
113

5

Intelligent Tutoring Systems for
Continuous, Embedded Assessment

Kurt VanLehn
University of Pittsburgh

This chapter describes how intelligent tutoring systems (ITS) can be
used for assessment. It begins by describing intelligent tutoring sys-
tems and distinguishing them from an older, more widely available
technology. It argues that this newer technology has some intrinsic
benefits as a tool for assessment. It then describes a particular type of
assessment widely used in the ITS community. The assessment tech-
nique is based on a mathematically sound inference method, Bayes-
ian belief networks. The basic technique, an adaptation of Knowledge
Tracing (Corbett & Anderson, 1995), is described along with several
recent extensions.

An Introduction to Intelligent Tutoring Systems

There are many types of tutoring systems. The oldest and most com-
monly available technology has students enter the final answer to a
question or problem, and gives them feedback and hints based on the
answer (Dick & Carey, 1990). For instance, such a system might assign
an algebra word problem and expect the student to solve it on scratch
paper and enter a numerical answer. If the answer is correct, the sys-
tem says so; otherwise, it may give a hint. This kind of tutoring system
is often called computer-aided instruction (CAI), computer-based
training (CBT), or more recently, Web-based homework (WBH).

Perhaps the second largest category of tutoring system has stu-
dents enter steps leading up to the solution of a problem, and it can
give feedback and hints on those steps as well as on the final answer

kvanlehn
Typewritten Text

kvanlehn
Typewritten Text
VanLehn, K. (2008). Intelligent tutoring systems for continuous, embedded assessment. In C. Dwyer (Ed.) The future of assessment: Shaping teaching and learning. Mahwah, NJ: Erbaum. pp. 113-138

114 Kurt VanLehn

(VanLehn, 2006; Corbett, Koedinger, & Anderson, 1997; Rickel, 1989;
Shute & Psotka, 1996). For instance, after assigning an algebra word
problem, such a system would expect the student to enter a sequence
of lines, each consisting of a variable definition or an equation. That
is, the work that would otherwise be done on scratch paper is instead
done on the computer. The system can give the student feedback and
hints on the intermediate steps leading up to the final answer. These
systems are called intelligent tutoring systems (ITS).

Although the defining feature of this kind of ITS is that it gives
feedback and hints on steps as well as final answers, when it gives
feedback and hints varies. Some ITS (e.g., Mitrovic & Ohlsson, 1999)
delay giving feedback and hints on steps until the student has indi-
cated that the solution is complete; this allows the student to practice
finding his/her own errors and correcting them. However, many ITS
are intended for novices who are still struggling to find any solution
at all, so these systems (e.g., Anderson, Corbett, Koedinger, & Pel-
letier, 1995) give feedback on a step just as soon as it is entered; this
prevents long, unproductive trial-and-error searches. In short, the
distinguishing feature is not when the feedback and hints are given,
but whether the system addresses only the final answer or the inter-
mediate steps as well.

The term “ITS” encompasses systems that don’t easily fit the
description above, such as a tutoring system that converses with
a student in spoken natural language (e.g., Litman et al., in press).
However, the field does not yet have an accepted nomenclature for
distinguishing the various subtypes of intelligent tutoring systems,
so this chapter will use “ITS” to refer only to tutoring systems where
a student receives either immediate or delayed feedback and hints on
multiple steps that comprise a solution to a problem.

The term “step” will be used for the user interface entries that
students are expected to make. Steps can take many forms. For
illustration, consider a simulated laboratory task: determining if
a particular chemical solution changes its acidity as it is heated.
The student’s steps might be to (1) get a clean test tube from the
(simulated) storage cabinet, (2) decant some of the solution into it,
(3) heat it to a specific temperature, (4) measure its acidity (pH),
(5) create a blank line graph, (6) label the x-axis “temperature,”
(7) label the y-axis “acidity,” (8) plot a point on the graph, (9) heat
the solution some more, (10) plot a second point on the graph,
and (11) enter “true” as the final answer. Each of these 11 user

 Intelligent Tutoring Systems for Continuous, Embedded Assessment 115

interface gestures is a step. Let us suppose that the tutoring system
is a delayed feedback system, so as soon as the student has entered
“true,” it gives feedback by suggesting that more than two data
points are needed for reliability, and that “pH” would be a more
accurate label for the y-axis than “acidity.” Thus, its feedback and
hints are at the level of steps.

For most ITS, the user interface is designed so that steps are
entered frequently. That is, the student only has to think for a few
seconds or perhaps a minute at most to decide how to do the next
step. If a step is so complex that it tempts the student to use scratch
paper, then the ITS designers might redesign the user interface to
break down that step into substeps. However, the size of steps is
an ITS design variable just like immediate/delayed feedback. More
competent students should probably be given a user interface that
requires larger, more complex steps, whereas novices probably learn
best from a user interface with frequent, small, simple steps (Greer
& McCalla, 1989).

Based on studies of human tutors (Douglas, 1991; Fox, 1993; Hume,
Michael, Rovick, & Evens, 1996; Lepper, Woolverton, Mumme, &
Gurtner, 1993; McArthur, Stasz, & Zmuidzinas, 1990; Merrill, Rei-
ser, Ranney, & Trafton, 1992; VanLehn, Siler, Murray, Yamauchi,
& Baggett, 2003; Wood & Middleton, 1975), ITS give feedback and
hints in sequences of increasing specificity. Suppose a student enters
an incorrect step into a tutoring system that gives feedback and
hints immediately. The minimal-information feedback is simply to
say, “that’s incorrect.” Systems often do this by turning the step red
or beeping. This minimal-information response comprises the first
“hint” in the system’s sequence. If the student either asks for a hint
or makes a second incorrect attempt at the step, the system gives
the next hint in the sequence, which is usually designed to jog the
student’s memory or to point out some critical feature of the prob-
lem that the student may have overlooked. If the student again asks
for a hint or enters the step incorrectly, the system gives the third
hint in the sequence, which reveals further information. This con-
tinues until the student either enters the step correctly or the system
reaches the last hint in its sequence. The last hint, which is called the
“bottom out hint,” tells the student exactly what to enter. Although
most ITS use hint sequences exclusively, some use even more com-
plicated hint dialogues for some steps (e.g., VanLehn, Lynch, Schultz,
et al., 2005).

