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Abstract

The Why-Atlas tutoring system presents
students with qualitative physics questions
and encourages them to explain their an-
swers via natural language. Although
there are inexpensive techniques for ana-
lyzing explanations, we claim that better
understanding is necessary for use within
tutoring systems. In this paper we de-
scribe how Why-Atlas creates and utilizes
a proof-based representation of student es-
says. We describe how it creates the proof
given the output of sentence-level under-
standing, how it uses the proofs to give
students feedback, some preliminary run-
time measures, and the work we are cur-
rently doing to derive additional benefits
from a proof-based approach for tutoring
applications.

(Aleven and Koedinger, 2000; Chi et al., 2001). To
give substantive feedback the system has to be able
to understand student explanations to some degree.

The Why-Atlas system presents students with
gualitative physics problems and encourage them to
write their answers along with detailed explanations
for their answers. While physics misconceptions
have proven to be particularly resistant to repair,
practice with qualitative physics questions helps in
overcoming some of these misconceptions (Hake,
1998).

The student explanation shown in (1), which
is from our corpus of human-human computer-
mediated tutoring sessions, illustrates how challeng-
ing these explanations are for a system to under-
stand. The problems we have examined require a
short essay with an average of 6.9 sentences to fully
explain to the satisfaction of experienced physics in-
structors.

(1) Question: Suppose you are running in a straight line
at constant speed. You throw a pumpkin straight up.
Where will it land? Explain.

1 Introduction

Explanation: Once the pumpkin leaves my hand,
the horizontal force that | am exerting on it no longer
exists, only a vertical force (caused by my throwing
it). As it reaches it's maximum height, gravity (exerted
vertically downward) will cause the pumpkin to fall.
Since no horizontal force acted on the pumpkin from
the time it left my hand, it will fall at the same place
where it left my hands.

Whereas most explanations are produced and
adapted to benefit or inform a hearer, a self-

explanation is produced for the benefit of the

speaker. If there is a hearer he often already knows
all about the topic as in a tutoring context. Self-

explanation is a cognitively valuable pedagogical ac-
tivity because it leads students to construct knowl- Statistical text classification approaches, such as
edge (Chi et al., 1994), and it can expose deep mistent semantic analysis (Landauer et al., 1998),
conceptions (Slotta et al., 1995). But it is diffi-have shown promise for classifying a student expla-
cult to encourage self-explanation without giving theation into medium-grained good and bad categories
student substantive feedback on what they generd@raesser et al., 2000). For instance, a medium-



grained category that should match (1) is the ofterx proof-based approach gives more insight into
observed impetus misconception: the line of reasoning the student may be follow-
ing across multiple sentences because proofs of the
propositions share subproofs. Indeed, one propo-
sition’s entire proof may be a subproof of the next

Such medium-grained categories typically hav@ro_position. Moreover, subtle misconceptions such
multiple propositions and contain multiple contenS IMPetus are revealed when they must be used to
words. While successful with medium-grainec®™OVe & proposition.
classes, statistical approaches are not yet able to disAbductive inference has a long history in plan
tinguish subtle but important differences betweeffcognition, text understanding and discourse pro-
good and bad explanations. Statistical classificatidi¢SSing (Appelt and Pollack, 1992; Charniak, 1986;
is insensitive to negatiohsanaphoric referencgs Hobbs et al., 1993; McRoy and Hirst, 1995; Las-
and argument ordering variatidnand its inferenc- carides and Asher, 1991; Rayner and Alshawi,
ing is weak. To capture these subtle differenced992). We are using an extended version of SRI's
and to allow us to respond more directly to what théacitus-lite weighted abductive inference engine
student actually saidwe need the precision possi-(HObbS et al., 1993) as our main tool for building
ble so far only with symbolic approaches. So Whyabductive proofs. We had to extend it in order to use
Atlas parses each sentence into a propositional rdpfor domain as well as language reasoning. As ad-
resentation. vised in (Appelt and Pollack, 1992), abductive infer-
The PACT Geometry Tutor is an operational pro€nce requires some application specific engineering
totype that does a finer-grained symbolic classiff® Pecome a practical technique.
cation (Aleven et al., 2001). PACT also parses a In this paper we describe how the system creates
student explanation into a propositional representand utilizes a proof-based representation of student
tion but then uses LOOM to classify these into fineessays. We describe how it creates the proof given
grained categories that typically express one prop#ile output of sentence-level understanding, how it
sition. This approach looks promising (Aleven etises the proofs to give students feedback, some pre-
al., 2001), but the system’s goal is to elicit a justifiliminary run-time measures, and the work we are
cation for a step in a geometry proof and generalgurrently doing to derive additional benefits from a
these can be expressed with a single sentence tREROf-based approach for tutoring applications.
succinctly translates into a small number of proposi- First we give an overview of the Why-Atlas tutor-
tions. Itisn’t clear that this approach will work welling system architecture. Next we give some back-
for the longer, more complex explanations that thground on weighted abduction and Tacitus-lite+ and
Why-Atlas system elicits. describe how it builds an abductive proof. Next we
Instead of classifying propositions, the Whydescribe how the system uses the proofs to give stu-
Atlas system constructs abductive proofs of thentlents feedback on their essays. Finally, we discuss
efficiency issues and our future evaluation plans.

