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Table 2 cont.
For any technology, institutionalization depends on:

Powerful advocate.
To the degree that there is a budget-controlling administrator who is a strong advocate, the
more likely it is that institwtionalization will occur.
There are some classroom management variables that affect both initial
implementation by teachers and continued use by teachers of computer
technology.
Activity-centered classrooms.
If teachers structure classrooms around activity centers, then it is easy to incorporate
compulers into classrooms by adding one or two computers to the activity centers. This
style allows for effective use in low student-computer ratio settings.
Whaole-class teaching.
11 a teacher normally teaches to the whale class at one time, she has several options for
trying to deal with the classroomn management problem:
a)  Some students miss the lesson.
If there are one or two computers in the classroom, the teacher may let a
few students, who can afford 1o miss the lesson, work on computers at
the same time as she conducts the lesson with the class. This can lead 1o
problems about making up work. Teachers do not like to do this because
they feel their lessons are important for everyone, and so this strategy
works against continued use.
b)  Works with whole class on computers together.
This is what happened in Columbus ACOT ("Apple Classroom of
Tomorrow") classroom with 1-1 student-computer ratio (computers
mostly sit idle), Normally this strategy is implemented by going to
computer labs, which is somewhat disruptive of lesson continuity. This
strategy works somewhat better than (a) for continued use.
¢) Teacher uses computer for demonsirations,
Il there is only one computer, then by using large screen projection, the
teacher can min demonstrations on the computer. Elfectiveness of this
strategy depends on how much involvement the teacher can elicit from
students.
d)  Team tum-taking.
Tom Snyder's Search Series can be used where four teams take turns at
a compute:, and plan their next move while they wait for their next .
This strategy is guite effective for continued use.

In E. Scanlon & T. 0'Shea (Eds.), New Directions in Educational Technology. (
(1992) Berlin: Springer-Verlag.
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1., Introduction

One long-standing aspiration of cognitive science is that education would benefit from the
building of learning theorics that are expressed, at least partially, as Antificial Intelligence (Al)
programs. I have built several such programs [34,38], and others have buill many more
[1,19,11,5,21]. Although such work has profoundly changed our image of competence and
intelligence, and that change has begun to seep into the educational system, it is fairly clear now
that the resulting programs/theories have not had as much direct effect on education and training
as could be desired. This paper examines the reasons why and suggests a new research
direction based on that analysis.

The basic problem is that there seems to be an unavoidable tradeolf between the generality of
learning theories and their utility to educators. Let us examine this tradeofl by starting with
some recent general theories of learning and seeing what utility they have for education,

SOAR [19,16] and ACT* [1,2] aim to he universal theories of cognition. Their goal is to
describe only the aspects of skill acquisition that are common to the acquisition of all skills.
These theories are well suited for some purposes, Some examples are:

~— explanations of speed and error patierns in transcription typing [12],

—  explanations of the power-law increase in speed and accuracy thal invariahly accompany
exlensive praclice. [24,1],

— explanations of transfer, as measured by savings in learning time caused by prior training
on a similar skill [29,30,13).

However, the mechanisms of ACT* and SOAR do not in themselves tell us much about the
students' initial acquisition of the skill. For instance, they do not tell us how students will read
an instructional text, nor the effects of examples, nor the impact of specific pre-existing
conceptual knowledge, nor the importance of having mental models in task domains that admit
them, and so forth.

This is not an oversight on the part of the authors of ACT* and SOAR, but arises from the
fact that initial acquisition of a skill seems to be a form of problem solving. Students, while
engaged in various pedagogical activities such as studying a text or working some exercises,
occasionally discover that their knowledge is incomplete or mistaken. This is a problem. They
know many methods for solving the problem of ignorance, and different students may know
different methods!,

As always in problem solving, the behaviour of the subjects is determined mostly by the
nature of the problem and the particulars of their knowledge. Neither ol these is specified by
ACT* or SOAR, as they aim to describe only the universal aspects of cognition. However,
ACT* and SOAR should be consistent with the observed behaviour in that one should be able
to specily (as ACT* or SOAR programs) a model of the individual subjects' knowledge and the
task environmenl that will cause the architectures to accurately simulate his or her behaviour.
Presumably, the particulars of ACT* and SOAR put some constraints on the specification of the
knowledge, but the constraints imposed by the nature of the task are much stronger.

