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  In many domains, the real world is modeled with systems of equations. Such 
a model uses variables to represent domain properties and equations to rep-
resent applications of domain principles. Given a set of true domain relation-
ships expressed as equations, one can deduce new equations from them using 
only the rules of mathematics, and the new equations will also be true domain 
relationships. Th e latter step, wherein mathematical implications are derived 
from the initial model, can oft en be done mechanically, for example, by math-
ematical symbol manipulation programs, spreadsheets, calculators, etc. 

 Given a real world situation that is amenable to such analysis, experts and 
novices understand them quite diff erently. Whereas novices must go through 
the whole modeling process by writing equations on paper and solving them, 
experts can generate many conclusions about the same situations without hav-
ing to commit anything to paper. For the expert, many domain relationships 
are just “obvious” or can be easily inferred “by inspection.” 

 Th ere are limits to the experts’ abilities. Although experts usually cannot 
mentally infer  quantitative  relationship, such as the exact numerical value for 
an energy or a velocity, they can infer  qualitative  relationships, such as whether 
a quantity is zero, increasing or greater than some other quantity. Th us, it is 
oft en said that expertise in such domains is characterized by a  conceptual  or 
 qualitative  understanding of real world situations (VanLehn,  1996 ). It is some-
times said that they have developed domain-specifi c  intuitions  (Simon & 
Simon,  1978 ). Th is ability of the experts is called  conceptual expertise , and it is 
the focus of this chapter. 

 Interest in conceptual expertise has increased in recent years with the dis-
covery that in some surprisingly simple situations, novices have intuitions that 
confl ict with the experts’ intuitions (McCloskey, Caramazza, & Green,  1980 ). 
For instance, suppose a bowling ball and a golf ball are dropped from 2 meters 
above the Earth’s surface. An expert will know immediately that the two balls 
strike the earth at exactly the same time, whereas novices usually say that the 
balls land at slightly diff erent times. Novice intuitions about such situations 
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35 7  Conceptual Expertise from Modeling: Elementary Physics

are oft en quite systematic, leading to the view that novices have alternative 
beliefs about how the world works, oft en called  misconception s. In the last few 
decades, such misconceptions have been documented in almost every branch 
of science (Pfundt & Duit,  1998 ). 

 Scientists and educators have been appalled at the ubiquity of misconcep-
tions, which appear in the responses of even the best students. Th at such mis-
conceptions survive high school and university science courses has been viewed 
as a crisis in science education. Preventing and/or overcoming misconceptions 
is the explicit goal of countless educational research and development projects. 
One step toward achieving that goal is understanding conceptual expertise. In 
short, interest in understanding conceptual expertise has increased with the 
discovery of ubiquitous, systematic misconceptions among students who have 
already taken appropriate courses. 

 In this chapter, we analyze conceptual expertise and propose an account 
for its acquisition. Our claim, which is not surprising in the context of this 
book, is that this kind of conceptual expertise arises from extensive practice 
of a certain kind. Moreover, there is a natural developmental sequence that 
occurs with every domain principle: from a  superfi cial  understanding, to a 
 semantic  understanding and fi nally to a  qualitative  understanding. Novices 
oft en have too little practice of the right kind, so they never reach the semantic 
stage of understanding, which appears to be the key. 

 Although we believe this account will hold true in many domains, this 
chapter discusses it in the context of just one domain: elementary physics – the 
kind of physics taught in fi rst-year college courses and in advanced high-school 
courses. Elementary physics is a small and well-defi ned domain compared to 
others in the expertise literature, which makes it tractable for laboratory study. 
Indeed, early in history of expertise research, elementary physics emerged as the 
premier domain with a number of very infl uential studies discovering charac-
teristics of expertise that were later found to be general (Chi, Feltovich, & Glaser, 
 1981 ; Chi, Glaser, & Rees,  1982 ; Larkin, McDermott, Simon, & Simon,  1980 ). 

 Apart from its small, well-defi ned knowledge base, elementary physics is 
a domain with excellent access to participants at many levels of expertise. In 
pioneering studies (e.g., Chi et al.,  1981 ; Simon & Simon,  1978 ), the concepts 
and the performance of novices were contrasted with those of experts, where 
the  experts  were college instructors who had been teaching elementary physics 
for many years, and the  novices  were recent graduates of such physics courses. 
Some studies reached further back and tested students just beginning a college 
physics course ( pre-novices ). 

 Another reason to study expertise in elementary physics is that the task 
domain has been thoroughly analyzed in order to develop artifi cially intelligent 
physics problems solving soft ware (Bundy, Byrd, Luger, Mellish, & Palmer,  1979 ; 
de Kleer & Brown,  1984 ; Forbus,  1985 ; Larkin,  1981 ; Larkin, Reif, Carbonell, & 
Gugliotta,  1988 ; McDermott & Larkin,  1978 ; Novak & Araya,  1980 ); intelligent 
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tutoring systems (Jordan, Makatchev, Pappuswamy, VanLehn, & Albacete, 
 2006 ; Loft in, Mueller, Way, & Lee,  1991 ; Murray, Schultz, Brown, & Clement, 
 1990 ; Reif & Scott,  1999 ; VanLehn et al.,  2002 ; VanLehn et al.,  2005 ); compu-
tational models of learning (Elio & Scharf,  1990 ; Jones & Fleischman,  2001 ; 
Lamberts,  1990 ; Reimann, Schult, & Wichmann,  1993 ; VanLehn & Jones,  1993b ; 
VanLehn, Jones, & Chi,  1992 ); and qualitative accounts of learning (M. T. H. 
Chi,  2005 ; di Sessa,  1993 ; Sherin,  2001 ,  2006 ). 

 Still another reason for studying physics expertise is that it permits us to 
study two diff erent indices of mastery of the domain. Th e fi rst type is  quantita-
tive  problem solving, which involves writing equations and solving them, usu-
ally over a period of several minutes.  Figure 16.1  shows a quantitative problem 
and its solution. Th e second index of expertise is solving problems that involve 
little math, little writing, and brief solution times. Th ese are called  conceptual  
problems or sometimes  qualitative  problems, and they are oft en devised to 
display diff erences between expert and novice intuitions.  Figure 16.2  shows 
some conceptual problems.   