If there is no force on a moving object, it
slows down.

A good explanation followed by “But | don't think that will
happen.” would be classified as good. ) )
?In (1) above, it would tend to misclassify the last clause a ~Overview of the Why-Atlas Tutoring
the correct answer “the pumpkin will land in my hands” because system
it does not understand the temporal anaphora.
3The difference between x accelerates faster than y and . L.
accelerates faster than x would not be detected. -P/he .archltec.:ture for th_e Why-A.tIas' qualitative
“In (1), the student has the extreme belief that the pumpkiphysics tutoring system is shown in Figure 1. The
hasno horizontal velocity. This would probably not be recog-yser interface for the system is a screen area in which

nized as a case of “slowing down” by statistical classification. he bhvsi tion is displ d along with an

*When a true statement lacks precision, the tutor should aF:- ep y§ €S questio S spiaye i along an essay
knowledge the correct statement and elicit more precision rathentry window and a dialogue window. As the stu-
than continuing as if it were wrong. For example, if a studeng_jent enters an answer and explanation for a qualita-

makes a correct statement about the velocity of an object but Ctd hvsi tion th i | | understand
not report it in terms of the horizontal and vertical component Ivé physics question the sentence-level unaerstana-

of the velocity, the tutor should ask which was intended. ing module builds sets of propositions and passes
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Figure 1. Why-Atlas Tutoring System Architecture

them, via the discourse manager, to the discoursd@a directives to modify the essay. The other two,
level understanding module. Each set of proposiemediating misconceptions and eliciting more com-
tions represents one interpretation of a sentence. Tplete explanations, are addressed via dialogue. Mis-
user interface and the sentence-level understandiognceptions are detected when the proof includes
components are described in detail in (R0o2000; an axiom that is incorrect or inapplicable. Incom-
Freedman et al., 2000). pleteness is detected under two conditions. First,

The discourse-level understanding module usdigere may be multiple proofs that are equally good.

language and domain reasoning axioms and tﬂ- is condition indicates that the student did not say

Tacitus-lite+ abductive inference engine to create§'0ugh in his explanation for the system to decide

set of proofs that offer an explanation for the stuWhiCh proof best represents what the student's rea-
oning may be. Each possible line of reasoning

dent's essay and give some insight into what tHE

student may believe about physics and how to a ould point to different underlying problems with
he student’s physics knowledge. The second con-

ply that knowledge. The discourse-level under- - h h tail licitl
standing module updates the propositions and tﬂg'on occurs when the student fails to explicitly

search queue for proofs in the history with the resulf$at€ amandatory point, Wh'Chf'S a proposm%r: that
from Tacitus-lite+. This part of the history supportsdom"’lIn Instructors require ot any acgepta y com-
anaphora resolution and processing of revisionsPiEte essay. Once the tutorial strategist has identi-
student may make to his essay. The discourse mzﬂ?—d communicative goals it prioritizes them accord-

ager module selects and sendstegt proofs to the :jng to curriculum constr:glrr]lts Tnd setr:dsh_th;zm to the
tutorial strategist iscourse manager, which selects the highest prior-

ity goal after taking dialogue coherency into account

The tutorial Strategist identifies relevant CommUand sends the goal to either the dialogue engine or
nicative goals. Currently there are four categories @he sentence-level realization module.

communicative goals. Two of these, disambiguating
terminology and clarifying the essay, are addressedThe dialogue engine initiates and carries out a dia-



logue plan that will either help the student recogniz8 Background on Weighted Abduction and
and repair a misconception or elicit a more com- Tacitus-lite+

plete explanation from the student. The main mech-

. . ion i r fr ning from an r-
anism for addressing these goals are what we calﬁlé)ducto S & process of reasoning from an obse

knowledge construction dialogue (KCD) specifica\-/ation to possible explanations for that observation.