To put it differently, suppose an educator who is interested in teaching thermodynamics is
not sure which of several ways of learning is typically used by thermodynamics students or
could potentially be used by them. Trying these various options out on ACT* and SOAR will
not reduce the educator's uncertainty one bit, because the architectures will probably be
consistent with all learning methods the educator is likely o consider. In short, because these

'Some types of prohlems occur so often that their solution has become routine, and subjects hardly notice that
they have found and rectified a point of ignorance. For instance, students might not initially understand the
referent of a mathematical symbol while reading a text or example, but afier a lew second's reflection, they
retrieve (or constuct) ils meaning, and continue their reading. Presumably, they learn something from such
an experience. The experience can be analyzed as a briel episode of problem solving, even though the
subjects may nol have thought of it as such,
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an addition fact. Moreover, the general theory specilies how memory traces are strengthened hy
practice, thus leading to the dominance of memory retrieval over reconstruction that
characterizes the competent student's performance. Siegler's theory of recall seems quite
general, for it has been successfully applied to analyze acquisition of spelling rules (Sicgler,
personal communication) as well as the major arithmetic operations. Of course, it is not as
general as ACT* or SOAR, but it serves nicely as a simple illustration of the dillference between
a general theory, a lask-specilic theory/model (e.g., the model for addition, which has explicit
reconstruction strategies for arithmetic facts), and a subject-specilic model (the addition model,
with its parameters fit 1o a given subject’s data). Sicgler's task-specific models are specific
enough that one can envision designing a curriculum around them, and Siegler has recently
hepun to do just that (Siegler, personal communication).

My colleagues and I have developed maodels of the algorithms for multi digit arithmetic,
concentrating especially on subtraction [7,33,36,40]. There is a general theory, which
distinguishes between nonnal execution of a procedure and "error handling." According to the
theory, when people reach an impasse, perhaps because their knowledge of the procedure is
incomplete and they can not decide what (o do next, they treat the impasse itsell as a problem
and attempt to resolve it. One impasse-resolving strategy is to ask for help or (o consull a
texthook. Another is to search through one's earlier work looking for an inadvertent error.
These strategics depend strongly on the particulars of situation that the students are in and on
their knowledge of the task domain. Another hypothesis of the general theory is that learning
occurs whenever the resolution of an impasse is summarized and stored in memory as a new
rule [38]. The general theory has been tested by developing a task-specilic theory/model of
[33,38]. The model has been fit to individual subjects’ error data. The task-specific model
makes predictions about pedagogies for subtraction, some of which have been tesied [35]. This
work again illustrates the difference between a general theory, which offers linle specific
guidance to educators, and task-specific theories/models, which provide crisp suggestions.

Neither of the "general” theories just mentioned are as general as ACT* or SOAR, so a
better view of the world is to see theories as arranged in some kind of generalization hicrarchy.
SOAR, for instance, is a straightforward generalization of both Sicgler's theory and mine,
because it gencralizes the notion of an “impasse” to cover both failures due to memory retrieval
and failures duce o flawed knowledge. On the other hand, SOAR offers even less guidance o
educators than cither Siegler's theory or mine, just because it has more generality. So the same
generality-power tradeoff is evident, even though the binary distinction between general
theories and task-specific ones has dissolved into a generalization hierarchy. Although | will
continue Lo speak of "general” versus "task-specific” theories, one should keep in mind that this
is a simplification.

It seems that task-specific theories offer a viable option for guiding pedagogy. Bul
unfortunately, task-specific theories offer little help to people who are interested in other tasks
(or at least, that is how the theories are treated: theories of arthmetic are pretty much ignored by
everyone except those interested in arithmetic). Thus, while task-specilic theories are much
more helpful to some educators than general theories, they are not helplul o very miny
educators.

‘This leads to a third option (the first two were environmental theories and task-specific
theories), which is to formulate a method for generating task-specific theories. Traditionally, a
method is a prescription of the kinds of expeiments to run, the kinds of analyses to make and
the kinds of conclusions to draw. The later two items are actually a weak task-general theory, It
is weak because it does not foreordain the conclusions, but merely provides some ideas or even
some notations for stating the ask-specific theory. To put it differently, a method provides (1) a
general theory and (2) a means of instantiating the theory to [it a task domain, thus formulating
a task-specific theory.