 On the face of it, the conceptual problems should be the easier of the two 
because they take less time, involve no math, and so on. A consistent fi nding in 
the literature of physics expertise is, however, that even novices who approach 
experts in their ability to solve quantitative problems are oft en more like pre-
novices in their ability to solve conceptual problems (Hake,  1998 ; Hestenes, 
Wells, & Swackhamer,  1992 ). 

 Most physics education researchers assume that current physics instruc-
tion is at fault, and they have invented and sometimes evaluated many instruc-
tional innovations. Although there have been improvements, Hake ( 1998 ) and 
others conclude that aft er decades of instructional innovation, the problem is 
still not solved. 

Problem: 
A bomber is flying at 1000 km/hr at an altitude of 500 m. If the bomber releases a 1000 
kg bomb, what is its impact speed? What would the impact speed of a 500 kg bomb be?  

Solution: 
Let m be the bomb’s mass, so m =1000 kg 
Let v1 be the bomb’s initial velocity, so v2 = 1000 km/hr = 278 m/s.
Let h be the height of the bomb when it is released, so h = 500 m.
Let v2 be the bomb’s final velocity.  We need to solve for this. 
The initial total mechanical energy of the bomb is KE1 + PE1 = ½*m*v1^2 + m*g*h  
The final total mechanical energy is KE2 = ½*m*v2^2, 
Because we can ignore air friction, mechanical energy is conserved, 
so we can equate the initial and final total mechanical energies. 
Thus,  ½*m*v2^2 = ½*m*v1^2 + m*g*h. 
Solving, we have v2 = sqrt[v1^2 + 2*g*h] = sqrt[(278 m/s)^2 + 2*(9.8 m/s^2)*(500 m)] 
So, v2 = 295 m/s. 
Because m cancels, a 500 kg bomb would have the same impact speed.

 

 Figure 16.1.       A quantitative elementary physics problem and its solution.    
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359  Conceptual Expertise from Modeling: Elementary Physics

 Our hypothesis is that conceptual expertise is comprised of a qualitative 
understanding of domain principles, and that extensive practice is needed 
for a learner to develop through the stages of superfi cial understanding and 
semantic understanding before fi nally arriving at a qualitative understanding. 
Instructional innovations that fail to provide suffi  cient practice of the right 
kinds take students only part of the way toward conceptual expertise. 

 Th is chapter will expand upon this hypothesis by presenting a cognitive 
task analysis and learning mechanisms that are consistent with fi ndings from 
the elementary physics literature. Because the chapter presents no new fi nd-
ings, it is purely theoretical. 

 Th e chapter has several sections, one for each of these questions:

      1.     What knowledge comprises conceptual expertise in physics?  
     2.     What happened to novices’ misconceptions?  
     3.     How does expertise aff ect quantitative problem solving?  
     4.     How can conceptual expertise be learned?    

 Th e fi rst three sections develop an account for the existing body of expert–
novice fi ndings. Th e key idea is that experts have acquired a class of knowledge, 
called  confl uences , that novices lack. Th e fourth section proposes an explana-
tion for how conceptual expertise can be learned, based on two well-known 
learning mechanisms, induction from examples and EBL. Th e key idea is that 

1.  A steel ball rolls along a smooth, hard, level surface with a certain speed. It then 
smoothly rolls up and over the hill shown below. How does its speed at point B after it 
rolls over the hill compare to its speed at point A before it rolls over the hill? 

A. Its speed is significantly less at point B than at point A. 
B. Its speed is very nearly the same at point B as at point A. 
C. Its speed is slightly greater at point B than at point A.
D. Its speed is much greater at point B than at point A. 
E. The information is insufficient to answer the question.

2.  Two steel balls, one of which weighs twice as much as the other, roll off a horizontal 
table with the same speeds. In this situation: 

A. Both balls impact the floor at approximately the same horizontal distance from the 
 base of the table. 
B. The heavier ball impacts the floor at about half the horizontal distance from the 
 base of the table than does the lighter.  
C. The lighter ball impacts the floor at about half the horizontal distance from the
 base of the table than does the heavier. 
D. The heavier ball impacts the floor considerably closer to base of the table than the 
 lighter, but not necessarily half the horizontal distance.  
E. The lighter ball impacts the floor considerably closer to base of the table than the 
 heavier, but not necessarily half the horizontal distance.  

A B

 Figure 16.2.       Two qualitative physics problems.
( Source:  Problem 1 courtesy of Prof. David Hestenes, Arizona State University.)    
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learners go through three stages of understanding per principle: superfi cial, 
semantic, and qualitative. 

 Th is chapter does not attempt to argue systematically for the generality of 
its claims beyond elementary physics. However, many of the expert–novice phe-
nomena observed in physics have also been observed in other task domains, 
which increases the plausibility that elementary physics will again prove pro-
totypical of other task domains. As an example of such an expert–novice fi nd-
ing, consider the Chi, Feltovich, and Glaser ( 1981 ) discovery that physics novices 
classify problems by surface features, whereas physics experts prefer to classify 
problems by deep features. Th is expert–novice diff erence has been found in 
other task domains as well, such as chemistry (Kozma & Russell,  1997 ), man-
agement organizational problems (Day & Lord,  1992 ), genetics (Smith,  1992 ), 
programming (Weiser & Shertz,  1983 ), counseling (Mayfi eld, Kardash, & 
Kivlighan,  1999 ), and fi shing (Shaft o & Coley,  2003 ). As a second example, con-
sider Priest and Lindsay’s ( 1992 ) fi nding that experts could mentally generate 
and orally explain a plan for solving an elementary physics problem, but novices 
could not. Th is expert–novice diff erence has been found in other task domains 
as well (Ericsson,  2006 ; Ericsson & Lehmann,  1996 ; Heyworth,  1999 ). In short, 
although parts of this proposal for conceptual expertise are clearly specifi c to 
physics alone, it is likely that other parts are more general and apply to mastery 
of several diff erent domains of knowledge-based expertise. Some speculations 
on generality are included in a fi nal discussion at the end of the chapter.  

   What Knowledge Comprises Conceptual 
Expertise in Physics? 