In the case of the Why-Atlas system the observations

tion. A KCD specification is a hand-authored push- : .
down network. Nodes in the network are either th& © what the student said and the possible explana-
s for why the student said this are the physics

. t
system’s questions to students or pushes and poq|oo§1 o .
to other networks. The links exiting a node corre: ualitative axioms (both good and bad) and order-

spond to anticipated responses to the question. E4cH> of those_ axioms that suppqrt what the student
id. To arrive at the explanation, some assump-

guestion is a canned string, ready for presentatic?r? )
to a student. The last state of the network is saved. "> have to be made along the way since all the
erences that underly an explanation will not be

in the history and the sentence-level understandif
pressed.

module accesses this in order to get information &1 iahted abduction i ¢ I ivle f
analysis of student responses. The sentence-leve}/\_/e'g ed abduction s one ot several possible for-
lisms for realizing abductive reasoning. With

understanding module uses a classification approa

for dialogue responses from the student since cd’lv-e'lg_hted abductlor;_ thedre .'S athc o_stfassomated with
rently the dialogue plans are limited to ones that exiaxing an assumption guring Ine Inference process.

pect short, direct responses. During a dialogue, r)épllowmg the weighted abductive inference algo-

sponse class information is delivered directly to th thm described in (Stickel, 1988), Tacitus-lite is a

: . . ; ollection of axioms where each axiom is expressed
dialogue engine via the discourse manager. The &° P

alogue engine is described further in (Rost al., as a Horn clau§e. Fu'rthgr, egch conjupicha_s a
2001). weightw; associated with it, as in (2). The weight is

sed to calculate the cost of assumpgnstead of

The other communicative goals, disambiguatin L
foving it wherecost(p;) = cost(r) * w;.

terminology and clarifying the essay, are address
by the discourse manager as directives for the stu- 2) prwy A -
dent to modify the essay. It passes propositions and a
goal to the sentence-level realization module which Given a goal or observation to be proven, Tacitus-
uses templates to build the deep syntactic structuri@e takes one of four actions; 1) assumes the obser-
required by the RealPro realizer (Lavoie and Ranvation at the cost associated with it 2) unifies with a
bow, 1997) for generating a string that communifact for zero cost 3) unifies with a literal that has al-
cates the goal. ready been assumed or proven at no additional cost
When the discourse manager is ready to end g attempts to prove it with an axiom.
turn in the dialogue, it passes the accumulated natu-All possible proofs could be generated. How-
ral language strings to the user interface. This ougver, Tacitus-lite allows the applications builder to
put may also include transitions between the goaset depth bounds on the number of axioms applied
selected for the turn. in proving an observation and on the global num-
While a dialogue is in progress, the discourseser of proofs generated during search. Tacitus-lite
level understanding and tutorial strategist modulesaintains a queue of proofs where the initial proof
are bypassed until the essay is revised. Once the steflects assuming all the observations and each of
dent revises his essay, it is reanalyzed and the dfe four above actions adds a new proof to the queue.
cle repeats until no additional communicative goal§he proof generation can be stopped at any point and
arise from the system’s analysis of the essay. the proofs with the lowest cost can be selected as the
Although the overall architecture of the system isost plausible proofs for the observations.
a pipeline, there is feedback to earlier modules via Tacitus-lite uses a best-first search guided by
the history. Only the discourse-level understandieuristics that select which proof to expand, which
ing and discourse manager modules are internalbpservation or goal in that proof to act upon, which
pipelines, the rest are rule-based. action to apply and which axiom to use when that is

A ppwn =T



the selected action. Most of the heuristics in Whyhas 90 language axioms and 95 domain axioms. The