116 Kurt VanLehn

Some basic concepts of ITS have been introduced: A task is solved
by entering many steps leading up to a final answer. The student can
get feedback and hints on individual steps either immediately or
delayed until they have submitted their final answer. The feedback
and hints are often given in a hint sequence that ends with a bottom-
out hint.

An Illustrative ITS

In order to illustrate these concepts in an integrated fashion, let
us use a college physics tutoring system, Andes (VanLehn, Lynch,
Schultz, et al., 2005). Andes is in regular use at the U.S. Naval Acad-
emy (USNA). It is used by students in their dorm rooms to help them
do their assigned homework. When Andes was adopted, all the other
instructional activities in the course were almost entirely unaffected.
In particular, the instructors continued to use the same textbooks,
lectures, labs, and exams.

Indeed, the USNA course is taught by a team of instructors, and
only some of them have adopted Andes. The other instructors’ stu-
dents still do homework on paper. This has allowed us to compare
students who do homework on Andes with those who do homework
on paper while holding all other instructional activities constant.
The Andes students learned significantly more (effect size, .61).

Figure 5.1 shows the Andes screen, which is divided into four
windows. (1) The upper left window shows the homework problem,
which is often illustrated with a picture. A box for entering the final
answer is also displayed. Below the picture is some white space in
which the student can draw diagrams. In this case, the student has
drawn a diagram with a body (the dot), a Cartesian coordinate sys-
tem (tilted slightly), a vector pointing downward representing the
weight force Fw on the car, and a vector pointing leftward represent-
ing the displacement d of the car. (2) The upper right window lists
the variables the student has defined so far. Most were defined as
side effects of drawing vectors, etc. (3) The lower right window is a
list of equations that the student has defined so far. (4) The lower left
window is for hint dialogues between the tutoring system (“T:…”)
and the student (“S:…”).

There are several different kinds of steps. Entering an equation is
a step, and it consists of clicking in a box in the lower right window,

 Intelligent Tutoring Systems for Continuous, Embedded Assessment 117

typing the equation, and pressing the Enter key. Defining a scalar
variable is a step, and it is done by pulling down a menu, selecting
the type of variable, and filling out a dialogue box that defines the
variable precisely and names it. Drawing a vector is a step, and it
is done by clicking on the vertical menu bar on the left side of the
screen, dragging out a vector, then filling out a dialogue box to com-
plete a precise definition of the vector. There are several other kinds
of steps as well.

Whenever the student enters a step, it turns green if it is correct
and red if incorrect. In the figure, only one equation is incorrect;
all the other steps are correct. Andes will give hints only if asked,
and students ask for a hint by clicking on a button in the top menu
bar. In most cases, Andes uses a hint sequence. On a few especially
important cases, it uses a more complex hint dialogue, wherein it
asks the students a question and provides menus for answering it. A
fragment of such a hint dialogue is shown in the lower left window
of the figure.

Why Use an ITS for Assessment?

There are several reasons for using ITS for assessment. This section lists
them, dividing them into those that flow from the intrinsic operation
of ITS, and those that arise from their routine use in instruction.

Figure 5.1 User interface of the Andes physics tutoring system.

kurtv
Cross-Out

kurtv
Replacement Text
e

118 Kurt VanLehn

Benefits Due to the Multistep Nature of ITS

First, an ITS allows somewhat more authentic tasks to be used for
assessment, and that may increase the validity of the assessment.
Conventional assessment methods are like CAI tutoring systems in
that they judge the student’s work based only on the final answer. In
order to get enough data on a student during a testing session, tasks
need to be simple enough that many of them can be solved in an
hour. An ITS gathers data on intermediate steps as well as the final
answer, so it can get just as much data on a student by assigning just
one or two tasks to be completed in an hour. It is often thought that
short, simple tasks are not as authentic as complex ones, and that
this harms their validity. Granted, a single student working with a
computer for an hour or so may not be as authentic as a multi-person
team working on a project over a semester, but moving from a 30-
second task to a 30-minute task is at least a step toward authenticity
and increased validity.

Second, an ITS can provide strategic and meta-cognitive assess-
ments. Because an ITS monitors the steps leading up to a solution, an
ITS can observe a student’s problem-solving strategy, which is dif-
ficult or impossible to observe when only the final answer is entered.
If the ITS includes reference information, such as a glossary, worked
example problems, principles, or even the textbook itself, then it can
monitor the student’s use of this information as the student solves
problems. This can reveal the student’s meta-cognitive strategies for
learning. Even the student’s use of the ITS’s hints can reveal their
meta-cognitive strategies (Aleven & Koedinger, 2000). This allows
an assessment to measure not only what a student knows, but how
they use it and how they learn it.

Third, the consequential validity (Messick, 1994) of using an ITS
for assessment is probably positive. It has been argued that conven-
tional assessments based on final answers to many relatively short,
inauthentic problems have caused students and instructors to focus
too much on becoming proficient in this kind of problem solving.
That is, the societal consequences of the assessment are negative. On
the other hand, when students and instructors adapt their instruc-
tion in order to raise ITS scores, they are probably improving the
student’s meta-cognitive and problem-solving strategies. Thus, the
consequential validity of an ITS assessment is probably more posi-
tive than that of conventional assessment.

 Intelligent Tutoring Systems for Continuous, Embedded Assessment 119

Benefits of Embedded Assessment

With a few exceptions, ITS have not been used to take over or replace
classroom instruction. As mentioned earlier, the Andes physics
tutoring system (VanLehn et al., 2005) only helps students do their
homework; all other instructional activities are carried out by the
instructors as usual. As another example, Carnegie Learning’s popu-
lar Cognitive Algebra Tutor (www.carnegielearning.com) is used by
high school students 2 days a week in computer labs; the other 3 days
are regular algebra classes.

Let us assume that our assessment ITS is used only to coach stu-
dents as they solve complex tasks, and that the course contains many
other instructional activities besides problem solving. To put it in
a slightly old fashioned way, we are assuming that the ITS grades
students’ homework and seatwork. This saves the instructor a great
deal of time and effort, but can it really change classroom practices
very much?

