
Coached Program Planning:
Dialogue-Based Support for Novice Program Design

H. Chad Lane and Kurt VanLehn
Department of Computer Science

Learning Research and Development Center
University of Pittsburgh
{hcl,vanlehn}@cs.pitt.edu

Abstract

Coached program planning is a dialogue-based style of tu-
toring aimed at helping novices during the early stages of
program writing. The intent is to help novices understand
and solve problems in their own words through the construc-
tion of natural-language style pseudocode as the first step in
solving a programming problem. We have designed an en-
vironment supporting coached program planning and have
used it in a human-to-human, computer-mediated evalua-
tion of 16 novice programmers enrolled in a pre-CS1 pro-
gramming course at the University of Pittsburgh. The re-
sults show that students who underwent coached program
planning, compared to those who did not, were more prolific
with comments in their programs, committed fewer struc-
tural mistakes, and exhibited less erratic programming be-
havior during their implementation. The dialogues collected
from this experiment followed a clear 4-step pattern. Start-
ing with this observation, we are developing a dialogue-based
intelligent tutoring system called the Pseudocode Tutor to
support coached program planning.

Categories & Subject Descriptors

K.3 Computers & Education: Computer and Information
Science Education - Computer Science Education

General Terms

Algorithms, Design, Human Factors

Keywords

novice programming, structured programming, intelligent
tutoring systems, coached program planning, dialogue sys-
tems

Permission to make digital or hand copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
require prior specific permission and/or a fee.
SIGCSE ’03, February 19-23, 2003, Reno, Nevada, USA.
Copyright 2003 ACM 1-58113-648-X/03/0002...$5.00

1 Introduction

Nearly every aspect of writing a program can be a strug-
gle for a novice, and the situation is worsened by attempts
to deal with multiple impasses at once [4]. Additionally,
novices spend little time planning their code before keying
it in [10] and have a tendency to believe a program that
produces correct answers is all that matters [7]. Of course,
novices rarely produce perfect programs in their early at-
tempts, especially if no planning was done. Soloway and
Spohrer have found that many of the bugs they encounter re-
flect misconceptions about the underlying algorithm rather
than the language being used [14].

In an effort to make programming less difficult for begin-
ners, a number of researchers have advocated the design of
programming languages that better match natural ways of
thinking and communicating [9, 2]. The idea is to “close
the gap” between a problem statement and a programmed
solution by limiting the cognitive hurdles imposed by tra-
ditional programming languages, thereby making it easier
for novices to express their solutions in the desired lan-
guage. A slightly different approach, but also based on find-
ing common ground in language with novices, was adopted
in BRIDGE [1]. This system helped students to construct
a solution description in natural language, followed by suc-
cessive rewrites in more precise forms, ultimately resulting
in a working program. The idea of having students explain
and elaborate ideas in their own words is a known effective
method for improving learning [3]. It is unclear if these ben-
efits were reaped in BRIDGE because the natural language
solutions were created via menu selections.

In this paper, we introduce coached program planning
(CPP), a dialogue-based style of tutoring aimed at help-
ing novices during the earliest stages of programming. We
show an environment supporting CPP and report the re-
sults of a human-to-human evaluation revealing that stu-
dents who used it exhibit more desirable behaviors during
programming than students who did not. We conclude with
a discussion of the results, and a look forward to the ulti-
mate goal of this research: creation of an intelligent tutoring
system for CPP.

2 Coached Program Planning

In a CPP tutoring session, the student and tutor collaborate
to build a natural-language-style pseudocode solution to a
problem. Ideally, the student has already read the problem
statement, but has not yet attempted an implementation.
Dialogue is the vehicle for this collaboration, and the result-

ing artifact (i.e., the pseudocode) can then be used by the
student as a blueprint during the non-tutored implementa-
tion phase (using an editor, compiler, etc.).