 In order to uncover the knowledge that comprises conceptual expertise, this 
section works backward from the problems used to assess it. It asks: What 
knowledge is needed in order correctly solve these problems? Th is section is 
a summary of a computer model, Cascade, that Ploetzner and VanLehn ( 1997 ) 
showed could correctly solve many problems on the widely used Force Concept 
Inventory (Hestenes et al.,  1992 ). However, the basic categorization of knowledge 
presented here appears in many other accounts of physics knowledge, including 
both those backed by computer modeling (Bundy et al.,  1979 , Elio & Schart,  1990 ; 
de Kleer & Brown,  1984 ; Forbus,  1985 ; Jones & Fleischman,  2001 ; Lamberts,  1990 ; 
Larkin,  1981 ; Larkin et al.,  1988 ; McDermott & Larkin,  1978 ; Novak & Araya, 
 1980 ; Reimann et al.,  1993 ; VanLehn & Jones,  1993b ; VanLehn et al.,  1992 ) and 
others (M. T. H. Chi,  2005 ; di Sessa,  1993 ; Hestenes,  1987 ; Sherin,  2001 ,  2006 ). 

 Concept inventories are usually multiple-choice tests with questions such 
as those in  Figure 16.2  and the following one (from Prof. Robert Shelby, per-
sonal communication):

  A dive bomber can release its bomb when diving, climbing, or fl ying 
horizontally. If it is fl ying at the same height and speed in each case, 
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in which case does the bomb have the most speed when it hits the 
ground?  

      A.     Diving  
     B.     Climbing  
     C.     Flying horizontally  
     D.     It doesn’t matter. Th e bomb’s impact speed is the same in all three cases.  
     E.     More information is needed in order to answer.    

 Most novices and pre-novices choose A as their answer. Th e experts pre-
fer D, as they recognize this as an application of Conservation of Mechanical 
Energy. Now consider this problem (from Hestenes et al.,  1992 ):

  A book is at rest on a table top. Which of the following force(s) is(are) 
acting on the book?  

      1.     A downward force due to gravity.  
     2.     Th e upward force by the table.  
     3.     A net downward force due to air pressure.  
     4.     A net upward force due to air pressure.    

 Experts would answer 1, 2, and 4, whereas novices tend to answer 1 and 3. 
Although the dive bomber problem requires applying a principle, the book 
problem only requires identifying forces. 

 Th ese problems illustrate two aspects of conceptual expertise. Th e book 
problem illustrates what Hestenes ( 1987 ) calls the “description phase” of mod-
eling. Th e expert decides how to describe the physical world in terms of ideal 
objects, relationships, and quantities, such as point masses, forces, energies, 
accelerations, etc. Likewise, solving the dive bomber problem begins with a 
description phase, where the expert constructs an idealized model by deciding 
whether to neglect friction, ignore rotation of the Earth, treat the bomb as a 
point object, and so on. At the end of the description phase, the stage is set for 
applying principles, but no principles have been applied. 

 Let us coin the term “description phase knowledge” and agree that con-
ceptual problems, such as the book problem, test whether students have such 
knowledge. Such knowledge appears as a distinct type in several computa-
tional models of physics problem solving (e.g., Bundy et al.,  1979 ; Ploetzner & 
VanLehn,  1997 ; VanLehn et al.,  1992 ), whereas in other models, it is repre-
sented in the same formalism as other knowledge. All these models interleave 
the application of description phase knowledge with other knowledge in order 
to be consistent with human data. When problems are exceptionally tricky, 
experts verbalize applications of description phase knowledge and the applica-
tions are intermingled with application of other knowledge rather than being 
done as a distinct phase (Larkin,  1983 ). 
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 Although description phase knowledge alone suffi  ces for solving some 
problems, it does not suffi  ce for the dive bomber problem. For the dive bomber 
problem, experts must both recognize that Conservation of Mechanical Energy 
can apply and draw conclusions from its application. In the Hestenes ( 1987 ) ter-
minology, these comprise the formulation and ramifi cation stages of modeling. 
It is widely believed, and consistent with much work on the modeling of exper-
tise (VanLehn,  1996 ), that the knowledge driving these stages is organized into 
principle  schemas  (Chi et al.,  1981 ; Dufresne, Gerace, Hardiman, & Mestre,  1992 ; 
Larkin,  1983 ; VanLehn,  1996 ). Th us, we use “principle schemas” to refer to it. 

 Schemas have three important parts: applicability conditions, bodies, and 
slots (Russell & Norvig,  2003 ). Th e information for deciding whether a schema 
applies is called the  applicability conditions  of the schema, and the information 
that draws conclusions comprises the  body  of the schema. A schema also has 
 slots , which are fi lled with objects from the problem situation and indicate how 
the principle is mapped onto the situation. Applicability conditions determine 
which objects can fi ll the schema’s slots. For instance, in applying Conservation 
of Mechanical Energy to the dive bomber problem, the schema’s applicability 
 conditions decide that the principle should be applied to the bomb, not the plane; 
that is, the bomb should fi ll one of the slots of the principle’s schema. Let us exam-
ine applicability conditions a bit further, then consider the bodies of schemas. 

 Verbal protocols taken as experts read ordinary problems suggest that they 
recognize the applicability of schemas rapidly, sometimes aft er reading just a few 
words of the problem (Hinsley, Hayes, & Simon,  1977 ). Th is suggests that their 
knowledge includes simple applicability conditions for recognizing commonly 
occurring special cases. For instance, one such applicability condition is:

  If there is a moving object, and we have or need its velocity at two time 
points, time 1 and time 2, and there are no non-conservative forces act-
ing on the object between those two time points, then we can apply 
Conservation of Mechanical Energy to the object from time 1 to time 2.   

 Th is applicability condition could be used for the dive bomber problem, 
and expert verbal protocols suggest that it is indeed used for many Conservation 
of Mechanical Energy problems (Chi et al.,  1981 ). 

 Applicability conditions delineate only the  possible  principle applications. 
Th is would suffi  ce if the question merely asked, “Which principles apply when a 
dive bomber drops a bomb?” (c.f., Owen & Sweller,  1985 ; Sweller, Mawer, & Ward, 
 1983 ). However, the dive bomber question did not ask about principle applica-
tions, but about the speed of the bomb when it reached the ground. To answer 
such questions, the expert must use knowledge from the  body  of the principle’s 
schema. For this example, the expert might use this knowledge component:

  If Conservation of Mechanical Energy is applied to two objects, A and 
B, and the mass, initial velocity, initial height, and fi nal height have the 
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same values for object A as for object B, then objects A and B must have 
the same fi nal velocity as well.   