Atlas are specific to the domain and application. domain axioms fully cover 5 problems as well as
SRI's release of Tacitus-lite was subsequently eparts of many other problems.

tended by the first author of this paper for the re- We will describe in more detail each of these

search project described in (Thomason et al., 19968}tages of building the proof in the sections that fol-

It was named Tacitus-lite+ at that time. Two mairow.

extensions from that work that we are making use

of are: 1) proofs falling below a user defined cos#-1 Applying Discourse-level Language Axioms

threshold halt the search 2) a simple variable typing  t0 Sentence-level Propositions

system reduces the number of axioms written anghe discourse-level language axioms are currently
the size of the search space (Hobbs et al., 1988, gedressing the local resolution of pronominal and
102). temporal anaphora, flattening out embedded rela-

Unlike the earlier applications of Tacitus-lite+,tionships and canonicalizing some lexical choices
Why-Atlas uses it for both shallow qualitativethat can only be resolved given the context of the
physics reasoning and discourse-level language rg@oblem. We are still developing and testing ax-
soning. To support qualitative physics reasoningms that will better address pronominal and tempo-
we've made a number of general inference engingl anaphora inter-sententially and axioms that will

extensions, such as improved consistency checkingsnerate additional propositions for quantifiers and
detecting and avoiding reasoning loops and allowinglurals.

the axiom author to express both good and bad ax-
ioms in the same axiom set. These recent extensidngnominal Anaphora. It is generally easy to re-

are described further in (Jordan et al., 2002). solve pronominal anaphora in the context of a qual-
itative physics problem because there are a small
4 Building an Abductive Proof number of candidates to consider. For example, in

the case of the pumpkin problem in (1), there are

The discourse-level understanding module uses laghly four physics bodies that are likely to be dis-
guage axioms and the Tacitus-lite+ abductive incussed in a student essay; the pumpkin, the runner,
ference engine to resolve pronominal and temporgle earth and air.
anaphora and make other discourse-level languagerhe system is able to resolve simple intra-
related inferences. It transforms the Sentence-le\@ntentia| pronomina| references using |anguage ax-
propositions into more complete propositions givefpbms. The objects described in a single sentence
the context of the problem the student is solvingre the candidate set and argument restrictions rule
(represented as facts) and the context of the precegiit many of these candidates. But to resolve inter-
ing sentences of the essay. sentential anaphora, as in (3), the system currently

From these discourse-level propositions, proofglies on the domain axioms. The domain axioms
are built and analyzed to determine appropriate COfill bind the body variables to their most likely
municative actions. To build these proofs, theeferents during unification with facts, and previ-
discourse-level understanding module uses domajisly assumed and proven propositions similarly to
axioms, the above resulting propositions and agafPiobbs et al., 1988).
the Tacitus-lite+ abductive inference engine.

We've separated the discourse-level language ax- (3) The man is exerting a force on
ioms from the domain axioms both for efficiency
and modularity because there is generally only a Butin the case of anaphoric references to physical
small amount of interaction between the languagguantities such as velocity, acceleration and force,
and domain axioms. Separating them reduces ths in (4), we need to extend the language axioms to
search space. In cases where interaction withinhandle these cases because it involves too much un-
single axiom is necessary, we've place these axiornenstrained search for the domain axioms to resolve
in the set of language axioms. The system currenttilese. This is because the physical quantities are the



predicates that most strongly influence the domathat each of these relations imposes so this is han-
reasoning. dled by discourse-level understanding. It would
also impose a greater burden on the domain-level
(4) Thevelocity is constant before the pumpkin isproof building if these relationships were not re-
thrown. But after the releas#,will decrease solved beforehand. For example, in the case of the
because there is no force. last clause in (6) there is an elliptical reference that
could cause the domain-level a great deal of uncon-

To extend the language axioms to address integt-raineol search

sentential anaphora we need to implement and test
a recency ordering of the physics bodies and quan- () When the magnitude of the pumpkin’s veloc-
tities that have already been discussed in the essay. jty equals the man’s, the pumpkin’'s velocity
But we expect this to be simple to do since the essays s in the opposite direction.
generally only involve one discourse segment.
_ _ Canonicalizing Lexical Usage. One simple case