Unlike a human grader, the ITS is objective, indefatigable, and
completely reliable. It is reliable in the sense that given the same log of
student actions (i.e., all user interface events, in chronological order,
with the same pauses), it will generate exactly the same assessment.1

Moreover, the assessment can be standardized, in that the same
measures can be used in all classes. The assessment can be nation-
ally or internationally normed. Norming is particularly easy because
the ITS is viable as an instructional tool, which allows one to collect
calibration data on student behavior over extended periods of time
from many sites prior to releasing it as a normed assessment tool.
Lastly, the ITS can send its assessments over a secure connection
to an impartial judge, such as a testing company, as well as to the
instructor and/or student. These are some of the same benefits that
standardized testing achieves.

At first glance, it might appear that using an ITS for high-stakes
assessment would require the same kind of authentication used at
testing centers. When an ITS is used for homework or seatwork, the
ITS cannot really tell who is at the keyboard. A student could log in
and then have a friend sit down and solve the problems. However,
even if an ITS is used for high-stakes decision making, it would be
used to gather data over a whole year or semester. Only rarely would
someone be willing to do a whole year of homework and/or seatwork
for their friend and not get caught.

120 Kurt VanLehn

A much more important issue is that conventional testing is usu-
ally sequestered problem solving (Bransford & Schwartz, 1999), but
ITS problem solving is not. That is, conventional testing is done in a
situation where students cannot receive help, do not receive feedback
on their answers, and in general are prevented from learning. How-
ever, an ITS has exactly the opposite goal—it tries to get students
to learn. As will be described in the subsequent section, algorithms
have been developed that can track students’ evolving competence
even when the tutoring system is giving them hints and helping them
learn. However, the ITS cannot detect when the student is receiving
help from a human. Clearly, we do not want to prevent ITS students
from obtaining help from instructors, friends, and family whenever
they need it. Thus, we need to know how often such help is likely to
occur and how much impact it might have on the accuracy of the ITS
assessment. Let us consider seatwork first, then homework.

Ethnographic studies of the Cognitive Tutors indicate that even
though students doing seatwork get most of their help from the
tutoring system, they still ask for help from the instructor (Schofield,
1995). However, the instructors and students report that their con-
versations are often mathematically deeper than they were before the
tutoring system was adopted. The tutoring system takes care of the
simple help requests, leaving the instructor to deal with the complex
ones. Both instructors and students prefer this mode of interaction.

When an ITS is used for homework, it is harder to conduct the
appropriate ethnographic studies to determine how it is really used,
but it appears that ITS homework is like ITS seatwork in that the ITS
deepens human help but does not eliminate it. The Andes instructors
still get many visits from students during office hours, and we can
draw a few inferences from their experiences (D. Treacy, personal
communication, 2000–2005). The instructors report that Andes
makes it much easier for them to diagnose the student’s difficulties.
When a student reports having trouble with a particular homework
problem, the instructor downloads the student’s (partial) solution
from a server. If the partial solution doesn’t immediately identify the
student’s difficulty, the instructor can replay the log data in order to
find out what kinds of mistakes were made and erased, what kind
of hints were given by Andes, etc. The instructor can also examine
Andes’s analysis of the student’s work. For diagnosing the student’s
misconceptions, these new sources of data seem much more effective
than the student’s self-reports.

 Intelligent Tutoring Systems for Continuous, Embedded Assessment 121

Although more ethnographic studies are clearly needed, it appears
that doing seatwork and homework with an ITS deepens human help
but certainly does not eliminate it. Thus, an issue for future research,
which can probably only be addressed by field studies, is determin-
ing if the existing ITS assessment algorithms gracefully accept sharp
changes in competence due to human help.

Assuming that the existing assessment algorithms suffice (or that
new ones do), we have a mode of assessment that does not require
sequestered problem solving. Students are expected and encouraged
to learn as they are being assessed, and they are working on complex,
more authentic problems. Moreover, the assessments can be stan-
dardized, normed, and secured just like conventional tests are now.
This suggests that standardized tests may be superfluous if an ITS is
used to grade seatwork and homework. If so, then a major advantage
of ITS assessment is that it would eliminate sequestered testing.

Elimination of sequestered, standardized testing in favor of continu-
ous, embedded assessment could bring several practical advantages.

It would free up the time currently used on taking tests that are
deliberately designed to prevent learning during the test.
Students could not be absent on the day of the test, because with
ITS assessment, almost every day is a “test day.”
Students’ assessed performance would not be atypically higher or
lower than their “ordinary” performance, because the ITS mea-
sures their ordinary performance. It would no longer make sense
to say that a student “doesn’t test well” or “is good at tests, but
nothing else.”
Test anxiety would disappear (or be indistinguishable from gen-
eral anxiety).
Cramming for the test no longer makes sense.
Instead of measuring students’ competence a few times a year,
instructors could track students’ knowledge growth continuously.
For instance, if the instructor wants to create pairs comprised
of a knowledgeable student and less knowledgeable student for
tomorrow’s discussions, the instructor can read the student’s cur-
rent state of knowledge today. The instructor can also detect more
rapidly those students who are falling behind and those that are
not sufficiently challenged.

However, before deciding to eliminate conventional testing, it needs
to be repeated that an ITS measures performance during only part of
the student’s instructional activities. Students may also participate in

•

•

•

•

•
•

122 Kurt VanLehn

class discussions, engage in group projects, write essays, or give pre-
sentations. The assessment derived from an ITS should be combined
with other measures in order to get a complete and well-rounded
picture of the student’s evolving strengths and weaknesses.

Bayesian Assessment of Knowledge Component Mastery

Having described ITS and their potential benefits as assessments,
this section defines a particular kind of assessment, reflected in the
section’s title, and argues for its utility. In order to define this kind of
assessment, a few technical terms need to be introduced.

The first technical term is “knowledge component,” which has its
roots deep in the history of ITS and artificial intelligence (AI) more
generally. After a few decades of working with relatively general rea-
soning methods, AI researchers realized that effective problem solving
requires large quantities of domain-specific knowledge. Knowledge
was represented in various notations, including production rules,
frames, Prolog clauses, and so on. The knowledge was operational,
in that it was specific enough to be used to solve problems. It was
also represented in many small pieces, such as rules, frames, etc. The
term knowledge component has emerged as a notation-neutral term
for a small piece of operational domain knowledge.