 Th e second type of knowledge component is a rule inferred from the prin-
ciple’s equations, KE1 + PE1 = KE2 + PE2, where KE stands for kinetic energy 
and PE stands for potential energy, and the numbers distinguish the two 
time points. A rule inferred from a qualitative interpretation of an equation 
is called a  confl uence  (de Kleer & Brown,  1984 ). A confl uence is stated in 
terms of a qualitative value system, such as {positive, negative, zero, non-
zero} or {increasing, decreasing, constant, non-constant}. For instance, if the 
algebraic form of a principle is  X  =  Y  +  Z , then a confl uence based on the 
value system {increase, decrease, constant} is “If  X  increases and  Y  is con-
stant, then  Z  increases.” Another confl uence for the same equation and same 
value system is, “If  Z  decreases and  Y  decreases, then  X  decreases.” Th ere are 
19 more such confl uences. For any equation and any qualitative value system, 
there are a fi nite number of confl uences, and it is straightforward to work 
them all out. 

 To summarize, the hypothesis is that experts solve conceptual problems by 
applying three types of knowledge component: (1) description phase knowl-
edge, (2)  applicability conditions , which have the form, “if <condition> then 
<principle application>,” and (3)  qualitative confl uences , which have the form, 
“if <principle application> and <quantity has qualitative value>, <quantity has 
qualitative value>, … then <quantity has qualitative value>.” Th e latter two 
are parts of principle schemas. Experts have a great deal of knowledge besides 
these three types, but for answering simple conceptual problems, they prob-
ably only need these three. 

 Although concept inventories are convenient and widely used to assess 
conceptual expertise, there are other methods as well. Th us, we need to check 
that the three types of knowledge mentioned above will succeed on these less-
common assessments as well. 

 Several assessments involve showing participants some ordinary  quantita-
tive  problems, such as the one shown in  Figure 16.1 , and asking them  not  to 
solve the problems but instead to:

      1.     Sort the problems into clusters of similar problems (Chi et al.,  1981 ; Chi 
et al.,  1982 ),  

     2.     Describe their basic approach or plan for solving the problem (Chi et al., 
 1982 ; Priest & Lindsay,  1992 ),  or   

     3.     Pick which of two other problems is similar to the given problem 
(Hardiman, Dufresne, & Mestre,  1989 ).   

Th e common fi nding among all these studies is that experts can mentally 
generate a plan for solving a problem. Th e plan identifi es the major principle 
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applications, which are then used for problem clustering and problem similar-
ity judgments. When the experts explain their choices in these tasks or their 
basic approach to solving a problem, they nearly always mention principles. 

 On the other hand, novices’ basic approaches seldom mention application 
of principles. Accord to Chi et al. (1981, p. 142):

  when asked to develop and state “a basic approach,” [novices] did one of 
two things. Th ey either made very global statements about how to pro-
ceed, “First, I fi gured out what was happening … then I, I started seeing 
how these diff erent things were related to each other … I think of for-
mulas that give their relationships and then … I keep on relating things 
through this chain….” or they would attempt to solve the problem, giving 
the detailed equation sets they would use.   

 Th is suggests that experts’ schemas include  planning confl uences , where 
a planning confl uence is a confl uence (a non-numerical interpretation of an 
equation) that uses the value system {known, sought}. For instance, generic 
planning confl uences for  X  =  Y  +  Z  include “if  X  and  Y  are known, then  Z  
is known,” and “if  X  is sought and  Y  is known, then  Z  is sought.” As another 
example, a planning confl uence useful for Figure 16.1 is:

  If the defi nition of kinetic energy applies to an object at time 1, and the 
velocity of the object at time 1 is sought, then its kinetic energy at time 1 
should be sought.   

 In summary, the principle schemas of experts, but not novices, have plan-
ning confl uences of the form, “if <principle application> and <quantity is 
known/sought>, <quantity is known/sought>, … then <quantity is known/
sought>.” 

 Th ere is evidence that these confl uence are actually used by experts. Chi 
et al. (1981, p. 124) found that their experts took longer than novices to choose 
a cluster for a problem (45 seconds per problem versus 30 seconds). Th is is 
consistent with experts using the extra time to plan a solution to some prob-
lems. Moreover, Larkin ( 1983 ) found that when experts are given unfamiliar 
problems, their verbal protocols are peppered with statements of the form 
“<quantity> is known, so …” and “we need <quantity>, so ….” When students’ 
principle schemas have correct applicability conditions but lack planning con-
fl uences, then certain kinds of quantitative problems can fool them into apply-
ing principles that are irrelevant to solving the problem (M. Chi & VanLehn, 
 2008 ). 

 Th e question addressed by this section is, “what knowledge comprises 
conceptual expertise in elementary physics?” and the proposed answer is, 
“description phase knowledge, and for each principle, mastery of its applicabil-
ity conditions, its qualitative confl uences, and its planning confl uences.” Th is 
claim should be understood as an approximation. Th ere are other knowledge 
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components that do not fi t these categories and yet they are part of conceptual 
expertise. 

 For instance, experts tend to know which quantities typically cancel out 
 during calculations. It turns out that simple reasoning with confl uences is 
 incomplete – there are solutions to systems of confl uences that cannot be found 
by the simple algorithm (Forbus & de Kleer,  1993 ). One method, called “plunk-
ing” (Forbus & de Kleer,  1993 ), for increasing the number of solutions found, 
is to assume that a quantity will cancel out and then check (somehow!) that it 
does. Th is appears to be what experts do, but the evidence is only anecdotal at 
this time. 

 Finding sound and complete algorithms that solve large systems of confl u-
ences is just one of the problems studied in the fi eld of qualitative reasoning (QR) 
about physical system. Th e fi eld has an extensive literature, a textbook (Forbus & 
de Kleer,  1993 ), and periodic conferences(http://www.cs.colorado.edu/~lizb/
qr08.html is the web site for the 22nd conference, which occurred in 2008). For 
the QR community, this whole section is old news. For them, it is axiomatic that 
conceptual expertise includes at least qualitative principle schemas and descrip-
tion phase knowledge. Moreover, QR applies to a wide variety of science and 
engineering domains. Th e default assumption is that if one can model something 
with diff erential equations, then it can probably also be modeled with QR.  

