
A Dialogue-Based Tutoring System for Beginning Programming

H. Chad Lane & Kurt VanLehn
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260

{hcl,vanlehn }@cs.pitt.edu

Abstract

We present a preventive model of tutoring for novice pro-
gramming derived from a human corpus and describe our in-
telligent tutoring systemPROPL embodying that model. The
system conducts natural language dialogue aimed at eliciting
program design ideas from the student prior to their initial
solution attempt. Students are asked to identify programming
goals and how best to achieve them. Various tutoring tactics
are employed to correct flawed responses and refine vague
or incomplete answers.PROPL is an application of Atlas,
a dialogue management system providing robust sentence-
level understanding and a reactive planner to control dia-
logue. A controlled evaluation is currently underway to as-
sessPROPL ’s impact on students’ programming and problem
decomposition skills as well as their general behaviors, be-
liefs, and attitudes surrounding the tasks of programming.

Introduction
Programming is an exceedingly difficult activity for most
beginners. While the reasons for this are multifarious, a sig-
nificant portion are due to a general lack of problem solving
and design skills. Novices generally fail to engage in mean-
ingful planning activities, choosing instead to key in a pro-
gram as the first step (Pintrich, Berger, & Stemmer 1987).
As a result, novices tend to struggle with higher level is-
sues like goal and subgoal structure (Pennington 1987) and
the interactions between program logically separate program
parts (Spohrer & Soloway 1985).

To address these strategic shortcomings, we have de-
veloped PROPL (“PROgram PLanner,” pronounced “pro-
PELL”), a dialogue-based intelligent tutoring system that
engages students in a dialogueprior to their attempt to do
an implementation. The aim is to model and support the
cognitive problem solving and design activities that novice
programmers are known to generally underestimate or even
bypass altogether. Using only natural language dialogue,
students are asked to identify programming goals and then
speculate on possible ways to achieve those goals. Thus,
contrary the usual path of an unsupervised novice,PROPL
promotes aproblem-firstand goal-orientedperspective of
the tasks of programming.

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

PROPL is an application of the Atlas dialogue manage-
ment system (Freedmanet al. 2000), a domain independent
framework for the development of natural language dialogue
systems. It provides a reactive planner for dialogue manage-
ment and a robust sentence-level understanding component,
both of which are used extensively byPROPL. We now pro-
ceed to lay out the underlying pedagogical foundation for the
system, describe its appearance and operation, and describe
an ongoing evaluation of its effectiveness.

Tutoring Novice Program Design
A fundamental aspect of most notions of design, especially
in the context of novice programming, isproblem decom-
position. Soloway describes this as asking the programmer
to “lay the components of the solution on the table, that
is, decomposethe problem andidentify the solution com-
ponents” (Soloway, Spohrer, & Littman 1988). These com-
ponents include:

• goalsthe objectives as indicated by the problem statement

• schemasthe methods by which the goals are achieved

• objectsthe data items that will be needed in a solution

Ultimately, a programmer must identify these components
at some point on their way to a working program. For
novices this tendsnot to happen in a distinct planning phase,
but rather “on the fly,” intermixed with the implementation
phase. Inherent problem solving deficiencies therefore com-
pound with shallow programming knowledge resulting in a
mystifying and overly complicated experience of question-
able pedagogical value.

To assess the efficacy of early tutorial intervention (i.e.,
“preventive” tutoring), we conducted a human tutoring study
of Coached Program Planning (CPP), a style of tutoring
designed to elicit problem decompositions from students.
Communication occurred over a network, with both tutor
and student working in a common environment (nearly iden-
tical that ofPROPL ’s, shown in figure 3). On tutored prob-
lems and untutored (post-test) problems, CPP was found to
have a positive influence on novice programming behaviors
in terms of debugging skills and quality of code (Lane &
VanLehn 2003).

From this study we also collected a small corpus of 48
tutoring sessions. These dialogues greatly influenced the



design ofPROPL by revealing common dialogue patterns,
tutor question types, common student answers, tutoring tac-
tics, and conceptual stumbling blocks. In the sections that
follow, we describe the key results from this analysis and
lay out the resulting cognitive model of tutoring.

Pedagogical context
Our model of tutoring specifically targetsknowledge lean
problems for which the student is being asked to write a tra-
ditional structured program.1 Such tasks require minimal
specialized domain knowledge to comprehend and simulate,
and are common fodder for introductory programming.