When used in the context of an ITS, knowledge component
denotes a small piece of domain knowledge that the student should
learn. For instance, in late 2005, Andes contained 308 knowledge
components and covered about 75% of the AP Physics B curricu-
lum. A typical textbook for that curriculum has about 35 chapters,
so this works out to about 12 knowledge components per chapter.
Most of the knowledge components are well-known principles, such
as Newton’s second law or Ohm’s law. However, some knowledge
components are needed for reasoning but do not have names. For
instance, in electrical circuits, there is a knowledge component that
says that the current through a switch is zero if the switch is open,
and the voltage drop across a switch is zero if the switch is closed.
This knowledge component is mentioned in the textbook, but is not
treated as a “named” principle like Ohm’s law.

The second technical term that needs to be defined is the set of knowl-
edge components that are relevant to a step. Suppose a student is solving
a problem and takes a correct step. The knowledge components relevant

 Intelligent Tutoring Systems for Continuous, Embedded Assessment 123

to the step are those that an ideally competent student would need to
apply in order to generate that step in that context. For instance, suppose
a physics problem is partially solved, as in Figure 5.1, and the student
draws a zero-length vector representing the car’s initial velocity. There is
just one relevant knowledge component: “If an object is at rest at a certain
time, then its instantaneous velocity at that time is zero.” When an ITS
is intended to be used by novice learners, then the number of relevant
knowledge components per step is usually small—under five, typically,
and often just one. When the ITS is intended for use by more compe-
tent students, then the number of relevant knowledge components per
step is often somewhat larger—perhaps five or 10. As mentioned earlier,
the average step size is an important ITS design parameter, similar to
immediate vs. delayed feedback.

The third technical term that needs definition is “step attempt his-
tory.” Because the ITS can give feedback and hints on steps, students
sometimes make several attempts before successfully entering a step.
In the earlier illustration of a simulated chemistry lab, instead of
simply labeling the x-axis with “temperature,” the following events
might occur:

 1. The student labels the x-axis “acidity.”
 2. The system’s speech generator says, “OK, but I wouldn’t choose

axes that way.”
 3. The student clicks on the Hint button.
 4. The system’s speech generator says, “The question asks whether

acidity varies as temperature is varied. So temperature is the
independent variable.”

 5. The student clicks on the Hint button again.
 6. The system says, “It is conventional to put the independent vari-

able on the x-axis, so I would advise putting ‘temperature’ on the
x-axis and ‘acidity’ on the y-axis.”

 7. The student enters “temperature” as the x-axis label.

In other words, it took seven user interface events to get this step
entered correctly. When tutoring systems are used for assessment, it
matters whether a step was entered correctly on the first try or only
after receiving several hints. For future reference, let us use “step
attempt history” to refer to the sequence of user interface events
leading up to the student’s final entry of the step.2

The last technical term that needs definition is mastery of a knowl-
edge component. ITS assessment was often developed with mastery

124 Kurt VanLehn

learning in mind, and some ITS actually do implement mastery
learning (Bloom, 1984). That is, they choose the tasks that the student
should do, and they keep assigning tasks from an instructional unit
until the student has mastered all the unit’s knowledge components.
However, mastery learning causes students to proceed at different
paces. After a few weeks, some students may be in chapter 10 while
others are still struggling with chapter 3. Thus, instructors often
turn mastery learning off, and assign all students the same tasks.
Nonetheless, the concept “mastery of a knowledge component” has
been retained and is the last of our technical terms.

The concept is actually quite subtle. Intuitively, mastery means
that the knowledge component is known so well that the instructor
and ITS no longer need to focus on teaching it. However, this intuitive
definition refers to instructional policy (how the mastery judgment
is used) rather than the evidence used to define or infer mastery. As
evidence of mastery, one intuitively expects the following:

The knowledge component is always applied in situations where it
should be applied.
The knowledge component is never applied in situations where it
should not be applied.
When the knowledge component is applied, the application is
done rapidly and without reference to external representations of
the knowledge component (e.g., textbook, friend).
The student can explain the knowledge component in general
terms, and can explain why a particular application (or non-appli-
cation) was justified.

Even an ITS doesn’t have enough information to assess all these
characteristics, so it must estimate mastery from the information
that it has. Thus, an ITS should calculate only a probability of mas-
tery—given the evidence observed by the ITS, what are the chances
that this student has mastered this knowledge component?

It makes sense to adopt a Bayesian approach to assessment of mastery
of knowledge components. Many courses build on prior knowledge, so
some of the knowledge components used in the course may be mastered
by students before they take the course. Of course, the ITS cannot just
assume that all students will have mastered all the prerequisites. Some
students must learn the prerequisites as they learn everything else. Thus,
the ITS must estimate mastery of the prerequisite knowledge compo-
nents along with the others. Its estimates can converge more rapidly on

•

•

•

•

 Intelligent Tutoring Systems for Continuous, Embedded Assessment 125

accurate values if it assumes a fairly high prior probability of mastery for
prerequisite knowledge components, and a fairly low prior probability
of mastery for knowledge components that are rarely taught in preced-
ing courses. If it has information about a specific student’s background
(e.g., courses taken), then the student’s prior probabilities can perhaps be
made more accurate.

At this point, the assessment problem can be stated: Given a set
of knowledge components, each with a prior probability of mastery,
and given the step attempt history for each step taken by the student
while solving a sequence of tasks, calculate the posterior probability
of mastery—that is, the probability of mastery of each knowledge
component after all the tasks have been completed.

This is clearly not the only kind of assessment that could be com-
puted by an ITS, and it might not even be the most useful one, espe-
cially for human decision makers. However, it can be used to calculate
several useful kinds of assessments. Some examples follow.

Suppose an instructor wishes to see a single number that represents “how
well the student is doing.” Such an assessment can be calculated by simply
counting the number of knowledge components that have mastery prob-
abilities greater than .90 (or whatever threshold the instructor chooses).

Suppose an instructor wishes to see what concepts in the current
chapter are difficult for students to learn. A nice display would be a bar
chart with the chapter’s knowledge components on the x-axis, the height
of the bars corresponding to the probability of mastery of the component
averaged across students in the class, and error whiskers showing the
standard error of the mean. Low bars or bars with large whiskers indicate
concepts causing students difficulty.

Suppose an instructor (or a student) wants to predict how well the stu-
dent would do on a certain standardized test (AP Physics B, in the case of
Andes). Moreover, suppose the test items have been analyzed in order to
determine, for each test item, which knowledge components are relevant.
Given the student’s posterior probability of mastery of each knowledge
component, one can calculate for each test item the probability of a cor-
rect answer. This predicts not only the score on the test, but the pattern of
correct and incorrect answers. This method has also been used to test the
validity of ITS assessments described below (e.g., Corbett, McLaughlin,
& Scarpinatto, 2000; VanLehn & Martin, 1998).