Temporal  Anaphora. As  with pronominal i, \hich the language axioms canonicalize lexical
anaphora, temporal anaphora is usually clear bgsms has to do with direction. For example, saying
cause the student often exp'llcr[ly indicates whe#f,q\e up the inclined plane” should be interpreted
an event or state occurs relative to another event o& 5 hositive direction for the horizontal component
state as with the first sentence of the explanatiqq,e, though the phrase contains “up”. The axioms
presented in (1). In these cases, the domain-levgly gpe to canonicalize references such as up, down,
reasoning will be able to unify the anchor event Oy right, north, south into a positive or negative di-
state with an already known event or state in the, tion relative to an axis in a coordinate system that
proof it is constructing. _may be tilted slightly to align with planes. This is an

When there is no temporal anchor the domainsyample of the kinds of axioms in which language

level search is too under-constrained so the languaggy qomain knowledge are interacting within a sin-
axioms resolve the temporal orderings. In SOM&ie axiom

cases world knowledge is used to infer the temporal 3
relationships as in (5). Here we know that to catcRuantifiers and Plurals In our target essays,
an object it must have been thrown or dropped b&were is frequent usage of quantifiers and plurals

forehand and so the event in (5a) must occur aftéfith respect to physics bodies and frequent use of
the event in (5b). guantifiers with respect to parameters of physical

guantities (e.g. “at all times” “all the magnitudes
(5) a. The man catches the pumpkin. of the velocities”).
. . We have recently completed our specification for
b. This is because they had the same veloCily gontance-level representation of quantifiers and

when he threw it. plurals. From this representation the language ax-

Otherwise, the language axioms use information™> will generate an appropriate number of new

about tense and aspect and default orderings re%ppositions to use in the proof building stage, given
tive to these to guide inferences about temporal rel e context of the problem and the expression recog-

tionships ((Kamp, 1993; Dowty, 1986; Partee, 1984)12€d from sentence-level processing.
Webber, 1988) inter alia). Although we have not yet implemented and tested

this set of language axioms, we have successfully
Embedded Relationships. In the physics essays hand-encoded sentences such as (7) into both their
we are addressing, there is a tendency to expresentence-level and discourse-level representations
multiple relations within a single sentence as in (6and have used the latter successfully in the final
Here the “equal” and “opposite” relations are emproof building process. For example, for (7), the
bedded in a temporal “when” relation. In this caseystem creates two equivalent propositions about ac-
the sentence-level understanding module is not aeleration, each referring to different balls. In ad-
the best position to indicate the specific constraintition, both of these propositions are related to two



Student said: velocity of the pumpkin is decreasing man applies a force of 0 to the pumpkin

horizontal component of velocity of pumpkin is decreasing

horizontal component of the total force on pumpkin is 0 have impetus bug
(assume)

horizontal component of force of air on pumpkin is 0 horizontal component of force of man on pumpkin is 0
(given) (assume)

Figure 2: Example of Simplified Abductive Proof for “The pumpkin moves slower because the man is not
exerting a force on it.”

additional propositions about the force of gravity ap- Next Tacitus-lite+ proves that the total force on
plying to the same ball as in its related acceleratiothe pumpkin is zero by proving that the possible ad-
proposition. dend forces are zero. In the context of this problem,
] o _ itis a given that air resistance is negligible and so it
(7) The acceleration of both balls is increasinghifies with a fact for zero cost. Next it assumes that
due to the force of earth's gravity. the student believes the man is applying a horizontal

force of 0 to the pumpkin.
Finally, it still needs to prove another proposition

. , that was explicitly asserted by the student; that the
The propositions produced by applying the languagf, e of the man on the pumpkin is 0. As with the

axioms are the goals that are to be proven using,,cir it will try to prove this by proving that the
domain-level axioms. Figure 2 is an example of 8, onta| component of that force is zero. Since it
simplified abductive proof for sentence (8). has already assumed that this is true, the abductive

(8) The pumpkin moves slower because the mdyoof is fini§hed and 'ready to be fur_ther ang'lyzed

is not exerting a force on it. by the tutorial strategist module to give additional
feedback to the student.

