
Model construction as a learning activity: a design space and review

Kurt VanLehn*

Computing, Informatics and Decision Science Engineering, Arizona State University, Tempe,
AZ 85284, USA

(Received 20 February 2013; final version received 3 May 2013)

Modeling is becoming increasingly important both as a way to learn science and
mathematics, and as a useful cognitive skill. Although many learning activities
qualify as “modeling”, this article focuses on activities where (1) students construct a
model rather than explore a given model, (2) the model is expressed in a formal
language rather than drawings, physical objects or natural language texts and (3) the
model’s predictions are generated by executing it on a computer. Most research on
such learning activities has focused on getting students to successfully construct
models, which they find very difficult to do. In the hope that new research can find
ways to remove this bottleneck, this article attempts to list all the major ideas that
have appeared in the literature and might be useful to those developing new learning
activities involving model construction. The ideas are organized into a design space
with five dimensions: (1) modeling language types, (2) ways for describing the
systems that students should model, (3) instructional objectives and their
corresponding assessments, (4) common student difficulties and (5) types of scaffolding.

Keywords: modeling; model construction; scaffolding; interactive learning
environments; interactive learning activities; constructive learning

1. Introduction

The literature on educational uses of modeling includes several recent reviews (Clariana &
Strobel, 2007; Clark, Nelson, Sengupta, & D’Angelo, 2009; Doerr, 1996; Hopper & Stave,
2008; Jacobson & Wilensky, 2006; Jonassen & Strobel, 2006; de Jong & van Joolingen,
1998; Löhner, 2005; Penner, 2001; Stratford, 1997). Although this article is a review in
that it presents no new work, it is not intended to be an exhaustive list of relevant
studies. Instead, it is intended to be an exhaustive list of the major ideas that have appeared
in the literature and might be useful to new research. The ideas are organized into a five-
dimensional design space. That is, the discussion separately addresses five questions that
must be addressed in designing and evaluating instruction that uses model construction:

(1) What type of model should I have students construct?
(2) How can students find out about the systems they will model?
(3) How can students’ learning be assessed?
(4) What difficulties in learning can be anticipated?

© 2013 Taylor & Francis

*Email: kurt.vanlehn@asu.edu

Interactive Learning Environments, 2013
Vol. 21, No. 4, 371–413, http://dx.doi.org/10.1080/10494820.2013.803125

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



(5) What scaffolding can be used to help students learn while modeling?

This organization was chosen simply to encourage more studies of model construction.
As argued in the next section, model construction is becoming increasingly prominent as an
instructional objective in science, mathematics and engineering, but we have still not found
efficient, effective methods for teaching model construction. As this review demonstrates,
the design space of model construction activities is vast and relatively unexplored, so
further experimentation may find instructional methods that work better than those that
have been studied so far.

2. Model construction is important

Model construction has been important and ubiquitous in recent US standards for K-12
science, mathematics and engineering. Standards for science instruction (National Research
Council, 2012) contain over 350 occurrences of “model” and “modeling”. The report has
only seven strands that are threaded throughout the standards, and model construction is
one of them. There are sections in the report devoted exclusively to defining model con-
struction and describing standards for proficiency in modeling. In many of the report’s
exemplary learning progressions, modeling activities are mentioned explicitly.

In the Common Core State Mathematics Standards (CCSSO, 2011), modeling is one of
only seven mathematical practices. Unlike the content topics (e.g. fraction addition and the
Pythagorean theorem), modeling is not allocated a standard of its own but is instead indi-
cated by placing stars on content topics taught at the high-school level where modeling
should be applied. For example, there is a star on “Create equations and inequalities in
one variable and use them to solve problems”, whereas there is no star on “Solve
systems of linear equations exactly and approximately (e.g. with graphs)”. Of the 117
high school topics, 45% involved modeling.

Although there currently are no standards for K-12 engineering, a National Academy of
Engineering committee studying K-12 engineering education highlighted the importance of
modeling in such instruction when they said, “Mathematical analysis and modeling are
essential to engineering design…” (Katehi, Pearson, & Feder, 2008, p. 25).