A Synthesis of Bayesian Assessments

This section frames the assessment problem as construction and
evaluation of a Bayesian network (Russell & Norvig, 2003). Several
existing techniques are special cases of this framework, including one

126 Kurt VanLehn

of the earliest and arguably the most widely used methods, Knowl-
edge Tracing (Corbett & Anderson, 1995), which is described first.
Next, several extensions that overcome the limitations of Knowledge
Tracing are described. These extensions synthesize several recent
approaches to Bayesian assessment. The resulting system is one view
of the “state of the art” in Bayesian assessment.

A Generic Dynamic Bayesian Network Assessor

The assessment problem can be formulated as follows: Given (1) a set
of knowledge components each with a prior probability of mastery,
and (2) a chronological sequence of M steps along with the student’s
step attempt history for each, calculate (3) the posterior probabilities
of mastery for each of the knowledge components. Put more simply,
the assessment problem consists of updating a set of mastery prob-
abilities based on the student’s solution process, as revealed in their
step attempt histories.

Suppose, for instance, that the problem is so simple that it can be
solved in just two steps. If the student did one step successfully on
the first attempt but had to be given a bottom-out hint on the other,
then some probabilities of mastery would rise (for knowledge com-
ponents relevant to only the successful step) and some probabilities
would fall (for knowledge components relevant to only the unsuc-
cessful step).

A Bayesian network is built from nodes and directed links, where
the nodes represent random variables and the links represent condi-
tional dependencies among them. Let us use nodes to represent the
mastery of knowledge components, and let each node have two val-
ues: mastered or not. A knowledge component’s mastery can change
over time, so we need to use two subscripts to denote a particular
mastery: Let P(Kij) denote the probability of mastery of knowledge
component i just after step j. Let Ki0 denote the prior probability of
mastery of the knowledge component i before any steps have been
done. If we have N knowledge components and the student’s solution
comprised M steps, then we need N(M + 1) nodes.

We also need a random variable for each step in order to represent
how the student accomplished the step. Thus, if there are M steps in
the student’s solution of the problem, then we need M step nodes.
Now we have a representational choice to make. We cannot feasibly

 Intelligent Tutoring Systems for Continuous, Embedded Assessment 127

represent all possible step attempt histories; there are just too many
of them. Thus, the common practice is to define just a few categories
of step attempt histories, such as (a) entered a correct step on the
first try; (b) entered a correct step after seeing the bottom-out hint;
(c) all other step attempt histories. With this classification, each step
node would have three values. Another popular representation is the
binary classification: (a) entered a correct step on the first try; (b) all
other step attempt histories.

Next we need assumptions about conditional independence. This
establishes the links among the nodes in the Bayesian network. Let
us start with the links shown in Figure 5.2. This network topology
makes two rather plausible assumptions.

 1. The step attempt history depends only on the state of the student’s
knowledge just prior to the step. Thus, the links into a step node
(e.g., S2) come only from a subset of the knowledge nodes, namely,
those representing the knowledge components’ mastery just before
the step (e.g., K11, K21, K31, …).

 2. Student knowledge just after a step is determined by their
knowledge just before the step and what happened during the
step, such as whether they got hints on that step. Thus, the links
into a knowledge component node come from the immediately
preceding step and from the node representing its mastery just
before the step.

The usual way to update a Bayesian network is to clamp the values
of the nodes that are observable, update the network, and read out
the posterior probabilities on the nodes of interest. In this case, the
step attempt histories are observable, so we clamp each of the M step

K10

K20

K30

K11

K21

K31

K12

K22

K32

S1 S2

Figure 5.2 A generic approach to assessment, represented as a Bayesian
network.

128 Kurt VanLehn

node values (e.g., on S1, clamp the value to “Correct on first attempt”;
on S2, clamp the value to “Saw bottom-out hint”; etc.). The network
is updated, and we read out the posterior probability of mastery on
the nodes on the right end, namely, K1M, K2M, K3M, etc.

However, this network would be so large that the computation
required to update this network may be intractable. Thus, we use
dynamic Bayesian networks (Russell & Norvig, 2003). The key idea is
to divide the network into time slices, as shown in Figure 5.3. A time
slice consists of a step and the knowledge component nodes just before
and after it. Slices are updated in chronological order. After a slice has
been updated, the posterior probabilities on the poststep knowledge
component nodes (which represent only the marginal probabilities of
those random variables) are copied to the next time slice, where they
become the prior probabilities on the prestep knowledge component
nodes. In Figure 5.3, the posterior probabilities of K11, K21, K31,…
become the prior probabilities of k11, k21, k31,…. This method means
that only relatively small networks need to be updated. It is somewhat
inaccurate, however, because it loses probabilistic dependences among
nodes. Dynamic Bayesian networks are used in many applications,
and seem to perform well despite their inaccuracies.

Knowledge Tracing

A widely used method of assessment, called Knowledge Tracing
(Corbett & Anderson, 1995), is a special case of the generic network
discussed in the preceding section (Reye, 2004). It makes several
simplifying assumptions that result in networks such as the one
shown in Figure 5.4.

K10

K20

K30

S1 S2

K11

K21

K31

k11

k21

k31

K12

K22

K32

Figure 5.3 Two slices from a generic dynamic Bayesian network for
assessment.

 Intelligent Tutoring Systems for Continuous, Embedded Assessment 129

First, Knowledge Tracing assumes that each step depends on
applying only one knowledge component. That is, the set of knowl-
edge components relevant to a step (as defined in a preceding sec-
tion) is always a singleton set. To represent this in the network, every
step node has just one link coming into it, namely, a link from the
one and only knowledge component that should be applied when
making that step. In Figure 5.4, step 1 depends only on knowledge
component 3, and step 2 depends only on knowledge component 2.

Second, it is assumed that what happens during a step impacts
the mastery of only the relevant knowledge component. Thus, there
is only one link leaving each node, and it goes to the relevant knowl-
edge component in the time slice just after the step.

Every node in a Bayesian network has a conditional probability
table that represents how the value of that node depends on the val-
ues of the parent nodes. (When a link comes into a node, the node
on the other end of the link is called a “parent node.”) In knowledge
tracing, these conditional probability tables are particularly simple.