There are methods in education, but 1 believe it is fair to say that all of them are oriented
towards prescribing instruction rather than constructing learning theories, The social scicnces

contain many descriptive methods, such as factor analysis and its associated theory of
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intelligence, or structural linguistics and its associated theory of syntax. However, as [ar as |
knnw._lhcrc is no method for formulating task-specific theories of learning.

This does not bode well for a project aimed at formulating such a method. Al the arguments
presented above depend only on ancient concepts, such as the distinction between :
and its application. These arguments lead inore or less inevitabl
nicthod. Surely someone in the long history of education and
formulate such a method. Maybe the
feasible,

Some recent results in Al indicate that a method for formulating lask
indeed be feasible. Most of the work is aimed at replicating the reasor
human scientific discovery [17,25). Although there is no denying that th
the same hypotheses and experimental demonstrations that the human scientists did, there are
still grave doubts about whether the simplifications assumed by these models are oo strong
Pessimists would say that the machine discovery programs are not particularly intelligent bu{
the peaple who chose the simplifications for them were very intelligent. Since the PCSSiII.I'iS[S
could tum out to be right, it is prudent for those who wish 1o apply this new machine discovery
technology to assume that a practical machine discovery system has a scientist/user who selects
the simplifications and oversees the machine's reasoning. To put it crudely again, although the
ma.clunc discovery work may or may not be able to build a mechanical scientist, it probably can
build a mechanical research assistant, Such a tool could play a key role in a method for
formulating task-specilic theorics of learing,

In shon, it seems that the most promising option for finding theories of learning that are
rcally‘ useful 1o educators is to formulate a method that combines the talents of people and
machine discovery programs in order generate task-specilic theories of learning. This is a
research option that [ think should be pursued.

knowledge
y o the project of formulating a

r | psychology must have tried to
y tried and failed. Maybe such a method is just not

-specific theories may
ling processes behind
ese programs produce

3. Workbenches: existing and proposed

Calling the research product a "method” makes it sound like a step-hy-step prescription of how
1o constrict a theory. I do not think that kind of method is feasible, What 1 have in mind is a set
ol integrated computer-based tools for analyzing data and building models. Such a "scientist's
workbench” would he hased on some task-general theory, such as ACT#* or SOAR, or perhaps
some muderately general theory, like Siegler’s or mine. This section discusses some examples.

CIRRUS [39,14] is a workbench based on my theory about how people execute cognitive
tasks. In addition to the hypotheses mentivned above, the theory includes the hypotheses that
people are fice 10 pick any goal that they can recall as the next goal to attend to, and their
knowledge includes some policies coneerning what types of goals to attend to in whal suvations
l4(‘)]‘. CIRRUS is designed for analyzing protocol data within the feamework of the theory by
hm_h]_ing a ninnable simulation and comparing its behaviour 1o the given protocol!, Students'
pnlu.-!c.s about goal sclection are formalized as a set of goal selection preferences of the form "If
condition C hulds, then prefer goals of type A over gouls of type B." The simulator uses such
p.rcfcrcn%'cs to sort a list of pending goals and choose the goal that is preferred above all others.
To use (.llt!{lJS, the theorist must input a procedure, written in the knowledge representation
Im_lgqa_gc ol the theory, that lacks goal selection preferences. CIRRUS must also be given
primitives from which goul selection preferences can be built. Given a protocol, CIRRUS
!lu_!ltls goal sclection preferences that allow a maximally accurate simulation of the data. To put
itin more traditional terms, CIRRUS takes a model with one parameler, and [+ o 1o the given
data. However, both the model and the parameler are non-nunerc.

3 0 3
This theory is s!tgluly.mnm general than ACT* and SOAR. Those theories claim that people invariably
seheet one of the unsatistied goals that was created most fecently (Le., both ACT* and SOAR have a last-in-
Arst-om goal stacks)

$iv .
{("llelflltll.j;ms not understand natural Linguage: the protocol must be encexded by humans before giving it 1o
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When my collaborators and I use CIRRUS, we find it necessary 1o reline the model given to
it many times before we are finally happy with the analysis it yiclds. Typically, we analyze one
subject's data in some detail, then start our analysis of the next subject using the model
developed for the first subject. After several subjects have been analyzed, commonalties in the
subject-specific models emerge. Al that point, we build a subject-general model and install
parameters (typically, a system of switches that turn rules off and on) in order 1o capture the
between-subjects variation. We stop the analysis when all the subjects have been analyzed and
one subject-general model has been found. One of the model's parameters, the sel of goal-
selection procedures, is fit automatically by CIRRUS; the other parameters, which were created
during the model refinement process, are fit hy hand. This refinement process can be viewed as
finding a theory that is specific to the task under analysis but gencral across subjects. In this
fashion, CIRRUS helps the scientist/user discover a task-specific theory/model.