2.1 Dialogue Structure

A CPP dialogue consists of the tutor repeatedly asking the
student to (1) identify a programming goal, (2) describe
a technique for attaining this goal, (3) suggest pseudocode
steps that attain the goal, and finally (4) place the steps ap-
propriately within the pseudocode. This continues until all
programming goals have been satisfied, and the pseudocode
is complete. This 4-step pattern governed the dialogues in
our corpus (described later). At the tutor’s discretion, the
student’s own words are used as much as possible in the
text of the pseudocode steps. It is likely that many of the
answers the four questions above will be flawed (partially
correct, imprecise, or simply wrong). The collaborative na-
ture of dialogue is ideal for refining these kinds of answers
into better ones.

In addition, it is common for the tutor to enter sub-dialogues
involving the layout and organization of the pseudocode.
These arise from either algorithmic errors by the student
(e.g., improperly sequencing steps) or structural issues (e.g.,
improper indentation).

2.2 Pedagogy

Pseudocode is a well established approach to teaching novice
program design. At one extreme, Shackelford promotes the
exclusive use of (formal) pseudocode [13], while others have
argued for a gradual introduction along with a particular
programming language [8]. Our approach is closer to the
latter, but with informal pseudocode in an effort to better
match the language of the student. The aim of CPP is to
instill a mindset in novices of thinking about a problem first
in their own words, rather than implementation and pro-
gramming language specific issues.

Because the tutor acts as a filter for the student’s ideas, the
resulting pseudocode will be correct. Thus, heading into im-
plementation, students are armed with a better understand-
ing of the problem and a better idea of the overall algorithm.
The individual pseudocode steps are implicitly approved and
often edited by the tutor before making their way to the so-
lution. Thus, the style of the pseudocode is up to the tutor.
The basic requirement is that the student should require
minimal (if any) training to generate the text for the steps.
In summary, each step is suggested by the student, created
by the tutor, and finally placed by the student. CPP is a
preventative approach in that program designs with serious
mistakes and omissions should be avoided entirely because
of the tutor’s presence. Of course, mistakes can still be made
during implementation, but they should rarely be algorithm
related (assuming the student understands the pseudocode).
Making serious mistakes and learning from them is essen-
tial to maturing as a programmer, however, so we do not
advocate using CPP for all assignments in an introductory
programming course.1

2.3 Examples

In this section, we present a pseudocode sample along with
two dialogues (all taken from actual tutoring sessions). The

1Perhaps just the first half or two-thirds.

1 get a positive number from the user
2 initialize count to one
3 initialize largest to the input
4 while number generated is not 4 do
5 if the number is odd then
6 multiply it by 3 and add one
7 else
8 divide the num by 2
9 increase count by 1
10 if current value is larger than largest then
11 store the new largest value
12 end while
13 print count
14 print largest

Figure 1: pseudocode from the Hailstone problem

0 T what do we need to work on next?
1 S Finding the how many numbers are in the

sequence.
2 T are you sure? [pause]
3 T does our program generate an entire sequence?
4 S We need to see if the new number is now

odd or positive.
5 T right... and after we do that, are we done?
6 S Not unless we reach the ground state.
7 T how can that be determined in the program?
8 S by a loop
9 T right!

Figure 2: determining the need for a loop

problem in question – the “Hailstone” series – requires the
student to produce a sequence of integers according to sim-
ple rules. The student is asked to have the program report
the number of items in the resulting sequence, as well as
the largest value encountered. Figure 1 shows a student’s
solution to the Hailstone problem. This pseudocode is in its
final form, the same as what the student physically takes
away from the tutoring session.

There are several subtleties resulting from the open-
endedness of the pseudocode that should be noted. For
example, the input in line 3 refers to the user input accom-
plished in line 1. Similarly, the variable holding the changing
Hailstone value is referred to in several different ways: num-
ber generated (line 4), the number (5), it (6), the num (8),
and current value (10). Also, the steps involving calculations
(6 and 8) only implicitly suggest an update. In other words,
assignment of a new value is not represented by the step it-
self. While these rarely pose a problem for a human tutor,
they represent significant challenges for an ITS attempting
to do natural language understanding.