For the step nodes, the conditional probability table is shown in
Figure 5.5. Knowledge tracing uses a binary categorization of step
attempt histories: either the student entered the step correctly on the
first try or not. Thus, the P(correct) row represents the probability
of a correct response on the first
attempt, and the P(other) row
represents the probability of any
other kind of step attempt his-
tory. The columns refer to the
values of the parent, which is a
knowledge component node. In
the “Yes” column, the value .92
represents that if the knowledge

K10

K20

K30

K11

K21

K31

k11

k21

k31

K12

K22

K32

S2S1

Figure 5.4 Knowledge tracing: Two slices from a dynamic Bayesian network.

Mastered?

P(correct)

P(other)

Yes No

0.92

0.08

0.10

0.90

Figure 5.5 Conditional probabil-
ity table for a step node in Knowl-
edge Tracing.

130 Kurt VanLehn

component is mastered, there is a
high probability that the step will
be answered correctly, but there
is a small probability (.08; called
the “slip parameter”) that the
student will answer incorrectly
even though the knowledge is
mastered. In the “No” column,
the value .10 (called the “guess
parameter”) represents that there
is a small chance of getting the
step right on the first try even if the relevant knowledge component
is not mastered, and a large chance (.90) that the step attempt history
will include errors, hints, etc. The columns must each sum to 1.0, so
this table only has two degrees of freedom: the slip parameter and
the guess parameter. Different step nodes can have different values
for these parameters.

Some knowledge components are not relevant to the preceding
step, so they have only one link coming into them, as shown earlier
in Figure 5.4. Knowledge Tracing assumes that such a knowledge
component’s probability of mastery is unaffected by the student’s step
attempt history. Thus, all knowledge component nodes with just one
parent have the conditional probability table shown in Figure 5.6.

The other knowledge components have two links coming into
them, from the preceding step and from an earlier knowledge com-
ponent node. This represents the fact that their new probability of
mastery depends on both the step attempt history and their old prob-
ability of mastery. For such nodes, the conditional probability table is
shown in Figure 5.7. The top row represents the impact of the knowl-

Mastered?

P(mastered)

P(not mastered)

Yes No

1.00 0

0 1.00

Figure 5.6 Conditional proba-
bilities for a knowledge component
node with one parent.

Was mastered? Yes No

Step response

P(mastered)

P(not mastered)

Correct Other Correct Other

1.00 1.00 0.56 0.56

0 0 0.64 0.64

Figure 5.7 Conditional probabilities for a knowledge component node
with two parents.

 Intelligent Tutoring Systems for Continuous, Embedded Assessment 131

edge component’s prior mastery.
The next row represents what
happened during the preceding
step. The bottom two rows repre-
sent the probability of this nodes’
mastery given the various com-
binations of the parent node val-
ues. The numbers say that if the
knowledge component was mas-

tered, then it certainly (probability 1.0) will still be mastered. On the
other hand, if the knowledge component was not mastered, then there
is a moderate chance (.56) that it will become mastered regardless of
what happened during the step. (As discussed later, this assumption of
Knowledge Tracing was modified in subsequent work.) There is only
one degree of freedom in this table, namely, the probability that an
unmastered knowledge component will become mastered given that
the step occurred. This is called the “acquisition parameter” and has
the value .56 in Figure 5.7. The acquisition parameter can be different
for different knowledge components.

The leftmost knowledge component nodes (Ki0) have no incom-
ing links. Their conditional probability tables represent the prior
probability of mastery of the knowledge component. For instance,
the table in Figure 5.8 indicates that this knowledge component has
a prior probability of .21 of being mastered.

For each knowledge component, we need four numbers: the
guess parameter, the slip parameter, the acquisition parameter,
and the prior probability of mastery.3 Thus, calibration of the
model requires estimating 4(N) values. This can be done given
enough student data. Corbett and Anderson (1995) used a gradi-
ent descent algorithm to calibrate their networks from student
data, but it appears that Expectation Maximization does an even
better job (Chang et al., 2006).

Extensions to Knowledge Tracing

Several projects have explored extensions to Knowledge Tracing that
relax some of its less plausible assumptions. This section discusses
their basic ideas, but recasts them in terms of the generic dynamic
Bayesian network.

P(mastered)

P(not mastered)

0.21

0.79

Figure 5.8 Conditional proba-
bilities for a knowledge component
node with no parents.

132 Kurt VanLehn

The Knowledge Tracing approach ignores considerable informa-
tion when it categorizes step attempt histories as either correct or
other. Intuitively, one would expect a student who makes an error
and corrects it with just a mild hint to have a higher probability of
mastery than one who makes errors after every hint and only suc-
ceeds after seeing the bottom-out hint. Shute (1995) developed
an assessment technique that used a larger number of categories.
Although it was not compared directly with Knowledge Tracing, its
accuracy at predicting posttest scores was quite high. The basic idea
of this approach can be easily represented in our dynamic Bayes-
ian network by using multiple categories of step attempt histories
instead of the two categories used by Knowledge Tracing. This adds
extra rows to the conditional probability tables of the step nodes and
extra columns to the conditional probability tables of the knowledge
nodes that have multiple incoming links.

It also makes sense to assume that what happens during a step
may partially determine whether an unmastered knowledge compo-
nent becomes mastered. For instance, if a student zooms all the way
down to the bottom-out hint without bothering to read the inter-
vening hints, then it seems unlikely that the student will learn the
relevant knowledge component. This particular step attempt history
is often called help abuse (Aleven & Koedinger, 2000; Aleven, Stahl,
Schworm, Fischer, & Wallace, 2003). We can represent this by includ-
ing help abuse as a step attempt history category, and modifying the
relevant knowledge component nodes’ conditional probability tables
as shown in Figure 5.9. This table assumes that step attempt histories
are categorized three ways: correct on the first attempt, help abuse,
and other. It assumes that if the knowledge component was not mas-
tered before and help abuse occurs, then the knowledge component

Was mastered?

Step response

P(mastered)

P(not mastered)

Yes No

Correct Help
abuse

Other Correct Help
abuse

Other

1.00 1.00 1.00 0.56 0 0.56

0 0 0 0.64 1.00 0.64

Figure 5.9 Conditional probabilities for a two-parent knowledge com-
ponent node when step attempt histories have three categories.

