empirical evaluations on various
real-world datasets to verify the effectiveness of the proposed
model AEGIS in both inductive and transductive settings.
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Figure 3: Inductive anomaly detection results on three datasets w.r.t. ROC curve and AUC value.

BlogCatalog Flickr ACM

Methods Pre@50 Pre@100 Pre@200 Pre@50 Pre@100 Pre@200 Pre@50 Pre@100 Pre@200

LOF 0.324 0.212 0.145 0.366 0.255 0.190 0.156 0.128 0.087
RCAE 0.558 0.450 0.307 0.580 0.566 0.423 0.486 0.435 0.360

GDN-AE (ours) 0.622 0.505 0.345 0.640 0.594 0.452 0.542 0.467 0.405
AEGIS (ours) 0.704 0.568 0.382 0.722 0.661 0.485 0.626 0.533 0.432

Table 2: Inductive anomaly detection results on three datasets w.r.t. precision@K.

5.1 Experiment Setup

Compared Methods. In the experiments, we compare the
proposed model AEGIS with different baseline methods.
Specifically, LOF [Breunig et al., 2000] detects anomalies
at the contextual level by considering attributes. ConOut
[Sánchez et al., 2014] detects anomalies by determining its
subgraph and its relevant subset of attributes. RCAE [Chala-
pathy et al., 2017] and GCN-AE [Ding et al., 2019a] are two
autoencoder-based methods for detecting anomalies on i.i.d.
data and attributed networks, respectively. Additionally, we
include the component GDN-AE of the proposed framework
as another baseline. To summarize, LOF, RCAE and GDN-
AE are inductive models that support both transductive and
inductive settings, while ConOut and GCN-AE are two state-
of-the-art transductive methods.

Evaluation Datasets. In the experiments, we employ three
public real-world attributed network datasets (BlogCata-
log [Wang et al., 2010], Flickr [Tang and Liu, 2009], and
ACM [Tang et al., 2008]) for performance comparison. Due
to the shortage of ground truth anomalies, we follow the per-
turbation scheme introduced in [Ding et al., 2019a] to inject
a combined set of anomalies (i.e., structural anomalies and
contextual anomalies) for each dataset. The statistics of our
evaluation datasets are shown in Table 1. For performance
evaluation, two standard evaluation metrics (ROC-AUC and
Precision@K) are used to measure the performance of differ-
ent anomaly detection algorithms.

Implementation Details. In AEGIS, the GDN-AE is built
with one 64-dimension hidden layer with ELU [Clevert et
al., 2015] nonlinearity. Its output layer has a linear activa-
tion function. For Ano-GAN, the generator has one hidden
layer (32-neuron) and the dimension of its output layer is
64. The discriminator has one hidden layer (32-neuron) with
ReLU [Nair and Hinton, 2010] activation function, and we

employ sigmoid activation function in its last layer. AEGIS

is optimized with the Adam [Kingma and Ba, 2014] opti-
mizer. We set the learning rate of the reconstruction loss to
0.005. The training epoch of GDN-AE is 200, while the train-
ing epoch of Ano-GAN is 50. We set the parameter K to 3
(BlogCaltalog), 2 (Flickr), 3 (ACM). In addition, the number
of samples P is set to 0.05× n for each dataset.

5.2 Experimental Results

Inductive Setting. In order to verify the effectiveness of the
proposed framework, we first conduct the empirical eval-
uation under the inductive setting. Three inductive mod-
els are included. Specifically, for each dataset, we first ran-
domly sample 50% nodes from the whole network and ex-
tract the link relations among these nodes to construct a par-
tially observed attributed network G. Similarly, we sample
another 40% data to construct the newly observed attributed
(sub)network G′ for testing and the remaining 10% data is for
the validation purpose. After AEGIS is trained on the partially
observed attributed network G, we directly apply the learned
model to G′. We repeat this process 10 times and report the
average results in Figure 3 and Table 2. To summarize, we
make the following observations:

• Under the inductive setting, our model AEGIS achieves
superior anomaly detection performance over other
baseline methods, which demonstrates its capability for
detecting anomalies on newly added data without re-
training from scratch.