In the dialogue shown in figure 2, the student seems to lack
a heuristic of the form if a sequence of values needs to be
generated, use a loop, or at least needs help in applying it to
this problem. It is interesting to note that the student sug-
gested the loop body (4) and the condition on the loop (6)

0 T What condition will we need on that loop?
1 S while hailnumber is even do
2 T think about that. you want to repeat the

even/odd check over and over.
3 T in the example you did, when did you stop?
4 S when it went to the same numbers
5 T yep. that was called the “ground state”.
6 T so we’ll loop while what is true?
7 S hailnumber is not equal to 4
8 T good.

Figure 3: finding the condition on a loop

before mentioning a looping construct at all. This observa-
tion is in harmony with previous findings that novices prefer
a depth-first search approach to programming [11] and not
the breadth-first (“top-down”) approach typically taught in
introductory programming courses. This student is given
encouragement and positive feedback for relevant and im-
portant suggestions, but is gently brought to what expert
programmers do first: identify higher level goals. Dialogue
seems to be an effective medium to achieve this pedagog-
ical goal. It should also be noted that this dialogue does
not specifically follow the 4-step pattern: the tutor seems to
switch from looking for a programming goal to looking for a
technique.

The second dialogue, shown in Figure 3 (and from a different
subject), shows the tutor helping the student to determine
the termination condition on the loop. Two tutoring strate-
gies are employed here. First, the tutor refers to an example
in line 3. Second, in line 6, the tutor poses a completion
question. In our experiments, it was common to see the tu-
tor ask the student specify a loop condition only (answered
in line 7), and subsequently create the step augmenting with
while and do.

3 An Environment for CPP

We have built an interface supporting CPP for the purpose
of evaluation and to act as the front end of an intelligent tu-
toring system. The interface consists of three windows (fig-
ure 4). The mini-browser (upper left) displays HTML pages
and remains available throughout the tutoring session. The
dialogue window (lower left) allows communication between
a human tutor and the student. Finally, the pseudocode win-
dow (right half) contains draggable tiles that contain text,
each of which represents a step in the solution.

A tutoring session begins with the student reading the prob-
lem statement in the browser, followed by collaborative pseu-
docode construction. When steps are agreed on, the tutor
creates tiles and the student drags them into the rest of the
pseudocode. Upon completion, the tile outlines are removed
leaving the pseudocode in a more traditional form for the
student to print out and use during implementation.

4 Experiment

In the fall of 2001 and spring of 2002, we conducted a
computer-mediated, human-to-human study to assess both
the usability of the environment and the effect of CPP on
novices. CPP is intended to help novices develop their al-

Figure 4: CPP Environment

gorithmic skills, express programming concepts in their own
words, and to build pseudocode. Thus, we predicted that
students undergoing CPP would (1) show less erratic behav-
ior in dealing with algorithmic difficulties during implemen-
tation, (2) be more prolific with their program comments,
and (3) make fewer indentation mistakes in their source
code.

4.1 Subjects

Subjects were volunteers from Introduction to Computer
Programming, a pre-CS1 service course at the University of
Pittsburgh and were paid $7/hour for their participation. 16
students volunteered and 2 were removed for not completing
the course. None of the subjects had programming experi-
ence beyond a few weeks of BASIC or spreadsheet skills.

4.2 Procedure

Four projects from the course were used in this study, start-
ing roughly one month into the course. The first assignment
required the students to convert a four-digit number into
words. The second assignment was the Hailstone series prob-
lem, the third was to play games of “rock, paper, scissors,”
and the last required loading and processing of arrays.