 Intelligent Tutoring Systems for Continuous, Embedded Assessment 133

stays unmastered. Otherwise, it makes the same assumptions as
Knowledge Tracing. The point here is only that the formalism allows
one to easily represent step → mastery causation that has been uncov-
ered from observation, theory, or intuition.

In the first version of the Andes tutoring system (Conati, Gertner,
& VanLehn, 2002), a Bayesian network was used for assessment in a
way that extended knowledge tracing. Whereas Knowledge Tracing
assumes that there is one and only one knowledge component rele-
vant to each step, this assumption was unwarranted in Andes. Some
of the steps in Andes required a student to apply several knowledge
components. This can be easily represented by extending the net-
work as shown in Figure 5.10, which shows that knowledge compo-
nents 1 and 2 are relevant to step 1, whereas knowledge components
1 and 3 are relevant to step 2.

As part of a decision theoretic tutoring system (Murray, VanLehn,
& Mostow, 2004), Murray added nodes that represented meta-cog-
nitive strategies and motivation. In particular, observation of stu-
dents using tutoring systems suggests that some students exhibit a
help abuse pattern at every opportunity, whereas others rarely do
so (Aleven & Koedinger, 2000). This may be related to a well-known
motivation variable (Dweck, 1986), which is whether students are
trying to learn the domain (a learning orientation) or merely to get
their problems solved correctly and quickly (a performance orienta-
tion). Such predilections can be represented by adding a set of nodes
to the dynamic network, which we might call M0, M1, M2,… as at the
top of Figure 5.11. These nodes might have two values: learning-ori-
entation and performance-orientation. They are linked to the steps
because the students’ motivation may affect how they respond at
the step, e.g., whether they will display the help abuse pattern. On

K10

K20

K30

K11 k11

K21 k21

K31 k31

K12

K22

K32

S1 S2

Figure 5.10 A step can have more than one relevant knowledge
component.

134 Kurt VanLehn

the other hand, the way the step plays out may also cause students
to change their motivation, so there are links from the steps to the
motivation nodes. Zhou and Conati (2003) have explored a similar
technique for diagnosing motivation and meta-cognition.

All these extensions to Knowledge Tracing add parameters whose
values need to be determined. When a new kind of node is added
(e.g., motivation nodes), they have conditional probability tables
whose cells need values. When new step attempt history categories
are added, they too introduce new cells into the conditional prob-
ability tables that need to have values determined for them. Little
work has been done on finding calibration techniques that take
advantage of the particular topology of these networks. This may be
a good topic for future work. Once good calibration algorithms are
in use, we can compare these various extensions to Knowledge Trac-
ing and/or other assessment methods in order to see if they actually
provide added diagnostic value.

Conclusions

This chapter introduced a particular kind of intelligent tutoring sys-
tem that helps students solve multistep problems. The key idea is to
give feedback and hints at the level of individual steps, instead of on
the final answer alone. Although these systems were developed in
order to increase student learning rate (and they are demonstrably
good at that), they also provide the opportunity to assess student
performance. The key assessment idea, as explained in the last sec-
tion, is to assess individual knowledge components’ probability of

M0

K10

K20

K30

M1 m1

K11

K21 k21

K31 k31

k11

M2

K12

K22

K32

S2S1

Figure 5.11 Nodes (M0, M1, M2,…) can be added to represent motivation.

 Intelligent Tutoring Systems for Continuous, Embedded Assessment 135

mastery, and to use the fact that each step requires knowing only a
few knowledge components in order to do the step correctly.

An analogy might help. A step is like one item on a multiple-choice
diagnostic test, where the test items were designed to tap only a few
knowledge components each. When analyzing data from such a test,
one assumes that performance on a test item is conditionally inde-
pendent of the performance on the preceding items given the mas-
tery of the relevant knowledge components, that is, those involved in
answering the test item. If one knows the probability of mastery of the
relevant knowledge components just before the test item is answered,
one’s predictions cannot be improved by also knowing their perfor-
mance on earlier test items. The same Markov assumption is made
when interpreting step attempt history data, except that one must
allow the knowledge components to change their mastery over time.
That is, students are assumed to learn as they use the tutoring system,
whereas they are assumed not to learn during a test. As shown in this
paper, learning complicates the data analysis, but not by much.

This sets the stage for increasing the use of assessment embedded in
a tutoring system. This may have desirable impacts on schools—it may
cause them to teach to a “test” that really deserves to be taught to. It may
free up classroom time currently taken up with testing that, by design,
does not cause learning. As shown late in the last section, the technique
can be used to diagnose motivation and meta-cognitive variables as well
as cognitive ones. This technology is so radically different from conven-
tional non-learning testing that it may even have many unanticipated
benefits as well, and perhaps some unanticipated drawbacks.

Acknowledgments

This research was supported by the Cognitive Science division of the
Office of Naval Research under grant N00014-96-1-0260; and by the
Pittsburgh Science of Learning Center (NSF 0354420). I thank Chas
Murray for commenting on the manuscript.

References

Aleven, V., & Koedinger, K. R. (2000). Limitations of student control: Do
students know when they need help? In G. Gauthier, C. Frasson, & K.
VanLehn (Eds.), Intelligent Tutoring Systems: 5th International Con-
ference, ITS 2000 (pp. 292-303). Berlin: Springer-Verlag.

136 Kurt VanLehn

Aleven, V., Stahl, E., Schworm, S., Fischer, F., & Wallace, R. M. (2003). Help
seeking and help design in interactive learning environments. Review
of Educational Research, 73(2), 277-320.

Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive
tutors: Lessons learned. Journal of the Learning Sciences, 4(2), 167-207.

Bloom, B. S. (1984). The 2 sigma problem: The search for methods of
group instruction as effective as one-to-one tutoring. Educational
Researcher, 13(6), 4-16.

Bransford, J. D., & Schwartz, D. L. (1999). Rethinking transfer: A simple
proposal with multiple implications. In A. Iran-Nejad & P. D. Pearson
(Eds.), Review of research in education (Vol. 24, pp. 61-100). Washing-
ton, DC: American Educational Research Association.

Chang, K.-m., Beck, J., Mostow, J., & Corbett, A. (2006). A Bayes net toolkit
for student modeling in intelligent tutoring systems. In K. Ashley &
M. Ikeda (Eds.), Proceedings of the 8th International Conference on
Intelligent Tutoring Systems. Berlin: Springer-Verlag.