In the rest of the paper, we draw from a particular exam-
ple of a knowledge-lean task, theHailstone problem. The
problem statement appears in the upper left hand corners of
both figures 3 and 4. Its solution requires a loop and con-
ditional statements to generate a sequence of numbers. In
addition, the student is asked to report the length of the se-
quence (“counting”) and to determine the largest value en-
countered. For many novices, Hailstone represents a signif-
icant challenge because of its nontrivial goal structure and
the dependencies between them.

Top-level tutoring pattern
The collaborative goal of the tutor and student in CPP is
to build a natural-language-style pseudocode solution to a
given problem. This solution plays the role of a design that
the student can then use to guide an independent (untutored)
implementation. Globally, the tutor’s effort is driven by re-
peated application of a four-step tutoring pattern shown in
figure 1. Naturally, the dialogue structure generally coin-
cides with the pattern as well.

1. identify a programminggoal
2. describe aschemafor attaining this goal
3. suggest pseudocodesteps that achieve the goal
4. placethe steps within the pseudocode

Figure 1: Four-step pattern followed by a human tutor.

Each part of the pattern generally corresponds to a tutor
question. For example, to elicit a programming goal (step
1), the tutor normally asks something like “What should we
work on now?” To elicit a schema (a “how” question, step
2), the question takes a form similar to “How do you think
we can do that?”

From the tutor’s perspective, following this line of ques-
tioning accomplishes two goals. First, it situates the student
at the center of the problem solving task, requiring a sug-
gestion at each point along the way of how best to proceed.
Second, it promotes a problem-first, goal-oriented approach
to programming that would difficult to instill outside of a tu-
toring context. We label this kind of tutoring aspreventive

1Structured (or imperative) languages are those that include the
primitives of sequence, conditional execution, and repetition. Pas-
cal and C are two common examples, although most popular lan-
guages possess these primitives in some form.

because it permits poor design choices to be discouraged by
the tutor and common pitfalls to be detected before they have
a chance to propagate into the implementation phase.

Student linguistic behaviors

A major consideration in buildingPROPL is dealing with the
students’ language. As such, we analyzed the student an-
swers in the corpus to better understand the general trends.
Based on this analysis, it is clear that students have a number
of options when answering design questions. They can iden-
tify a problem-specific issue, a relevant general program-
ming notion, or even a low-level programming primitive,
and still be considered within the realm of correctness. In
understanding these answers, the tutor attempts to identify
any “grains of truth” contained in them and build on what-
ever aspects are productive in the goal of producing a pro-
gram design.

1. “use a variable”
2. “ok in the loop i’d have a variable starting at 0

that would have a 1 added everytime the loop was
executed”

3. “make a function to do it”
4. “keep track of all the elements in the series.”
5. “as a number is generated count is increased by

one”

Figure 2: Typical student (typed) responses expressing how
to implement a counter in a program.

Figure 2 shows several typical responses to the question of
how to achieve the counting goal in the Hailstone problem.
It is clear that while there is a fair amount of variety, certain
properties of the answers are evident. For example, utter-
ances 1 and 3 are overly vague; 2 and 3 describe program-
ming constructs; 2, 4, and 5 include elements of the desired
counting schema; and lastly, of these, only 3 was considered
wrong by the tutor in the corpus. A more thorough analysis
of the language used in the Hailstone dialogues can be found
in (Lane 2003).

The corpus reveals that novices are generally able to de-
scribewhatneeds to be done (goals) and identify certain as-
pects ofhow to achieve those goals (i.e., they can describe
parts of the required schemas). Not surprisingly, the lan-
guage they use shows heavy dependence on the problem
statement. If the problem statement contains a clearly stated
goal or schema, students are better able to articulate it. On
the other hand, when the problem statement does not explic-
itly state a goal or schema, students resort to specific de-
tails of the target task or to specific programming concepts.
While these conclusions are not particularly surprising, they
do have implications for the design ofPROPL. Specifically,
they speak to the importance of robust understanding and
the ability to respond appropriately based on the quality of
student answers.



Tutoring tactics
Perhaps the most important trait of any tutoring system is
how it remediates student errors and misconceptions. The
corpus reveals that students provide a broad range of an-
swers and so, the tutoring module ofPROPL needs to handle
answers from the very specific to those that are vague or
overly abstract.