Several theoretical frameworks suggest that modeling is important for achieving deep
understanding. For instance, Penner (2001) argues that constructivism strongly implies
that model construction will be effective if not essential to understanding science.

Studies of professional and/or highly educated decision-makers suggest that they need
to learn to model systems. In particular, their informed, experienced judgments were not as
accurate as simple models (Booth Sweeney & Sterman, 2000; Kainz & Ossimitz, 2002;
Moxnes, 2000).

3. Model construction vs. other modeling activities

In the science, mathematics and engineering community, the term “modeling” usually
means constructing an expression in a formal language that denotes properties of a given
system. Often the formal language is mathematical equations, a computer programming
language or a mixture of the two languages. The process of model construction involves
not only constructing an initial model, but also testing its predictions against the thing
being modeled, which will be called “the system”. If the predictions are inaccurate, the
model must be revised, which is often called “debugging” the model. For the class of
models considered here (which will be defined more precisely later), generating the

372 K. VanLehn

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



model’s predictions involves some kind of numeric or symbolic computation that can be
done by a computer. Thus, the overall process is a cycle of several subprocesses, as
shown in Figure 1, which is borrowed from the Common Core Mathematics Standards
(CCSSO, 2011). In short, in the professions, “modeling” usually means “model
construction”.

In the science education community, the term “modeling” is often used more broadly to
encompass any educational activity that involves a model. A particularly common activity
is to give students a model of a system and ask them to understand it. Students control the
model by manipulating sliders or other controls, and they observe its behavior via gauges,
graphs, animations or other displays. Often this activity is called model exploration.

The activities of model construction and model exploration are very different (Alessi,
2000b). Model construction requires knowing the modeling language and executing the
processes shown in Figure 1. Model exploration requires neither knowing the
modeling language nor executing the problem solving process of Figure 1. Consequently,
model-construction activities have a steeper entry cost than model-exploration activities,
because they require learning the modeling language and the skills involved in the cycle
of Figure 1.

One would hope that that this extra cost is paid back with larger learning gains, and
there is some evidence of this. Hashem and Mioduser (2010, 2011) compared four instruc-
tional activities involving NetLogo models: one was model construction and the other three
were different types of model exploration. The model-exploration groups had 2 hours of
training, whereas the model construction group required 48 hours of training in order to
gain sufficient skill in NetLogo programming. As expected, the model-construction
group scored higher on the post-test as well on measures of post-intervention interviews.
Although NetLogo is much more complicated than most other modeling languages and
thus took a long time to learn, the experiment demonstrates some extra benefit for the
extra cost.

The rest of this article describes a design space for learning activities based on model
construction. The intention is to list major ideas that have appeared in the literature and
might be usefully combined or reworked to form new instructional activities. The ideas
are organized into five more-or-less independent dimensions, each discussed in its own
section (Table 1).

4. Modeling languages

Because model construction is so different from model exploration, this review covers only
model-construction activities. Such activities can be classified along two dimensions: (1)
the type of model being constructed by the students and (2) the way the system is presented
to them. This section considers model types; the following section discusses methods for
presenting systems.

Figure 1. Modeling is the process of constructing and debugging a model (CCSSO, 2011).

Interactive Learning Environments 373

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



Several frameworks for defining and classifying types of models have been proposed
(Clariana & Strobel, 2007; Harrison & Treagust, 2000; Hestenes, 2007; Stratford, 1997).
Collins and Ferguson (1993) developed a particularly exhaustive taxonomy of “epistemic
forms”. An epistemic form is a language or syntax for writing models, and it is not a
model itself or a theory. Although “epistemic form” is an admirably precise term, it did
not catch on. Thus, “modeling language” will be used here in place of “epistemic form”.
Only some of the modeling languages are used in school science classes (Harrison & Trea-
gust, 2000).