Each level of downward arrows from the gloss of
a proposition in Figure 2 represents a domain af:3
iom that can be used to prove that proposition. On&e have also extended Tacitus-lite+ to run incre-
way to prove that the velocity of the pumpkin is dementally so that it can start processing before the
creasing is to prove that just the horizontal compastudent completes his essay. In this way it can take
nent of the velocity vector is the one that is decreasdvantage of the processing lull as the student com-
ing since the context of the question (see (1)) makpsses his essay. In simulations of various typing
this a likely interpretation. Alternatively, the sys-speeds, (Raset al., 2002) estimated that there is a
tem could request that the student be more preci66 second processing lull during the completion of a
by asking which components of the velocity vectosentence after subtractingta5 second average in-
are decreasing. cremental parsing cost. During this lull it can build

In the case of trying to prove that the horizonproofs using the previous sentences in the essay.
tal component is decreasing, Tacitus-lite+ is apply- To run Tacitus-lite+ incrementally, we added a
ing a bad physics axiom that is one manifestation d@finction that takes as input a proof queue and the
the impetus misconception; the student thinks thatreew goals that are to be proven and returns a new
force is necessary to maintain a constant velocity. broof queue. The discourse-level understanding
this case it assumes the student has this misconcemdule builds the input proof queue by finding the
tion but alternatively the system could try to gatheproofs in the most recent queue with which the new
more evidence that this is true by asking the studegobals are consistent and adding the new goals to a
diagnostic questions. copy of each of those proofs. We then modified

4.2 Applying Domain-level Axiomsto Build an
Explanatory Proof

Incrementally Processing an Essay



Tacitus-lite+ to take an arbitrary proof queue as iraxiom is part of the proof.
put. In addition to engaging students in a dialogue, the
The discourse-level understanding module storegstem can also give direct, constructive feedback on
and selects proof queues, which are returned lilye essays they are composing. When there are mul-
Tacitus-lite+ after it attempts to prove a sentencéiple interpretations, it is better to ask the student to
Suppose for example that each sentential input fisake certain things in the essay clearer. The tutorial
treated as a separate input to Tacitus-lite+ and thsttategist includes test patterns that target important
sentenceS;, has already been processed and yieldeatetails that students often leave out. For example,
proof queuel);.. As the next sentencs,, arrives, suppose the student says that the velocity is increas-
a copy of Q; is updated with proofs that includeing but this is only true for the vertical component
Sk+1 as new information to be proven. ButSf,,; of the velocity vector. It may then be important to
conflicts with every proof in the copy @, then an clarify which component of the velocity the student
earlier proof queue is tried. Similarly, if a studenhas in mind since thinking that the horizontal com-
modifies a previously processed sentence, the origienent is increasing indicates a misconception.
nal sentence is regarded as having been deleted. Thé is also possible that two propositions in an essay
inference process backs up to the point just befovll be contradictory. In this case the system points
the deleted sentence was processed and reprocessgshat there is a conflict, describes the conflict and
the substituted sentence and all that follows it. Thidirects the student to repair it.
mechanism for backing-up allows the inference pro- We expect to extend the tutorial strategist module
cess to be incremental. so that if there are multiple best proofs, it will ask
At the end of composing an essay, the student withe student questions that will help it disambiguate
in the best case have to wait the length of time thathich proof is most representative of the student’s
it takes to finish parsing the last sentence of the eistended meaning for the essay.
say plus the length of time that it takes to extend the
proof by one sentence. In the worst case, which & Preliminary Resultsand Future Plans

when he modifies the first sentence or inserts a new , .
first sentence, he will have to wait the same amouAtthough we've found that incremental understand-

of time as he would for non-incremental discoursend is successful at taking advantage of the pro-

level understanding. cessing lull during which the student composes his
essay, we still need to fine-tune it so as to mini-
5 Deriving Feedback for Students From mize both the need to back-up and how much under-

constrained searching it does (i.e. the more Tacitus-
lite+ has of the student’s explanation the more con-
To identify communicative goals the tutorial stratestrained the search is). Currently, Tacitus-lite+ runs
gist next analyzes the best proofs. Currently it exanafter every new sentence that is recognized by the
ines just one of the best proofs by applying a set 6entence-level understanding module. During each
test patterns to parts of the proof. It can test for con®f these runs Tacitus-lite+ continues until one of its
binations of patterns for givens (mainly to get bindrun-time thresholds is exceeded.