The overarching theme of the tutor in the corpus is to
elicit as much as possible from the student as often as pos-
sible. When good answers are provided to top-level ques-
tions, then this is easy. However, when the student does not
give ideal answers, a subdialogue ensues with the goal of
drawing out a better answer. A significant portion is there-
fore directed at improving student answers. This involves
the refinement of vague answers, completion of incomplete
answers, and redirection to concepts of greater relevance.
Some of the tactics in the corpus include:

• content-free pump: “Can you tell me more about that?”

• refer to problem statement: “You might want to take a
look at the problem statement.”

• elicit requisite observation: “Does this program gener-
ate a sequence?”

• hint: “Think about what allows us to repeat something
over and over.”

• hypothetical example: “How much does count go up
each time we see a new value?”

When these simple tactics fail (students respond “I don’t
know” or make no progress beyond their initial answer), the
most commonly used tactic in the corpus is to use a concrete
example. For example, to elicit the counting schema in the
Hailstone problem, the tutor would often walk the student
through an example, asking how many values were in the
sequenceÄat each point.2 From this, the desired abstraction
(to keep a counter) is much easier to see.

We analyzed the use of concrete examples across the Hail-
stone dialogues in the corpus. In sum, there were 37 uses of
concrete examples, not including obligatory opening exam-
ples. Of these, 5 were directly related to the placement of
pseudocode and 5 others were used to elaborate the prob-
lem statement to the student. This leaves 27 instances, all of
which were intended to elicit some answer from the student.
To gauge the effectiveness of the strategy, we looked at the
within-dialogue success of each of these subdialogues. In
other words, each time the tutor engaged an example, the
tactic was considered successful if, in the end, the student
provided the complete expected answer of the tutor. If the
tutor had to give away part or all of the answer, then such
instances were labeled as a failure. Of the 27 instances, the
student failed to provide the targeted answer only 4 times.
Concrete examples therefore played an important role in the
corpus, and do the same inPROPL.

2Many of students try to perform the countafter the sequence
is generated, which likely matches their intuitive understanding of
the task. In this sense, concrete examples permit the tutor to help
the studentdecompilethis knowledge and view it in more of an
algorithmic light.

Figure 3:PROPL environment with some design notes.

PROPL : An ITS for Programming
PROPL is dialogue-based tutoring system that attempts to
model and support the problem-first, goal-driven style of
program planning described in the previous section. In a
nutshell, it is intended to introduce the problem to students
and help them get started along a productive path.

Interface
The interface runs through any Java-enabled web browser,
and is connected to a back end implemented in Lisp that
controls tutoring. The interface (shown in figure 3) con-
sists of three primary windows. A mini-browser that holds
the problem statement and other supporting materials can be
found in the upper left half. Dialogue between the tutor and
student occurs in the chat window, found immediately be-
low the mini browser. Finally, filling the entire right half of
the screen, is a dual-tabbed pane: one that holds program
design “notes” and another that displays a pseudocode solu-
tion. For now, the system has complete control over both of
these panes.

Design notes are essentially a record of important obser-
vations from the dialogue. A sample set of design notes for
the first three goals of Hailstone appear in the right half of
figure 3. These notes are authored ahead of time by the do-
main expert and linked to the dialogue knowledge sources
so the system knows which lines to post and when. Typi-
cally, authors should include all of the programming goals,
the need for particular programming constructs, and any
other useful observations that can be tied to the dialogues.
As each programming goal is correctly identified during the
course of a tutoring session,PROPL posts it in the design
notes pane. Similarly, as aspects of the schemas that achieve
these goals are identified, comments that summarize these
observations are posted beneath the relevant goals.

Posting of goals that otherwise generally remain tacit is
often referred to asgoal reification. One reason behind do-
ing this inPROPL is to provide something concrete, but still



Figure 4:PROPL ’s Pseudocode screen

at an abstract level, representing the planning process as it
unfolds. Ultimately, it is hoped that novices who usePROPL
will choose to adopt similar habits in future, untutored pro-
gramming tasks.

The pseudocode solution is presented incrementally as
the dialogue evolves. As programming goals and schemas
are identified, new pseudocode steps that implement these
schemas are introduced into the solution. Figure 4 con-
tains pseudocode just after the student finished describing
the counting schema in Hailstone. As with the design notes,
the content of the pseudocode is canned. Its inclusion al-
lows the student to view a more precise version of what is
contained in the notes pane. In addition, it allows the tutor
to refer to the pseudocode (as in figure 5), thus increasing
the number of available tutoring tactics.