Table 1. A design space for learning activities involving model construction.

1. Selected modeling languages
a. Constraints on system states
b. System dynamics
c. Agent-based

2. Methods for presenting systems
a. Succinct text
b. Resources
c. Simulation
d. Virtual labs and virtual field studies
e. Real labs and real field studies

3. Instructional objectives and assessments
a. Improved model-construction skill
b. Improved domain knowledge
c. Improved understanding of a particular system
d. Concept inventories and mental modeling
e. Understanding the role of models
f. Less easily assessed objectives

4. Common student difficulties
a. Poor problem solving strategies
b. Difficulties understanding the modeling language
c. Difficulties understanding the presentation

5. Types of Scaffolding
a. Tutoring
i. Feedback/hints on the model
ii. Feedback/hints on the student’s process (meta-tutoring)
iii. Concrete articulation strategy
iv. Decomposition into subsystems
v. Reflective debriefings
vi. Answering student questions
b. Clarifying the modeling language
i. Notation for models
ii. Grounding the symbols
iii. Comparing predictions to system’s behavior
iv. Students explaining their model
c. Gradually increasing complexity
i. Hiding model features
ii. Qualitative model construction as scaffolding
iii. Model progressions
d. Other scaffolding
i. Teachable agents and reciprocal teaching
ii. Mental execution of models
iii. Test suites
iv. Generic schemas
v. Gamification

374 K. VanLehn

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



Table 2 shows the Collins and Ferguson taxonomy of modeling languages. Collins and
Ferguson divide modeling languages into those for analyzing the structure, function and
behavior of systems. The structure of a system is like its anatomy; structure models describe
the parts of a system and their relationships. The behavior of a system is how it changes
over time. The function of a system refers to the purpose of the system and how that
purpose is achieved. Although there are other ways to divide up the analyses of systems
– for example, de Kleer and Brown (1981) use just structure and function, and Weld
(1983) uses role, function, structure and mechanism – this three-way division of structure,
behavior and function is often found in the literature (Erden et al., 2008; Goel, Rugaber, &
Vattam, 2009; Hmelo-Silver & Pfeffer, 2004).

This review will address only a small number of the languages shown, namely three of
the modeling languages used for analyzing the behavior of systems. These languages are
marked in two with a ♥ bullet. Moreover, only executable languages will be reviewed.
That is, after the user has constructed a model in the language, the user presses a “run”
button and the modeling software calculates predictions about the behavior of the
system. Because these languages are all similar to a degree, there is a chance that this
review can find commonalities in their instructional objectives, assessments, obstacles
and scaffolding. Now let us consider in more detail each of the three modeling language
types to be reviewed.

4.1 Constraint systems

Constraint systems predict the possible states of the behavior of a system. Thus, if one quan-
tity of the model is perturbed, a constraint system predicts how the rest of the system must
change in order to remain in a legal state. The model consists of a set of variables and a set
of constraints on the values of those variables. The constraints are usually mathematical
equations or a set of qualitative equations. If there are N variables, then the equations deter-
mine which points in the N-dimensional space correspond to possible system states.

Table 2. A taxonomy of modeling languages from Collins and Ferguson (1993).

Structural analyses: Decompose the system into parts and describe relationships among parts
• Spatial decompositions, e.g. anatomical diagrams or circuit diagrams.
• Temporal decompositions or stage models, e.g. a series of states or phases.
• Compare and contrast listings, e.g. of the solar system versus the Bohr atom
• Cost-benefit analysis. Comparing and contrasting two economic alternatives.
• Primitive-elements game, e.g. how quarks etc. combine to make protons, electrons, etc.
• Cross-product or table game, e.g. the periodic table of elements.
• Tree-structure or hierarchy game, e.g. biological taxonomies
• Axiom systems, e.g. Euclid’s geometry or Peano’s arithmetic.
Functional analyses: Determine the causal or functional relationships among elements of a system
• Critical-event analysis, e.g. of an airplane crash or the invention of the printing press.
• Cause-and-effect analysis. A sequence of events, each causing the ones after it.
• Problem-centered analysis. A problem’s solution has side effects which pose problems that…
• Multicausal analysis or AND/OR graphs.
• Form-and-function analysis.
Behavior analyses: Describe the dynamic behavior or process of the system.
♥ Constraint systems. They determine the space of possible states of the system.
♥ System-dynamics models. They determine how the system changes over time.
♥ Aggregate-behavior models, e.g. of slime molds. Often called emergent or agent-based.
• Situation-action models, e.g. production systems, Markov models, finite state transition nets
• Trend and cyclical analyses, e.g. finding leading indicators for picking stocks