ings for variables in a pattern), for assumed proposi- We plan to also experiment with other ways of
tions, for propositions asserted in the student’s ességunding the run-time for Tacitus-lite+ during incre-
and for inferred propositions. In addition it can alsanental processing. For example, we might impose a
test for missing patterns in the proof and for particuspecific time-limit that is based on the expected 60
lar domain axioms to have been used. Each goal tiegtcond processing lull while the student composes
the system is capable of addressing is linked to sdtis next sentence.

of patterns that are expected to be indicative of it. In initial timing tests, using a set of 5 correct es-
In the case of the proof for (8), the tutorial strategistays that involved no backing up, the average incre-
identifies a dialogue goal that addresses the impeental processing time per sentence when we set the
tus misconception as being relevant since an impetssarch bound to 50 proofs and the assumption cost

Plausible Proofs



threshold to .0% is 21.22 seconds. The worst casd&References
time for extending a proof by one sentenge was S@ncent Aleven and Kenneth R. Koedinger. 2000. The
seconds and the best was 1 second. So in the besfeed for tutorial dialog to support self-explanation. In
case, which is when no previous sentences have beemuilding Dialogue System for Tutorial Applications,
modified, the student will wait on average 21.22 sec- Papersof the 2000 AAAI Fall Symposium.
onds after he completes the last sentence in his €s$a¥tent Aleven, Octav Popescu, and Kenneth R.
for a response from Why-Atlas. Koedinger. 2001. A tutorial dialogue system with
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utes for a reply from tr pleting Dialogue Systems.
essay. The wait time in the case of the human tu- .
tor is a combination of the time it takes to read anBouglas Appelt and Martha Pollack. 1992. Weighted ab-
analyze the student’s response and then compose ‘éCt'O” for plan ascriptionUser Modeling and User-

7 .. . . apted Interaction, 2(1 — 2):1 — 25.
reply.” Although the timings are inconclusive and

not directly comparable, it gives us an order of magzugene Charniak. 1986. A neat theory of marker pass-
nitude for tolerable wait times. ing. InProceedings of the 5th National Conference on

We will complete a 5 week formative evaluation Artificial Intelligence (AAAI"86), pages 584 — 588.

of the Why-Atlas system in which we will compareMichelene T. H. Chi, Nicholas de Leeuw, Mei-Hung
the learning gains of 24 students to other sets of Chiu, and Christian LaVancher. 1994. Eliciting self-
students in three other conditions; 1) a text control zgéa;‘g_tfsns_mgmves understandingognitive Sci-
2) human tutoring 3) another tutoring system that T '
uses statistical classification only. During these trMichelene T. H. Chi, Stephanie A. Siler, Heisawn Jeong,
als, we will log decisions and processing times for Takashi Yamauchi, and Robert G. Hausmann. 2001.
each module of the system. From these detailed Iogslégarn_mg from human tutoring. Cognitive Science,

. (4):471-533.
we will be able to better evaluate the speed and cor-

rectness of each system module. David Dowty. 1986. The effects of aspectual class on
the temporal structure of discourse: Semantics or prag-
Acknowledgments matics?Linguistics and Philosophy, 9(1).

This research was supported by MURI granIRevaFreedman, Carolyn Radvichael Ringenberg, and

. . Kurt VanLehn. 2000. ITS tools for natural language
N00014-00-1-0600 from ONR Cognitive Science dialogue: A domain-independent parser and planner.

and by NSF grant 9720359. We thank the entire |n Proceedings of the Intelligent Tutoring Systems
NLT team for their many contributions in creating Conference.

and bwldmg the Why Atlas system.' n p{jlmcu'arArthur C. Graesser, Peter Wiemer-Hastings, Katja
we thank Michael Ringenberg, Maxim Makatchev, \yiemer-Hastings, Derek Harter, Natalie Person, and
Uma Pappswamy and MichaeloBrier for their  the TRG. 2000. Using latent semantic analysis to
work with Tacitus-lite+ and the domain axioms and evaluate the contributions of students in autotutox.

Roy Wilson for his work with the sentence-level re- teractive Learning Environments, 8:129-148.

alization module. Richard R. Hake. 1998. Interactive-engagement versus
traditional methods: A six-thousand student survey of

" SAn assumoti tof1 thing i d and mechanics test data for introductory physics students.
n assumption Ccost 0 - means everyining Is assumed an American Journal of Physca 66(4):64—74.
a cost of 0 means that nothing was assumed.