   What Happened to the Novices’ Misconceptions? 

 On conceptual problems, many diff erent novices give the same incorrect 
answer. For instance, on the dive bomber problem, most novices think that 
releasing the bomb when the dive bomber is diving will maximize the fi nal 
velocity of the bomb. Such systematic, incorrect responses have been collected 
and codifi ed as  misconceptions  (also called alternative conceptions). A com-
mon misconception is: “If an object is moving in a certain direction, there is a 
force acting on it in that direction.” Many misconceptions have been inferred 
(Pfundt & Duit,  1998 ) and there has been much research on their epistemology 
and ontogeny (e.g., Chi, in press; di Sessa,  1993 ; Vosniadou & Brewer,  1992 ). 

 Presumably, physics experts once had misconceptions, which have disap-
peared as the experts achieved conceptual expertise. Because graduate student 
teaching assistants still hold many misconceptions (Hestenes & Wells,  1992 ; 
Hestenes et al.,  1992 ), the disappearance of misconceptions may occur some-
what late in development. If we nonetheless assume that experts lack miscon-
ceptions, we can speculate as to the reasons for their demise. 

 A key observation, made by many (e.g., Hestenes et al.,  1992 ; Ranney & 
Th agard,  1988 ) is that abstract, general misconceptions are incompatible with 
conceptual expertise. For instance, suppose someone who believes that motion 
always implies force in the direction of motion gradually acquires a qualita-
tive confl uence of Newton’s Second Law, that a zero acceleration (i.e., constant 
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velocity) implies a zero net force. Th ese two beliefs produce contradictory pre-
dictions about many familiar situations. As budding experts begin to master 
such confl uences, they may notice the contradictions. Th is probably weakens 
their belief in the misconceptions and narrows the situations where the mis-
conceptions’ predictions are preferred. Figuratively speaking, misconceptions 
don’t ever die, they just get beaten in so many situations by confl uences that 
they retire. 

 Increasing conceptual expertise may also modify misconceptions and/or 
the conditions under which they are retrieved or believed. As an example of 
modifi cation, Sherin ( 2006 ) suggests that his students’ vague belief that force 
implies motion (di Sessa’s [1993] force-as-mover p-prim) was specialized to 
become the correct belief that “force implies change in velocity.”  

   How Does Expertise Affect Quantitative Problem 
Solving? 

 As mentioned earlier, science educators use two common indices of mastery: 
quantitative problem solving ( Figure 16.1 ) and conceptual problem solving. So 
far, we have discussed only conceptual problem solving as it occurs either dur-
ing concept inventories whose multiple-choice problems do not involve quan-
tities ( Figure 16.2 ), or during laboratory tasks where subjects sort, compare, 
or discuss, but did not solve, quantitative problems. Are there also diff erences 
between experts and novices on the second indicator, the solving of quantita-
tive problems, such as the one in Figure 16.1? 

 An early fi nding in the expert–novice literature was that as experts solved 
quantitative problems, they wrote down or mentioned equations in diff er-
ent order than pre-novices. At fi rst, this phenomenon was characterized as 
forward (experts) versus backward (pre-novices) problem-solving strategies 
(Larkin et al.,  1980 ; Simon & Simon,  1978 ). However, later analyses character-
ized the orderings as grouped by principle schemas (experts) versus algebraic 
chaining (pre-novices) (Larkin,  1983 ). For instance, Larkin (1983, p. 89) says 
of the experts that, “in all cases, the work associated with one schema is com-
pleted before work associated with another is begun.” 

 However, these early studies used pre-novices, that is, students who were 
just beginning their study of college physics. Th e pre-novices made so many 
errors that it was oft en diffi  cult to compare their work to the work of experts. 
Moreover, the pre-novices averaged about 40 seconds per equation, whereas 
the experts averaged about 5 to 10 seconds per equation (Larkin,  1981 ), which 
gives one an idea of just how diff erent their behaviors are. 

 On the other hand, several studies of  novices  (i.e., students who had just 
fi nished a physics course) showed that their behavior on quantitative problems 
was remarkably similar to expert behavior. Chi et al. ( 1981 ) found no diff erence 
in speed between experts and novices, and only a small diff erence in accuracy. 
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More tellingly, Priest and Lindsay ( 1992 ) found no diff erence between experts 
and novices in the  order  in which equations were written. 

 Th is suggests that both experts and novices have well-developed knowl-
edge components for the equations associated with principles, whereas pre-
novices are still struggling to learn the equations. As computer modeling has 
shown (Klenk & Forbus,  2007 ; Larkin,  1981 ), many physics problems can be 
solved quite effi  ciently given only a thorough knowledge of the equations, 
which would explain why novices behave so much like experts despite their 
lack of conceptual knowledge. 

 On the other hand, although experts and novices display similar equation 
ordering, speed, and errors, their mental processes seem quite diff erent. When 
participants describe their reasoning either during or aft er problem solving, 
experts display clear plans for solutions whereas novices do not (Priest & 
Lindsay,  1992 ). Th is makes sense, given that experts, but not novices, tend to 
succeed at the planning tasks discussed earlier. All these fi ndings are consis-
tent with the assumption that experts have mastered many planning confl u-
ences and novices have not.  

   How Can Conceptual Expertise Be Learned? 

 Th e preceding sections argued that all the expert–novice fi ndings can be 
explained by assuming that novices lack the expert’s description phase knowl-
edge, confl uences, and applicability conditions. Th is section indicates pos-
sible methods of learning each of these three types of knowledge. It draws on 
machine learning and more specifi cally on the Cascade model of physics learn-
ing (VanLehn,  1999 ; VanLehn & Jones,  1993b ; VanLehn et al.,  1992 ). It describes 
how conceptual expertise  can  be learned, in that it presents machine-learning 
methods that can output the appropriate knowledge when given the appropri-
ate training. It also compares the prescribed methods to current practices in 
physics education. In particular, it describes what would need to be changed 
in order to increase the number of college students who achieve conceptual 
expertise by the end of a year-long introductory course. 