Students were assigned to one of two conditions according
to their preferences: the experimental condition with sub-
jects using the CPP environment over a network with a hu-
man tutor, and a control condition allowing students to go
about writing their programs as they normally would (with-
out CPP). The first project acted as our pre-test: all stu-
dents did the assignment on their own with no interaction.
For the experimental condition, subjects engaged in CPP to
prepare for the middle two projects. No CPP interaction
was provided in the final assignment, thus permitting it to
play the role of post-test.

Data collection consisted of recording compiler and editor
activities during implementation of all subjects. Addition-

ally, all files submitted to the compiler were saved (similar
to [14]). This was done with the students’ knowledge and
consent.

To determine if CPP subjects displayed less erratic behavior
during implementation, we borrow the idea of floundering
from the fields of user interfaces and intelligent tutoring sys-
tems. For computer programming, we define floundering as
repeated attempts to repair a bug leaving the program no
closer to being correct after each attempt. We applied two
measures to gauge floundering. The first was simply to count
the number of successful compile attempts (i.e., no syntax
errors) in the hope that students who floundered more spent
more time compiling and running their programs. The sec-
ond was to look at the content of the differences between
the syntactically correct versions of their programs. We cat-
egorized the changes between each pair of files as involving
an algorithmic bug-fix or something else.2 We then counted
the number floundering episodes involving algorithmic bugs.
An episode is defined as one more recompiles intended to
fix the same error. Intuitively, the number of floundering
episodes found in an implementation represents the number
of algorithmic impasses the student struggles to repair.

To see if students who used CPP were more comfortable
using natural language in their programs, we simply counted
the number of comment lines in the final version of the post-
test program. Single line comments counted as 1, as did each
line within multi-line comments. Administrative comments
(name, date, class, etc.) were not counted.

Lastly, to determine if CPP subjects gained a better under-
standing of structural concepts, we examined indentation in
all files submitted to the compiler, including those with syn-
tax errors. Each improperly indented line was counted upon
its first appearance. Our rules for proper indentation were
liberal (one space was considered enough), but consistent
with those presented in popular introductory programming
textbooks.

4.3 Results

Because of a possible self-selection bias (subjects were as-
signed to one of the two conditions according to their stated
preferences), the first project included in the study, also the
first non-trivial assignment given in the class, was used as a
pre-test. The scores on these projects revealed no significant
correlation between condition and pre-test (t(12) = −0.269,
p = 0.79), allowing us to conclude that both conditions con-
sisted of subjects of equivalent competence.

Floundering The first test for floundering was to sim-
ply count all successful compile attempts. CPP subjects
compiled an average of 25.0 (sd = 32.9) times during their
post-test project implementation, and control subjects com-
piled 49.4 (sd = 41.38) times. The difference was not sta-
tistically significant. However, by throwing out a statistical
outlier in the CPP condition who was 2.2 standard devia-
tions from the mean, the difference was marginally signifi-
cant (F (1, 10) = 4.08, p = 0.071).

The second test was to count episodes of algorithmic floun-
dering. In the post-test assignment, CPP subjects had a
mean of 1.00 (sd = 2.24) episodes and the control subjects

2These include things like tweaking i/o behavior, adding
comments, superficial rearrangement of program code, and
adding large code segments.

averaged 2.71 (sd = 2.63). The difference is marginally sta-
tistically significant (F (1, 11) = 3.53, p = 0.0872) and mod-
erately large (effect size = 0.65).

Because the identification of floundering is somewhat sub-
jective, the implementation logs were coded independently
by two experienced programming instructors. Using a spe-
cialized coding tool that displayed subsequent versions of
the programs, each compile attempt was classified as an al-
gorithmic flounder or not. After identifying the beginning
and ends of all floundering episodes, the intercoder reliabil-
ity was computed with a +/- 1 cushion on the boundaries
for episodes of 2 in length or longer. In this study, four ran-
domly chosen implementations were used for training and
the rest to measure agreement. The result was a kappa value
of 0.872.3

Commenting In their final post-test programs, CPP sub-
jects had a mean of 35.0 (sd = 23.1) comment lines. The
mean for control subjects was 12.3 (sd = 9.76), leaving a
difference of nearly 23 more lines of comment lines on aver-
age for CPP subjects over control subjects. This difference
is statistically significant (F (1, 11) = 5.97, p = 0.0325) and
large (effect size = 2.33).