7 . ) i
see the student input unil ihe student had finished compositg ™ HOBDS, Mark Stickel, Paul Martin, and Douglas Ed-
it. This was becaupse our - ; - b 9wards. 1988. Interpretation as abduction. Firoc.

. previous experiences with computer X "
mediated human tutoring have shown that some human tutors 26th Annual_Mee_tl ng of the ACL, Association of Com-
have a propensity for referring to something the student had Putational Linguistics, pages 95-103.
started to write and then deleted. Our goal was to try to collect .
interactions that would be closer to those we expected with ate!Ty Hobbs, Mark Stickel, Douglas Appelt, and Paul
intelligent tutoring system and was not primarily for comparing Martin. 1993. Interpretation as abductioArtificial
efficiency of a computer tutor to a human one. Intelligence, 63(1-2):69—-142.



Pamela W. Jordan, Maxim Makatchev, Michael RingenMark Stickel. 1988. A prolog-like inference system
berg, and Kurt VanLehn. 2002. Engineering the for computing minimum-cost abductive explanations
Tacitus-lite weighted abductive inference engine for in natural-language interpretation. Technical Report
use in the Why-Atlas qualitative physics tutoring sys- 451, SRI International, 333 Ravenswood Ave., Menlo
tem. Manuscript, University of Pittsburgh. Park, California.

Hans Kamp. 1993.From Discourse to Logic; Intro-  Richmond H. Thomason, Jerry Hobbs, and Johanna D.
duction to Modeltheoretic Semantics of Natural Lan- Moore. 1996. Communicative goals. In K. Jokinen,
guage, Formal Logic and Discourse Representation M. Maybury, M. Zock, and |. Zukerman, edito;o-
Theory. Kluwer Academic Publishers, Dordrecht Hol-  ceedings of the ECAI 96 Workshop Gaps and Bridges:
land. New Directions in Planning and Natural Language

Generation.
Thomas K. Landauer, Peter W. Foltz, and Darrell La-

ham. 1998. An introduction to latent semantic analyBonnie Webber. 1988. Tense as discourse anaphor.
sis. Discourse Processes, 25:259-284. Computational Linguistics, 14(2):61 — 71.

Alex Lascarides and Nicholas Asher. 1991. Discourse
relations and defeasible knowledge. 28th Annual
Meeting of the Association for Computational Linguis-
tics, pages 55 — 62.

Benoit Lavoie and Owen Rambow. 1997. A fast and
portable realizer for text generation systems.Pto-
ceedings of the Fifth Conference on Applied Natural
Language Processing Chapter of the Association for
Computational Linguistics, pages 265268, Washing-
ton, D.C.

Susan McRoy and Graeme Hirst. 1995. The repair
of speech act misunderstandings by abductive infer-
ence.Computational Linguistics, 21(4):435-478, De-
cember.

Barbara Partee. 1984. Nominal and temporal anaphora.
Linguistics and Philosophy, 7:243 — 286.

Manny Rayner and Hiyan Alshawi. 1992. Deriving
database queries from logical forms by abductive defi-
nition expansion. IriProceedings of the Third Confer-
ence of Applied Natural Language Processing, pages
1 -8, Trento, Italy.

Carolyn Rosg; Pamela Jordan, Michael Ringenberg,
Stephanie Siler, Kurt VanLehn, and Anders Weinstein.
2001. Interactive conceptual tutoring in atlas-andes.
In Proceedings of Al in Education 2001 Conference.

Carolyn P. Ros; Antonio Roque, Dumisizwe Bhembe,
and Kurt VanLehn. 2002. An efficient incremental ar-
chitecture for robust interpretation. Rroceedings of
Human Language Technology Conference, San Diego,
CA.

Carolyn P. Ros. 2000. A framework for robust seman-
tic interpretation. IrProceedings of the First Meeting
of the North American Chapter of the Association for
Computational Linguistics.

James D. Slotta, Michelene T.H. Chi, and Elana Jo-
ram. 1995. Assessing students’ misclassifications of
physics concepts: An ontological basis for conceptual
change Cognition and Instruction, 13(3):373-400.