   Learning Description Phase Knowledge 

 Description phase knowledge is essentially a set of classifi cations or categories. 
Th ey recognize instances of categories such as forces, magnetic fi elds, pressure, 
etc. A piece of description phase knowledge says that if certain conditions exist, 
then a certain object or property exists as well. In machine learning, a piece 
of knowledge in the form “if <conditions> then <instance of class exists>” is 
called a classifi er (Russell & Norvig,  2003 ). 

 A simple way to learn classifi ers is by induction from labeled examples. For 
physics, an example is just a physical situation, such as a block sliding down 
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an inclined plane. Th e label indicates whether the classifi er applies (positive 
example) or does not apply (negative example). For instance, the conditions 
under which a normal force exists can be induced from situations where the 
learner is told that a normal force is present (positive examples) or told that it is 
absent (negative examples). Many cognitive mechanisms suffi  ce for performing 
classifi er induction, which is also called concept formation or category learning 
in the psychology (Ashby & Maddox,  2005 ; Medin & Ross,  1989 ). 

 Learning a classifi er can take hundreds of examples, but an instructor can 
dramatically decrease the number of examples required via several pedagogi-
cal methods. One is to teach just one classifi er at a time and to use the simplest 
examples possible. For instance, when teaching students to recognize forces, 
instructors should ideally show a situation with just one force and as few dis-
tracting details as possible. If the situation physically requires multiple forces, 
then the instructor should explicitly indicate which parts of the situation support 
the existence of each force. Students should also practice identifying concepts in 
isolation, and they should get feedback on their performance. By drawing forces 
(Heller & Reif,  1984 ) and energies (Van Heuvelen & Zou,  2001 ) in isolation, and 
not as part of solving a larger problem, students could probably induce those 
key description phase concepts with only a few dozen situations. Unfortunately, 
such exercises were uncommon (Hestenes,  1987 ), so most students may have to 
acquire description phase concepts by analysis of feedback on their solutions to 
larger problems, which could slow their learning signifi cantly. 

 A second way to speed up induction is to include ample negative exam-
ples. Textbooks seldom present a situation where there are no forces, then ask 
the student to identify all forces. Such exercises should help. 

 A particularly useful technique is to present minimally contrasting pairs of 
examples: One example is positive, the other is negative, and they diff er in only 
one critical feature. For instance, one can contrast a projectile moving along a 
curved constant speed path with one moving at constant speed along a straight 
path, and ask students to identify accelerations. Another contrasting pair shows 
two situations, both positive, but diff ering in a critical feature. For instance, stu-
dents oft en believe that only animate agents can exert forces, so one can show a 
situation where a person’s hand (animate agent) supports a motionless book, ver-
sus a situation where a table (inanimate agent) supports a motionless book. Th e 
instructor points out that there is a normal force acting on the book in both situ-
ations despite the fact that one agent is animate and the other is not. Minimally 
contrasting pairs are only moderately common in current physics instruction.  

   Learning Applicability Conditions 

 Applicability conditions determine when a principle schema can be applied. 
Th ey also determine its possible slot fi llers, for example, whether to apply 
Conservation of Mechanical Energy to the bomb or the dive bomber. 
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Applicability conditions are also classifi ers, so they too can be induced 
from labeled examples. For instance, the dive bomber problem is a positive 
example for Conservation of Mechanical Energy, but a negative example for 
Newton’s First Law. Because applicability conditions must also fi ll slots, they 
are fi rst order categories, so more intricate induction methods may be needed 
(Muggleton,  1992 ). 

 Learning such applicability conditions would be simple if students were 
given isolated training examples instead of examples of quantitative and quali-
tative problem solving, which include application of schemas as only a small 
part of their solution. Th at is, given a situation, students would be shown which 
principles applied to which object. Later, they would be asked to list all the prin-
ciple applications for a given situation and would get feedback on their choices. 
When Dufresne, Gerace, Hardiman, and Mestre ( 1992 ) added classifi cation 
training to quantitative problem solving, conceptual expertise increased.  

   Learning Confl uences 

 In contrast to the two types of knowledge discussed so far, which can be 
acquired by simple mechanisms, confl uences can be acquired in moderately 
complex three-stage process. Th e stages correspond to three diff erent ways of 
understanding the fundamental equations behind the principles:  superfi cially , 
 semantically , and  qualitatively . 

 Th e learning process starts with the students acquiring a  superfi cial  
understanding of the principle’s equations. Th is is what novice students do 
now, much to the chagrin of instructors. For Conservation of Mechanical 
Energy, students might literally encode KE1 + PE1 = KE2 + PE2 as a string of 
characters. Indeed, when asked to state the principle, they may say, “Kay ee 
one plus pea ee one equals….” Moreover, when such students are asked, “But 
what is kay ee one?” they do  not  say, “kinetic energy at time one” but instead 
would probably reply, “Kay ee equals one-half em vee squared.” Students with 
a superfi cial understanding of the principles’ equations have not integrated the 
semantics of the generic variables into the equation. 

 Explanation-based learning (EBL; see Russell & Norvig,  2003 ) can be 
used to construct an equation containing expressions that refer to quantita-
tive properties of the objects, times, etc., to which that the principle is being 
applied. Th at is, the terms inside the equations are not symbols or character 
strings, but are instead referring expressions similar to the mental representa-
tions of noun phrases. Moreover, embedded inside these referring expressions 
are references to the slots of the schemas. Th us, an equation like KE1 + PE1 = 
KE2 + PE2 is now understood by the student as:

  “Th e kinetic energy of <the object> at <time 1> + the potential energy of 
<the object> at <time 1> = …”where <the object> and <time 1> slots.   
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 When the principle is applied to the dive bomber problem, <the object> 
is fi lled by “the bomb” and <time 1> is fi lled by “the moment that the bomb is 
released” so that the a problem-specifi c semantic equation reads: 

 “Th e kinetic energy of the bomb at the moment it is released + the poten-
tial energy of the bomb at the moment it is released = …” 

 It should be easy for students to acquire semantic equations since they are 
usually given all the information they need in the text. For instance, a state-
ment of Conservation of Energy might include:

  … KE1 + PE1 = KE2 + PE2, where KE1 denotes the kinetic energy of the 
object at time 1, and PE1 denotes . . . .   

 All the student has to do is to integrate the phrase “where <symbol> 
denotes <expression>” into the equation. Th is is just what EBL would do. 