ACM [22,23] is similar to CIRRUS. It is based on the theory that problem solving is scarch
through a problem space. It takes as its model a specific problem space, and builds a sct of
operator selection heuristics that will cause scarch through this problem space (o simulate
answer data given to the program.,

SAPA [6] is somewhat like ACM, in that it is based on the theory of problem solving as
scarch through a problem space. However, it does not o actually build a set of scarch heuristics
that fit some data given to it. It already has some search heuristics in it, along with a particular
problem space’. These search heuristics are intended, I suppose, lo represent those of a
prototypical subject's. At each cycle of the scarch, SAPA asks the user if the inference it has
just made corresponds to the protocol. IT it does, then the built-in, fully parameterized maodel is
upheld. If not, then SAPA checks to see if the parameterization is wrong - i.c., it has the right
problem space but the wrong heuristics for that subject. It performs this check by suggesting
alternatives until the user indicates that it has found one that corresponds Lo the protocol. 17
none of SAPA's suggestions work, then the problem space is deemed faulty, hecause no
parameterization of the model will fit the data, Bhaskar and Simon used SAPA 1o test their task-
specific theory of thermodynamics problem solving, and to test their maodel of a prototypical
student's search heuristics.

All these workbenches, as well as several others (e.g., Debuggy [8], TETRAD [10] and
METADENDRAL [ 18] have three components: (1) a general theory that is so deeply embedded
in the workbench that it can not be changed, (2) a underdetermined model given 1o the
workbench by the user, such as a problem space for thermodynamics problem solving, and (3)
a process that fits the model to the data, making it more detenministic. The theorist tinkers with
the underdetermined model in order to get a fitted madel that analy 05 the data satisfactorily.
The result is a model that is both a generalization over several (hopefully, many) subjects’ data
and a specialization of the gencral theory. The model can be considered a task-specilic theory,

Of course, such a model is interesting only 1o the extent that that task is interesting.
Educators are interested in learning, but CIRRUS, ACM and SAPA all assume that learning
does not occur during the protocols they are analyzing. Thus, they could be used in a
longitudinal study to model snapshots of the learner's development, but they can not maodel the
learning process itself. This leads to a proposal to build a workbench that can model the
learning process.

I am currently involved in building a scaled-up version of CIRRUS, called CASCADE.
CASCADE is being built in order (o analyze a very large data sel, donated by Micki Chil9). The
data consist of & protocols, each about 200 pages long. They were collected fram students
studying the first four chapters of a college physics textbook. The protocols record the leaming

that a typical college student would undergo in the first few weeks of a college physics course.

SAlthough SAPA was build to handle only thermodynamics, it could be redesigned o have more task
generality by allowing the user 1o iuput & problem space.

— — i
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4. Expected benefits of the proposed research

lhq most important application of the proposed technology is providing a "front end”
projects that create training systems. According 1o Anderson, the first step in developi 'tu
training system is (o analyze the task domain to see what good students should know whcln ':IL ;
huv.c completed their training [4). Workbenches such as CASCADE are intended 1o hclley
t::.tszﬁmr P«:rfurm such a task nr!u]ys.is‘ Although this section suggests a few other benefits tllrlu:
um[:,lyls;:uue. one should keep in mind that the main benefit is technological assistance in task
'I'llc lus_k-spt:ciﬁc. subject-gencral model that is created on the workbench could be the
starting point of.lhc development of a student modeller for an intelligent toring system Mi- q
|ch datalnualysns tools developed as parts of the workbench could be used as pa I‘l f T’:
diagnostic module of an intelligent wtoring system. ik
Thp mere process of analyzing students' learnin,
!nalcnnl will usually reveal defeets in the material th
instance, has a written a texthook on LISP