Sample interaction
Figure 5 presents a sample interaction withPROPL. The di-
alogue begins just after applying the Hailstone update rules
(second goal from top, figure 3). At this point in the solution,
the tutor’s goal is to elicit the programming goal of generat-
ing an entire sequence of numbers. The student is unable to
identify this goal, but rather suggests that the “next number”
be checked (for evenness or oddness). In other words, the
student is thinking about goal of generating more numbers,
but has not yet expressed this precise concept. The tutor then
asks the student to look at the pseudocode, elicits the appli-
cability of using a loop, and then proceeds to work out the
details.

In this example,PROPL must acquiesce to the student’s
preference for programming primitives by accepting “loop”
in place of the more problem-derived “generate a sequence.”
Indeed, for novices a long discussion about such a difference
would likely be viewed as annoying. The ability to recog-
nize these different types of answers and react to them ap-
propriately is due to the robustness of the natural language
understanding component of Atlas, to which we now turn.

T Ok, great. What should we work on now?
S checking the next number
T Well, take a look at the pseudocode.

How many hailstone numbers does it generate?
S just 1
T Good. So to do a whole series, what do you think

we need to add to the program?
S a loop?
T That’s great. How do you think we can get it to

generate a full Hailstone sequence?
S put a while loop around the if statement
T Right. When will this loop need to stop?
S when it reaches the ground state
T Correct. So we need to KEEP generating hailstone

numbers while what is true?
S while it is not in the ground state
T Good. Have a look at the pseudocode. Can you tell

me where you think the loop should start?
S just after the read statement
T Yep. The program will now generate a full sequence.

Figure 5: Dialogue betweenPROPL and a user that identifies
the need for a loop in a program.

Dialogue planning and understanding
As mentioned earlier,PROPL is implementation of At-
las (Freedmanet al. 2000), a domain independent frame-
work for developing natural language dialogue systems.
Two main components are provided:

• Atlas Planning Engine: (APE) a reactive, “just in time”
planner for tutorial dialogue.

• CARMEL: a natural language understanding component
which includes robust and efficient algorithms for parsing,
semantic interpretation, and repair.

To build a tutoring system using Atlas, one must provide ac-
cess to the user interface, a plan library to guide APE, and
semantic mapping rules to guide CARMEL. The plan library
should contain operators to handle all desired interactions
with the student, including high-level control, producing ut-
terances, performing a GUI action, and engaging in specific
tutoring tactics.

Knowledge Construction Dialogues
PROPL ’s primary knowledge source is a library of Knowl-
edge Construction Dialogues (KCDs) which represent di-
rected lines of tutorial reasoning. They consist of a sequence
of tutorial goals, each realized as a question, and sets of ex-
pected answers to those questions. The KCD author is re-
sponsible for creating both the content of questions and the
forms of utterances in the expected answer lists. Each an-
swer is either associated with another KCD that performs re-
mediation or is classified as a correct response. KCDs there-
fore take on a hierarchical structure and follow a recursive,
finite-state based approach to dialogue management.

A graphical representation of a part ofPROPL ’s KCD for
eliciting the need for a loop is shown in figure 6. In this



Figure 6: Part of a KCD that elicits the need for a loop

KCD, the context is that the student has recognized the need
to generate a sequence, but has yet to establish that a loop
is appropriate. The left branch (showing “if”, “even”, etc.)
handles utterances that suggest a return to the extant condi-
tional that handles the even/odd rules. TheElicit-loop re-
mediation KCD that is called in this case simply asks the
student “Can you think of a way to do that in the program?”
This gives the student a second chance to indicate that a loop
is needed.3 The figure also shows that ananything-elsecase
is used to handle unrecognized utterances. This is followed
when CARMEL is not able to classify an utterance with re-
spect to the expected answer list.

To make KCDs usable by Atlas, they are first compiled
into APE operators. This produces a set of readable and
modifiable operators, which allow easy integration with any
existing plan libraries the system designer may have. To
ease the authoring process, Atlas also provides tools for
editing KCDs and creating the semantic grammar used by
CARMEL (Freedmanet al. 2000).