 However, physics students can solve quantitative problems via purely 
algebraic, shallow, analogical methods (Klenk & Forbus,  2007 ; Larkin,  1981  
VanLehn,  1998 ; VanLehn & Jones,  1993a ,  1993b ). If this is the only training they 
get, then they have no incentive to formulate semantic equations. Th e superfi -
cial versions will do just fi ne. 

 In short, although students have opportunities to construct semantic equa-
tions, ordinary homework does not encourage or require it. Th is may explain 
why at the end of the semester, only some students have reached a semantic 
stage of understanding on some principles. 

 Semantic equations would be simple to learn if students were given exer-
cises that required use of semantics. For instance, Corbett et al. ( 2006 ) gave 
students a problem and an equation that applied to that problem, then had 
students type in English descriptions for variables and expressions in the equa-
tion. Here is one of the Corbett et al. problems:

  Th e Pine Mountain Resort is expanding. Th e main lodge holds 50 guests. 
Th e management is planning to build cabins that hold six guests each. A 
mathematical model of this situation is  Y  = 6 X  + 50. What does  X  stand for? 
What does  Y  stand for? What does 6 X  stand for? What does 50 stand for?   

 Answering each question with a menu or typing should cause students 
to construct semantic versions of equations, and that may explain why the 
Corbett et al. instruction was successful compared to ordinary quantitative 
problem-solving practice. 

 Th e third and last stage of learning principle schemas is to construct  con-
fl uences  from the semantic equations. Again, this can be done via EBL, but it 
requires some background knowledge, called a generic confl uence (Forbus & 
de Kleer,  1993 ). A  generic confl uence  matches the form of a semantic or alge-
braic equation but has no domain content itself. For instance, one such generic 
confl uence is,
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  Given that the equation ? W  + ? X  = ? Y  + ? Z  applies to two objects, if ? W , 
? X , and ? Z  are the same for both objects, then so is ? Y .  

where ? W , ? X , ? Y , and ? Z  are intended to match semantic (or algebraic) 
expressions. For instance, they would match terms in the semantic equation of 
Conservation of Mechanical Energy:

  Th e kinetic energy of <the object> at <time 1> + the potential energy of 
<the object> at <time 1> = the kinetic energy of <the object> at <time 2> 
+ the potential energy of <the object> at <time 2>  

and produce a confl uence, which is part of the qualitative understanding of 
the principle:

  If the kinetic energies of <the two objects> are the same at <time 1>, and 
the potential energies of <the two objects> are the same at <time 1>, and 
the potential energies of <the two objects> are the same at <time 2>, then 
the kinetic energies of <the two objects> are the same at <time 2>.  

Th is confl uence provides the key step for solving the dive bomber problem 
when <the two objects> is fi lled by the bomb from the diving plane and the 
bomb from the climbing plane. 

 In order to do such learning, students should solve qualitative problems, 
such as the dive bomber problem. However, they must already know the 
semantic equations for principles and the appropriate generic confl uences. Th e 
generic confl uences can either be taught explicitly or induced from experience 
in mathematics. When the student has both semantic equations and generic 
confl uences, they can be applied to solve qualitative problems. EBL can then 
abstract the problem-specifi c parts away, leaving a physics-specifi c confl uence, 
which is added to the principle’s schema. In other words, the desired principle-
specifi c confl uences are probably acquired by specialization of generic confl u-
ences, which are themselves acquired from mathematics practice. 

 A similar proposal was articulated by Sherin (2001;  2006 ), who points 
out that certain knowledge components exist midway between physics-rich, 
principle-specifi c confl uences and physics-free, generic confl uences. He calls 
these knowledge components  symbolic forms . For instance, one symbolic 
form, called “balancing,” says that if a situation can be analyzed as two oppos-
ing force-like entities,  X  and  Y , that are in balance, then  X  =  Y , where the “=” 
should be understood as both a qualitative and algebraic relationship. Th is 
knowledge component has some physics content, but not as much as, say, the 
confl uences for Newton’s First Law. If students possess knowledge of symbolic 
forms, they may be able to use EBL to specialize them to principle-specifi c 
confl uences. According to Sherin, symbolic forms develop out of di Sessa’s 
( 1993 ) p-prims, which are components of intuitive physics possessed even by 
young children. Generic confl uences and symbolic forms provide two routes 
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to the same destination: the confl uences that comprise a qualitative under-
standing of principles. 

 EBL essentially just moves knowledge around, combining parts of two 
knowledge components to form a new knowledge component. Machine learn-
ing of one confl uence is easy and requires just one example. However, there are 
many possible confl uences to learn. For instance, given an equation with three 
terms (e.g., A = B*C) and a number system with two values (e.g., {zero, non-
zero}), there are 24 diff erent possible confl uences such as “If B is zero and C is 
non-zero then A is zero” and “If A is zero and B is non-zero then C is zero.” It 
is not clear how many qualitative physics confl uences need to be constructed 
for a student to achieve conceptual expertise, so it is not clear how many con-
ceptual problems they need to solve. 

 Th ey probably do not need to practice each confl uence separately, as there 
can be hundreds of confl uence  per principle , and not even experts have solved 
that many conceptual problems. It is more likely that experts only possess con-
fl uences for a few common cases. When they lack the appropriate confl uence, 
they just use the semantic equation and the generic confl uence instead. 

 Indeed, when Dee-Lucas and Larkin ( 1991 ) taught students using seman-
tic versions for equations written in English, the students did better on con-
ceptual problems than students taught the same material with mathematical 
equations. Th is suggests that the students already had generic confl uences 
(which is likely, given that they were students in a highly selective technical 
university), and that they constructed confl uences on-the-spot while answer-
ing the conceptual questions. 