Indentation Because indentation had been covered in
class and gradually learned throughout the semester, there
was a ceiling effect when analyzing the indentation of the
post-test program. Thus, we report results for the second
project understanding that the CPP students had already
created a pseudocode solution prior to their real solution.

During the implementation of the second project, CPP sub-
jects produced an average of 2.43 (sd = 2.88) improperly
indented lines of code per implementation. The mean for
the control subjects was 12.7 (sd = 10.8). This means that
CPP subjects maintained the structure of their code by in-
correctly indenting roughly 10 less lines than the control sub-
jects. This difference is statistically significant (F (1, 11) =
5.61, p = 0.0373) and large (effect size = 0.95).

5 Discussion

Overall, we feel these results justify a dialogue-based ap-
proach to novice program design. If difficulty at program-
ming is a reason for novices to drop out of introductory
courses, it might be that extra support early in the program-
ming process, such as that provided by CPP, might avert
many of the frustrations they encounter. It also seems that
students receiving CPP adopt more desirable behaviors dur-
ing implementation. By helping students build pseudocode
first, they are receiving a certified correct outline of a pro-
gram that they are responsible for creating. They still face
the unavoidable struggles of learning a specific programming
language, but can do so without as much confusion regarding
the particular algorithms they are trying to implement.

Regarding comments, we feel that these results support our
argument that coached program planning encourages stu-
dents to think about solutions in their own words, and to
feel more comfortable inserting comments into their code.
The mere existence of comments is only a suggestion, how-
ever. An analysis of the content of these comments may be
necessary to better test our hypothesis.

3Kappa is a popular measure for intercoder reliability
because it factors out agreement by chance. Generally, a
kappa value above 0.80 is considered reliable.

As stated above, CPP students saw the proper indentation
in the pseudocode in the second project. The results support
the claim that CPP students produced fewer incorrectly in-
dented lines in their actual code. Since we could not use the
final project for this test, the result is not as strong regard-
ing the longer term effect of CPP. For indentation, this is
perhaps not a serious criticism.

The results involving floundering were not as conclusive as
we had hoped, but still suggestive that students who are
trained to think about pseudocode and their algorithm in
a larger sense will spend less time floundering during im-
plementation. There are several possible reasons for the
inconclusive gains with the floundering measure. Students
were only trained on two assignments – at about an hour
per tutoring session, this amounted to roughly two hours of
training per student in the experimental group. Thus, per-
haps more programs with CPP would have helped. It is also
possible that individual differences and tendencies were too
great suggesting that more subjects might be necessary for
this particular measure. This was certainly a problem given
the cost of using a human tutor, but will not be when we
repeat the evaluation with an ITS.

6 Future Work

We are building a dialogue-based intelligent tutoring system
called the Pseudocode Tutor to perform CPP. Currently, the
system rigidly follows the 4-step pattern found in the dia-
logues and uses keywords to understand student input. Ad-
vanced understanding and tutoring strategies are being de-
veloped, but not part of the tutor as of this writing. Our
goal is to have the ITS behave as closely as possible to the
human tutor in this study. At the very least, we hope to
simulate many of the effective tutoring strategies present
in our corpus (e.g., referring to an example, posing comple-
tion and Socratic-style questions, simulating execution of the
pseudocode, etc.). As noted earlier, free-form pseudocode
presents difficult natural language understanding challenges
that still lack general solutions. To skirt this problem some-
what, the Pseudocode Tutor is being built to follow the stan-
dard presented by Robertson [12] which requires explicit
references to variable names, limited use of reserved words,
and some restrictions on the format of steps. The overall
feel is nonetheless intuitive and natural.