• The performance of LOF and RCAE largely fall be-
hind in our experiments since they merely consider the
nodal attributes for measuring node abnormality. Mean-
while, GDN-AE cannot achieve competitive results with
AEGIS, which verifies that AEGIS is able to improve its
generalization ability by generating potential anomalies.
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Figure 4: Transductive anomaly detection results on three datasets w.r.t. ROC curve and AUC value.

BlogCatalog Flickr ACM

Methods Pre@50 Pre@100 Pre@200 Pre@50 Pre@100 Pre@200 Pre@50 Pre@100 Pre@200

ConOut 0.380 0.200 0.130 0.440 0.280 0.255 0.540 0.470 0.310
GCN-AE 0.758 0.712 0.593 0.756 0.727 0.685 0.620 0.589 0.534

LOF 0.300 0.220 0.180 0.420 0.380 0.270 0.180 0.130 0.115
RCAE 0.624 0.610 0.526 0.666 0.685 0.653 0.460 0.460 0.450

GDN-AE (ours) 0.772 0.723 0.622 0.776 0.742 0.699 0.632 0.601 0.542
AEGIS (ours) 0.778 0.730 0.638 0.784 0.757 0.705 0.640 0.606 0.545

Table 3: Transductive anomaly detection results on three datasets w.r.t. precision@K.

Transductive Setting. Next, we evaluate the effectiveness
of AEGIS under the transductive setting. Specifically, each
dataset is used as a single fixed network, and each method
directly performs anomaly detection on it. The results are pre-
sented in Figure 4 and Table 3 (averaged over 10 runs). Based
on the results, we have the following observations:

• The proposed model AEGIS outperforms all the baseline
methods on all the three attributed networks. It implies
that even though our approach AEGIS is mainly devel-
oped for inductive anomaly detection on attributed net-
works, it can also achieve competitive performance in
the transductive setting.

• Our basic model GDN-AE obtains better performance
than the state-of-the-art baseline GCN-AE, which
demonstrates the effectiveness of the proposed graph
differentiative layer. It verifies the advantage of GDN-
AE for learning anomaly-aware node representations
from arbitrary-order neighbors.
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Figure 5: (left) Effect of node-level attention. (right) Effect of pa-
rameter K in neighborhood-level attention.

5.3 Further Analysis

In this subsection, we make further analysis on the proposed
graph differentiative layer. Note that all the results are re-
ported under the inductive setting since we have similar ob-
servations in the transductive setting.

Effect of Node-level Attention. We first study the effect of
node-level attention by replacing it with the vanilla graph
attention mechanism used in [Velickovic et al., 2017]. As
shown in Figure 5 (left), AEGIS outperforms this variant by a
noticeable margin on three datasets. It verifies that the node-
level attention enables the model to learn anomaly-aware
node representations by highlighting the feature difference
between a node and its neighbors’.

Effect of Neighborhood-level Attention. We further ana-
lyze the significance of neighborhood-level attention, which
is controlled by the parameter K. We report the AUC scores
over different choices of K in Figure 5 (right). For the
datasets considered here, the best results are obtained when K
is set to 2 or 3. This confirms that using high-order neighbor-
hoods is able to provide richer context information for learn-
ing anomaly-aware node representations. However, overfit-
ting could become an issue if K is too large.

6 Conclusion

In this paper, we make the initial investigation on the re-
search problem of inductive anomaly detection by developing
a principled framework AEGIS. The proposed framework not
only eliminates the retraining restriction of transductive mod-
els, but also acquires strong capability in detecting anomalies
among newly added nodes. By conducting extensive experi-
ments, the results demonstrate the superiority of the proposed
model over the state-of-the-art methods.
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