Conati, C., Gertner, A., & VanLehn, K. (2002). Using Bayesian networks to
manage uncertainty in student modeling. User Modeling and User-
Adapted Interactions, 12(4), 371-417.

Corbett, A., & Anderson, J. R. (1995). Knowledge tracing: Modeling the
acquisition of procedural knowledge. User Modeling and User-
Adapted Interaction, 4, 253-278.

Corbett, A., Koedinger, K. R., & Anderson, J. R. (1997). Intelligent tutoring
systems. In M. Helander, T. K. Landauer, & P. Prahu (Eds.), Hand-
book of human-computer interaction (2nd ed., pp. 849-874). Amster-
dam: Elsevier Science.

Corbett, A., McLaughlin, M., & Scarpinatto, K. C. (2000). Modeling stu-
dent knowledge: Cognitive tutors in high school and college. User
Modeling and User-Adapted Interactions, 10, 81-108.

Dick, W., & Carey, S. (1990). The systematic design of instruction (3rd ed.).
New York: Scott-Foresman.

Douglas, S. A. (1991). Tutoring as interaction: Detecting and repairing tutor-
ing failures. In P. Goodyear (Ed.), Teaching knowledge and intelligent
tutoring (pp. 123-147). Hillsdale, NJ: Lawrence Erlbaum Associates.

Dweck, C. S. (1986). Motivational processes affecting learning. American
Psychologist, 41, 1040-1048.

Fox, B. A. (1993). The human tutorial dialogue project: Issues in the design of
instructional systems. Hillsdale, NJ: Lawrence Erlbaum Associates.

Greer, J., & McCalla, G. (1989). A computational framework for granularity and
its application to educational diagnosis. In International Joint Conference
on Artificial Intelligence (pp. 477-482). Menlo Park, CA: AAAI Press.

Hume, G., Michael, J., Rovick, A., & Evens, M. (1996). Hinting as a tactic in
one-on-one tutoring. Journal of the Learning Sciences, 5(1), 23-49.

 Intelligent Tutoring Systems for Continuous, Embedded Assessment 137

Lepper, M. R., Woolverton, M., Mumme, D. L., & Gurtner, J.-L. (1993).
Motivational techniques of expert human tutors: Lessons for the
design of computer-based tutors. In S. P. Lajoie & S. J. Derry (Eds.),
Computers as cognitive tools (pp. 75-105). Hillsdale, NJ: Lawrence Erl-
baum Associates.

Litman, D., Rose, C., Forbes-Riley, K., VanLehn, K., Bhembe, D., & Silli-
man, S. (in press). Spoken versus typed human and computer dia-
logue. International Journal of Artificial Intelligence and Education.

McArthur, D., Stasz, C., & Zmuidzinas, M. (1990). Tutoring techniques in
algebra. Cognition and Instruction, 7(3), 197-244.

Merrill, D. C., Reiser, B. J., Ranney, M., & Trafton, J. G. (1992). Effective
tutoring techniques: A comparison of human tutors and intelligent
tutoring systems. Journal of the Learning Sciences, 2(3), 277-306.

Messick, S. (1994). The interplay of evidence and consequences in the valida-
tion of performance assessments. Educational Researcher, 23(2), 13-23.

Mitrovic, A., & Ohlsson, S. (1999). Evaluation of a constraint-based tutor
for a database language. International Journal of Artificial Intelligence
and Education, 10, 238-256.

Murray, C., VanLehn, K., & Mostow, J. (2004). Looking ahead to select
tutorial actions: A decision-theoretic approach. International Journal
of Artificial Intelligence and Education, 14(3-4), 235-278.

Reye, J. (2004). Student modelling based on belief networks. International
Journal of Artificial Intelligence and Education, 14(1), 63-96.

Rickel, J. (1989). Intelligent computer-aided instruction: A survey orga-
nized around system components. IEEE Transactions on Systems,
Man and Cybernetics, 19(1), 40-57.

Russell, S., & Norvig, P. (2003). Artificial Intelligence: A modern approach
(2nd ed.). Upper Saddle River, NJ: Prentice Hall.

Schofield, J. W. (1995). Computers, classroom culture and change. Cam-
bridge, UK: Cambridge University Press.

Shute, V. J. (1995). SMART: Student modeling approach for responsive
tutoring. User Modeling and User-Adapted Instruction, 5(1), 1-44.

Shute, V. J., & Psotka, J. (1996). Intelligent tutoring systems: Past, present and
future. In D. Jonassen (Ed.), Handbook of research on educational com-
munications and technology (pp. 570-600). New York: Macmillan.

VanLehn, K., Lynch, C., Schultz, K., Shapiro, J. A., Shelby, R. H., Taylor, L., et
al. (2005). The Andes physics tutoring system: Lessons learned. Inter-
national Journal of Artificial Intelligence and Education, 15(3), 147-204.

VanLehn, K., & Martin, J. (1998). Evaluation of an assessment system based
on Bayesian student modeling. International Journal of Artificial
Intelligence in Education, 8(2), 179-221.

138 Kurt VanLehn

VanLehn, K., Siler, S., Murray, C., Yamauchi, T., & Baggett, W. B. (2003).
Human tutoring: Why do only some events cause learning? Cognition
and Instruction, 21(3), 209-249.

VanLehn, K. (2006). The behavior of tutoring systems. International Jour-
nal of Artificial Intelligence in Education, 16.

Wood, D. J., & Middleton, D. (1975). A study of assisted problem-solving.
British Journal of Psychology, 66(2), 181-191.

Zhou, X., & Conati, C. (2003). Inferring user goals from personality and
behavior in a causal model of user affect. In Proceedings of IUI 2003,
international conference on intelligent user interfaces (pp. 211-218).
Miami, FL.

Endnotes

 1. The assessment technique described later makes the assessment a
deterministic function of both the log data and a set of prior prob-
abilities, which describe what is known about the student prior to the
problem solving.

 2. This definition is deliberately vague, because more precise defini-
tions can only be made in the context of specific tutoring systems.
For instance, some tutoring systems require students to enter a step
correctly before they can even start working on a new step, whereas
others allow students to leave steps incorrect and to change steps that
were entered much earlier.

 3. In practice, steps that have the same relevant knowledge component
are often given the same values for their guess and slip parameters.
For the purpose of counting parameters, it is more accurate to count
one guess and slip parameter per knowledge component rather than
per step.