g in the face of the given instructional
i ::ll‘cun I;c easily remedied. Anderson, Tor
NISE ) e P e e i e v ¢ - s
only got as Far as recursion when the book was w;i::cl:fllt:l: Iu‘.:ll]?}{:lz.ll:[l)lll::s'i':l;lfdllYm h-;uf
not based on a task analysis. Anderson comments: "Since the wriling of |f1c huuLk l‘:‘xf ;NLI"L
slowly began 1o create tutor material corresponding to those chapters. As we have duncbs :au:
hluw." started Lo realize the inadequacy of the information in the last five chaplers.” |3 ch 4|(Ilw""
igzi‘ﬁc.anl that task an;_l_l‘yrl,is of the initial segment of the curriculum, even hy sn-nnc;mc- lil:::‘
q‘n‘lusnn,[ wl:ls nol s}l!lncwnl_ pﬂ:puruliup for wri!ing an adequate malterial for the second
seghient. It scems that there is no substitute for formal task analysis, even il the intende
training vehicle is "just” a texthook. o e
ﬂncc‘n task-specific model of the student has been constructed, it ofte
pcdugug_lcal strategies. Given the model, some will scem clc:n‘l): bene
pedagogies whose benefits are less certain can be simulated: if the me
accurate, and the propused benefit helps the model learn, then human students should learn
hcllu.r as well. For instance, on the basis of Sicgler's model of addition, it scc'nn that under
certain circumstances, supervised diill can take advantage of the cummulu}ivily ol ;:ddiliun and
;i'ljly.lc}.lt':‘l ‘hulf ll]c addilim} I'::cts.'Unsupcrvisml drill on the other hall should sulfice for
Lfi;.:zll:lrgﬁl:l-un. This pedagogical regime should be tested on his model belore being tried in the

n suggests new
licial. However,
wlel is psychologically

ﬁu .I“nlr.hlgm importance of this work 1o education has been stressed. But there are other
5::; s,l,lll..l .nct.'luuncs as well. Machine learning has recently turned towards scientific
u \;L[ry as .'1 source ln[ new problems. Because a workbench is a program that participates in
?In;ll;élil“::,mil_swvery, it ’shuuld be of some inlerest 1o rescarch on discovery. One can even
r ing protocols of scientists while they use it i l
! SIS se it in orde : s discove
o g y rder o understand the discovery-

In protocols of students involved in learni i
ning new material, such ¢ e ones bei
by the CASCADE pruj : grial, such as the ones being analyzsd

: - " ject, there are many instances of students making discoveries. These
discoveric sht suppest discove ; by iking discoveries. These
luurnin:-g l‘:i;:::ﬁ,lllnllc::;,uﬂ\l discovery methods that could be developed into full-fledged machine
l.:»I:~in|T|§lll‘ragu€?T:}:lL:1r u::'c-a d. machine learning has not yet produced interactive learners that can
framework ("PAC |t- : |::§1q1ng"clm!nguc with theie trainer. Formal work in the Valiant
GATL 46 mirsat - ‘:-tlrll;ll.flL‘ ’J‘l'nlll_tdll.:h'lhﬂl such interactivity is nccessary for tractable leaming
o B [y R e RATE will have to build such interactive leamers if it is 10 live up

S prowiises o delivering systems that acquire knowledge for expen systems. The current
protocol studies show how nteraction proceeds with human students, That should suggest

sl qus nl'. interaction to machine leaming researchers.

Turning now to the benefits for psychology, we start with the traditional observation that
ause application efforts do not have
ain. This application of
For instance, the physics task

applications usually push theories towards completion bee
1.hu ]u_x}ny ol 1gnonng pans of human behaviour that are difficall (o expl
cognitive theory will certainly push it towards completion,
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domain is richer in conceptual material than other task domains, such as LISP and geometry,
that have been studied. Thus, the development of a task-specific theory in physics should
illuminate the interaction between conceptual and procedural leaming,

I have concentrated on workbenches for analyzing protocol data because such data will push
cognitive theory along by explicating the mapping between theoretical events, such as
impasses, and visible types of human behaviour, There are few published comparisons of
protocols and models as detailed as the analyses in Human Problem Solving [20], and none that
compare models and students who are learning. The CASCADE project, and others like it,
should yield the first fine-grained analysis of human learning. From such analyses, we ought 1o
uncover some unexpecied theoretical problems, as well as strengthen known weak spots in the
theory.
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