The KCD approach is a good fit forPROPL because of
the ability to group answers together into classes, and pro-
vide specific remediations for each class. CARMEL also
provides aclusteringtool that allows an author to easily add
synonyms and alternate answer forms. In addition, authors
of KCDs have the option of specifyinganswer parts, mean-
ing that a students answer need to contain mention of each
part (or “aspect”). Remediation can be associated within
each part, thereby increasing the precision of the ensuing tu-
toring tactics. InPROPL, answer parts are used to handle
top-level responses to schema eliciting questions. Looking
back at the answers in figure 2, each of these select different
aspects of how counting should work.PROPL looks for the
following parts: the use of a variable, initialization, incre-
ment step, location of that step, and printing of the result.
Naturally, it is highly unlikely all of these will be present in
the initial answer, and so the remediation KCDs each try to
elicit their respective missing parts.

3It was necessary to turn off Atlas’ negative feedback, however,
because of the abundance of borderline answers such as this. It
would not be appropriate to suggest that “go back to the if state-
ment” is a bad response to the question posed by the KCD.

At this time, 11 top-level KCDs have been written for
PROPL that conduct dialogue for the Hailstone problem.
Over 50 smaller KCDs are used by the top-level KCDs or
called by the top-level control operators (next section). In
addition, several large remedial KCDs present concrete ex-
amples in an effort to elicit the more challenging concepts.
Some of these include only brief references to the exam-
ples, while others involve complete runs through entire se-
quences. The decision to enter into these more elaborate
remediations is made within the KCDs themselves based on
answer classifications and the frequency of unclassifiable in-
put.

Top-level control

While the APE planning operators derived from KCDs gov-
ern the lower-level dialogue interactions, thecalling of
KCDs must be controlled by a higher level tutorial compo-
nent. To perform this control,PROPL includes a host of
operators that track the state of the solution and initiate calls
to KCDs as needed. The top-level operator includes a list of
programming goals that must be satisfied by the dialogue.
These goals are considered achieved when the correspond-
ing KCDs for them have completed. In addition, other op-
erators exist that update the notes and pseudocode panes at
appropriate times, post corresponding utterances in the chat
window, and identify when KCDs have failed to elicit the
correct answer from the student.

Handling out-of-scope utterances

To handle unrecognized utterances in KCDs, Atlas provides
an “anything else” category. When a student contribution
does not map to an expected answer, a generic remedial line
of reasoning is followed. KCD authors are encouraged to
write “with the intent of sounding natural almost no matter
what the student types” (Rose & Jordan 2000). Thus, there
is the possibility that good aspects of unexpected answers
will be missed and treated as incorrect.

Currently,PROPL includes two simple APE operators that
that attemptKCD recovery. That is, for utterances not suc-
cessfully mapped to expected answers, these operators ex-
ecute dialogue moves that attempt to re-establish the line
of reasoning modeled in the KCD. In this case, apumping
move (e.g., “Can you say that in a different way?”) is gen-
erated with the hopes of the student proposing one of the
known correct answers in the second chance. There is also
an acknowledgementoperator, a slightly different form of
pumping that includes an expression of confirmation when
a student utterance involves a concept that is present some-
where in the CARMEL semantic grammar, but not expected
at that moment. If this fails, or the utterance is truly out
of the scope of the system, the anything-else branch is fol-
lowed. This extension is particularly appropriate in a design
domain due to the “brainstorming” quality of many of the
interactions: new ideas can occur at unexpected moments,
and often a second chance is all a student needs to provide a
good answer.



Related work
A large number of intelligent tutoring systems for program-
ming target specific programming languages (Brusilovsky
1995). While these are suitable for smaller scale tasks and
for learning the intricacies the language, many do essen-
tially support on-the-fly planning of programs. There is of-
ten no clear distinction made between the traditional phases
of programming of understanding, planning, implementing,
and debugging. An exception is found with BRIDGE, a
system that helps students construct a solution description
in natural language (via menus), followed by successive
rewrites in more precise forms, ultimately resulting in a
working program (Bonar & Cunningham 1988). No con-
clusive pedagogical benefits regarding the use of BRIDGE
were ever published. Another example of such a system is
DISCOVER (Ramadhan, Deek, & Shihab 2001), a model-
tracing system that supports a restricted form of pseudocode
and provides a rich environment for code execution and test-
ing. The only dialogue-based system for programming we
are aware of is the Duke Programming Tutor (Keim, Fulk-
erson, & Biermann 1997) which helped students correct
syntax errors in simple Pascal programs via a speech inter-
face. A number of dialogue-based educational systems have
emerged recently (e.g., (Rose & Jordan 2000)) for other
domains that use more advanced methods of dialogue man-
agement. Although it is too early to draw general conclu-
sions about the pedagogical impact of these systems, there
is mounting evidence that suggests participation in such di-
alogues does correlate with learning gains (Core, Moore, &
Zinn 2003).