Regarding the analysis of the data, we are also interested in
analyzing various aspects of the student projects, including
the quality of the designs, quality of the identifiers, content
and quality of the comments, the timing of when comments
are added, and overall attitude regarding their work. We
believe that CPP should have an impact on these aspects of
novice programming in positive ways.

While we have focused on structured programming exclu-
sively for now, we believe the idea of using natural language
to prepare a student to write real code would also be effec-
tive in other paradigms. For example, in their book How to
Design Programs, Felleisen et. al. present design recipes to
help students write functions in Scheme [5]. Each phase in
these recipes has the student draw on intuition and use nat-
ural language to guide code writing. When students ask for
help, most tutorial interaction involves asking general ques-
tions about the student’s status within the design recipe
[6]. The role of natural language in novice programming is
clearly an important avenue that deserves continued atten-
tion.

7 Acknowledgements

This research was supported by NSF grant number 9720359
to CIRCLE, the Center for Interdisciplinary Research on
Constructive Learning Environments at the University of
Pittsburgh and Carnegie-Mellon University. We would also
like to thank Mark Fenner for his help with the coding work,
and Bob Hausmann for assistance in the data analysis.

References

[1] Bonar, J. G., and Cunningham, R. Bridge: Tutoring
the Programming Process. In Intelligent Tutoring Sys-
tems: Lessons Learned, J. Psotka, L. D. Massey, and
S. A. Mutter, Eds. Lawrence Erlbaum Associates, Hills-
dale, New Jersey, 1988, pp. 409–434.

[2] Bruckman, A., and Edwards, E. Should We Leverage
Natural-Language Knowledge? An Analysis of User Er-
rors in a Natural-Language-Style Programming Lan-
guage. In Proceedings of the Conference on Human
Factors in Computing Systems (Pittsburgh, PA, 1999),
pp. 207–214.

[3] Chi, M., Bassock, M., Lewis, M., Reimann, P., and
Glaser, R. Eliciting Self-explanations Improves Under-
standing. Cognitive Science 18 (1994), 439–477.

[4] DuBoulay, B. Some Difficulties of Learning to Program.
Journal of Educational Computing Research 2, 1 (1986),
57–73.

[5] Felleisen, M., Findler, R. B., Flatt, M., and Krishna-
murthi, S. How to Design Programs. MIT Press, 2001.

[6] Flatt, M. Personal Communication, March 2002.
SIGCSE02 Dr. Scheme Workshop.

[7] Joni, S.-N., and Soloway, E. But My Program Runs!
Discourse Rules for Novice Programmers. Journal of
Educational Computing Research 2, 1 (1986), 95–125.

[8] Lee, P., and Phillips, C. Programming Versus Design:
Teaching First Year Students. SIGCSE Bulliten 30, 3
(1998), 289.

[9] Pane, J. F., Ratanamahatana, C. A., and Myers,
B. Studying the language and structure in non-
programmers’ solutions to programming problems. In-
ternational Journal of Human-Computer Studies 54
(2001), 237–264.

[10] Pintrich, P. R., Berger, C. F., and Stemmer, P. M.
Students’ Programming Behavior in a Pascal Course.
Journal of Research in Science Teaching 24, 5 (1987),
451–466.

[11] Rist, R. S. Schema Creation in Programming. Cognitive
Science 13 (1989), 389–414.

[12] Robertson, L. A. Simple Program Design. Course-
Technology – Thompson Learning, 2000.

[13] Shackelford, R. Introduction to Computing and Algo-
rithms. Addison-Wesley, 1998.

[14] Spohrer, J. C., and Soloway, E. Putting It All Together
is Hard For Novice Programmers. In Proceedings of the
IEEE International Conference on Systems, Man, and
Cybernetics (Tucson, Arizona, November 12-15 1985).