 If learning a confl uence is so easy, why don’t today’s students acquire con-
ceptual expertise? Although a likely response would be that students may not 
be getting enough conceptual problem-solving practice, the prevalence of con-
ceptual problems increased dramatically since 1980 and this does not seem to 
have cured the problem. It seems likely that students are getting conceptual 
problems but are solving them by some method that avoids conceptual learn-
ing. Because conceptual problems have such simple answers, it is relatively 
easy to memorize them. For instance, students may learn that “when two 
objects are dropped from the same height, they hit the ground together.” Th is 
is just a slight generalization of a common conceptual problem (posed earlier 
with a bowling ball and a golf ball), so it is oft en called a  problem  schema. A 
problem schema suffi  ces only for a very narrow set of problems, whereas a 
 principle  schema is more general. Indeed, students oft en answer one problem 
on a concept inventory correctly but miss another that, to a physicist, seems 
nearly identical. For instance, even if a student gets the bowling ball and golf 
ball problem right, they may give an incorrect answer on:

  Suppose a bowling ball and a golf ball are released at the same time from 
around shoulder height, but the bowling ball is somewhat higher than 
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the golf ball when they are released. Will the bowling ball catch up to the 
golf ball before they hit the ground?  

Th e problem schema is too specifi c to apply to this problem. 
 To prevent memorization of conceptual problems as conceptual problem 

schemas, students should probably only be given such practice  aft er  they have 
mastered the relevant semantic equations. Many instructors feel that because 
conceptual problems are easier (for them), they should come before quantita-
tive problem solving. Indeed, many high-school courses teach only conceptual 
problem solving. Th e claim here is that students should get conceptual prob-
lems only aft er achieving a semantic stage of understanding, which can be 
done with the training outlined above. 

 Th is section addressed the question, “What learning mechanisms suffi  ce 
for acquiring conceptual expertise?” Th e proposed answer is that two learning 
mechanisms are involved. Induction (also called concept formation or category 
learning) suffi  ces for learning description phase knowledge and applicability con-
ditions. EBL (a form of partial evaluation or knowledge compilation) suffi  ces for 
learning confl uences. Both learning mechanisms can be sped up by giving learners 
specifi c types of training. Such training is not currently part of college instruction, 
although most of it was successful in laboratory experiments. A key experiment 
would be to assemble all these types of training into a multi-week experimental 
curriculum, and compare it to standard instruction over the same period of time.   

   Conclusion 

 We have argued that conceptual expertise in elementary physics consists of 
mastery of description phase knowledge, applicability conditions, and con-
fl uences. Description phase knowledge and applicability conditions can be 
induced from certain types of examples. Confl uences can be learned from 
equations during a three-stage process: Learners fi rst acquire a  superfi cial  
understanding of the equation; then they construct a  semantic  version of the 
equation via EBL; and fi nally they construct a  qualitative  version via EBL, 
which is comprised of multiple confl uences. 

 Because current physics instruction does not contain the right sort of 
training, only a few students acquire a semantic understanding of some prin-
ciples, and very few attain a qualitative understanding of any principle. Th e 
training that students currently receive is mostly practice in solving quantita-
tive and conceptual problems. Quantitative problems can be solved with only 
a superfi cial understanding of equations, and conceptual problems can be 
solved by memorizing problem schemas. An interesting experiment would be 
to replace most of the conventional problem-solving practices with the train-
ing recommended above and see if that allows more students to achieve con-
ceptual expertise with no increase in training time. 
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 In what other task domains is this basic path to conceptual knowledge 
likely to be similar? A key feature of physics is that it is mostly concerned 
with constructing mathematical models of situations. Such modeling occurs 
in many other task domains as well, because modeling is such a powerful cog-
nitive tool. One converts a situation into a mathematical model, then “turns 
the crank” to produce mathematical implications, and these implications turn 
out to be true of the situation. In elementary physics, the models are systems of 
algebraic equations. In other task domains, they can be diff erential equations, 
causal networks, rule-based systems, etc. Th e point is that once a situation is 
represented in a model, it is mechanical to produce implications. However, 
qualitative approximations to the implications can be produced with simpler 
methods. Th at is the major fi nding of the QR community, a subfi eld of artifi -
cial intelligence. Th e claim here is simply that conceptual expertise consists of 
such QR. Th is is hardly a surprise to the QR community, but perhaps novel to 
others. 

 However, the power of modeling is seductive to students. Th ey focus on 
the “turn the crank” parts of modeling exclusively. Th ey fi nd ways to circum-
vent the model-construction and model-interpretation processes. In par-
ticular, they fi nd ways to solve quantitative exercises by working only with a 
superfi cial understanding of the model (e.g., the names of the variables, causal 
network nodes, etc. and not their meanings). Consequently, many students 
fail to develop a semantic understanding of the models. Without this semantic 
understanding, they have no way to deal with conceptual questions. Such ques-
tions are constructed so that one cannot write down a mathematical model. 
Th e only way to answer them properly is to use semantic understandings of 
the domain, which these students lack. Since they can’t reason properly, they 
answer using their naïve misconceptions or their memory of previously solved 
conceptual questions. So the irony is that the power of mathematical mod-
eling to produce important domain conclusions with purely mathematical, 
non-domain reasoning seduces learners into trying to ignore the semantics of 
models. Such superfi cial reasoning works surprisingly oft en on conventional 
analysis problems, but fails utterly on conceptual problems. Hence, conceptual 
expertise indicates mastery of a semantic understanding of models, which in 
turn can be used for both qualitative and quantitative problem solving. 

 Our suggestions for increasing conceptual expertise focus on increas-
ing semantic understanding of the models. Th e suggested training focuses on 
individual pieces of a quantitative model, such as a vector, a variable, a term, 
an applicability condition, etc., and drills students on the denotations of each 
in isolation. Once a semantic understanding of the models has been mastered, 
it should take only a few conceptual problems to build the requisite quali-
tative knowledge. Current instructional practices give them too early, before 
students have the semantic understanding of models that will allow them to 
construct appropriate qualitative knowledge. 
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 On an even more general level our work suggests that mastery and con-
ceptual knowledge are not passively attained as a function of students’ typical 
activity in the task domain. In particular, the development of mastery and QR 
within a wide range of domains, such as medicine (Boshuizen, Chapter 17; 
Davis, Chapter 8), law (Boshiuzen, Chapter 17), military tactics (Shadrick & 
Lussier, Chapter 13), music, sports, and chess (Ericsson, Chapter 18) do not 
emerge as automatic consequences of experience, but requires engagement in 
designed learning environments relying on refl ective thinking and deliberate 
practice. To think and reason in an insightful and expert manner in a domain 
is, therefore, the fruit of extended eff orts and is an observable characteristic of 
attained mastery in the relevant domain.  
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