Conclusions and Future work
We have described a model of tutoring and the dialogue-
based tutoring systemPROPL that is capable of carrying out
many of the observed tutoring tactics. The system follows a
design-driven pattern that encourages the student to identify
goals and describe methods to achieve them. When students
are unable to answer correctly, various strategies are used to
elicit the desired responses, such as hinting and the use of
concrete examples of the targeted task.

A controlled evaluation ofPROPL is currently underway.
The goal is to determine its effect on novices in terms of
both their programming skills and on the perspectives they
adopt while programming. By usingPROPL, our hope is that
novices will (1) learn about how to identify and precisely
state programming goals and (2) adopt the general behav-
ior of planning ahead (i.e., thinking about how to achieve
the goals they have identified). Various post test measures
will be used, including interviews, a closed-lab untutored
project, and written problem solving test. A control group
will use a non-dialogue-based version of the system that
presents the student with the same material provided by
PROPL. The aim of the qualitative measures is to understand
the reasoning novices used to create their programs and how
they perceive their own activities.

For updated information on this evaluation and to try
PROPL, please visit:

http://www.cs.pitt.edu/˜hcl/propl

Acknowledgements
This research was supported by NSF grants 9720359 and
0325054 to Kurt VanLehn at the University of Pittsburgh.
We would also like to thank Bob Hausmann and Mike Rin-
genberg for their comments.

References
Bonar, J. G., and Cunningham, R. 1988. Bridge: Tutoring
the programming process. In Psotka, J.; Massey, L. D.; and
Mutter, S. A., eds.,Intelligent Tutoring Systems: Lessons
Learned. 1988. 409–434.
Brusilovsky, P. 1995. Intelligent learning environments
for programming. InProceedings of AI-ED’95, 7th World
Conference on Artificial Intelligence in Education, 1–8.
Core, M. G.; Moore, J. D.; and Zinn, C. 2003. The role of
initiative in tutorial discourse. In10th Conference of the
European Chapter of the Association for Computational
Linguistics (to appear).
Freedman, R.; Rose, C. P.; Ringenberg, M. A.; and Van-
Lehn, K. 2000. Its tools for natural language dialogue:
A domain-independent parser and planner. InFifth Inter-
national Conference on Intelligent Tutoring Systems (ITS
2000). Springer-Verlag Lecture Notes in Computer Sci-
ence.
Keim, G.; Fulkerson, M.; and Biermann, A. 1997. Initia-
tive in tutorial dialogue systems.
Lane, H. C., and VanLehn, K. 2003. Coached program
planning: Dialogue-based support for novice program de-
sign. InProceedings of the Thirty-Fourth Technical Sympo-
sium on Computer Science Education (SIGCSE), 148–152.
Lane, H. C. 2003. Preventive tutoring in programming:
An intelligent tutoring system for novice program design.
Dissertation Proposal.
Pennington, N. 1987. Comprehension strategies in pro-
gramming. In Olson, G. M.; Sheppard, S.; and Soloway,
E., eds.,Empirical studies of programmers: second work-
shop. Norwood, New Jersey: Ablex Corp. 100–113.
Pintrich, P. R.; Berger, C. F.; and Stemmer, P. M. 1987.
Students’ programming behavior in a pascal course.Jour-
nal of Research in Science Teaching24(5):451–466.
Ramadhan, H. A.; Deek, F.; and Shihab, K. 2001. Incor-
porating software visualization in the design of intelligent
diagnosis systems for user programming.Artificial Intelli-
gence Review16:61–84.
Rose, C. P., and Jordan, P. 2000. Interactive conceptual
tutoring in atlas-andes. InProceedings of AI in Education
2000 Conference.
Soloway, E.; Spohrer, J. C.; and Littman, D. 1988. E unum
pluribus: Generating alternative designs. In Mayer, R. E.,
ed.,Teaching and Learning Computer Programming. 137–
152.
Spohrer, J. C., and Soloway, E. 1985. Putting it all to-
gether is hard for novice programmers. InProceedings of
the IEEE International Conference on Systems, Man, and
Cybernetics.