Interactive Learning Environments 375

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



If one of the variables represents time and the equations are temporal differential or
difference equations, then the model is classified as a system-dynamics model rather
than a constraint system. System-dynamics models are described later in this section.

For quantitative constraint systems, several instructional systems have been built for
algebraic model construction (McArthur et al., 1989) and arithmetic model construction
(Marshall, Barthuli, Brewer, & Rose, 1989). They usually have students create graphs and
tables, then draft equations which are then solved by the system or by the student. When a
tutoring system is involved, it monitors the student’s progress in developing the equations,
offers feedback and hints when asked, and offers helpwhen it detects that the student isfloun-
dering. When no tutoring system is involved, the students typically enter equations into a
spreadsheet or a computer algebra system such as MatLab or Mathematica. The program
solves the equations, allowing the student to focus on constructing the appropriate equations.

For qualitative constraint systems, node-link diagrams are used to represent models in
most languages, including these major ones:

. Betty’s Brain (Leelawong & Biswas, 2008),

. Garp and DynaLearn (Beek, Bredeweg, & Lautour, 2011; Bredeweg, Liem, Beek,
Salles, & Linnebank, 2010; Bredeweg, Linnebank, Bouwer, & Liem, 2009),

Figure 2. A model and query from Betty’s Brain. Reprinted from Leelawong and Biswas (2008),
with permission of IOS Press.

376 K. VanLehn

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



. IQON and VISQ (Miller et al., 1993) and

. Vmodel (Forbus, Carney, Sherin, & Ureel Il, 2005).

Figure 2 shows a qualitative diagram drawn by a user of Betty’s Brain (Schwartz et al.
2009). The ++ label indicates that the two variables are directly related (as one increases,
so does the other), while a – – label indicates that they are inversely related (as one
increases, the other decreases). In Figure 2, the user is asking what happens to one variable
when another variables’ value is changed. This is one way to access the predictions of the
model. Another is to have the software report all the variables whose values are increased or
decreased when a certain variable’s value is modified. Some qualitative diagram languages
have other labels than + and −, and can do other types of predictions as well.

Qualitative diagrams should not be confused with concept maps even though they look
similar. A typical concept map language allows the user to enter anything on the links, as
shown in Figure 3. A concept map is essentially a collection of propositions such as
“Seasons are determined by amount of sunlight”. A concept map is a model, but it is not
an executable model. That is, there is no way for the concept map itself to answer questions
such as “what would happen if the tilt of the earth’s axis was zero?”Activities where student
construct a concept map are excluded from this review.

4.2 System-dynamics modeling languages

A system-dynamics model predicts the behavior of a system over time. A set of temporal
differential equations can be used as a system-dynamics model. However, for students who

Figure 3. A concept map. Reprinted from Novak and Canas (2008), with permission of the authors.

Interactive Learning Environments 377

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



are not familiar with calculus, a common system-dynamics modeling language is a quanti-
tative diagram. A quantitative diagram summarizes a system of equations as a node-link
diagram. Typically, each node represents both a variable and a function for computing its
value. The inputs to the function are represented as incoming links. To avoid cluttering
the diagram, the functions can be seen only by clicking on the node. Figure 4 shows an
example from Co-Lab (Mulder, Lazonder, & de Jong, 2010). It represents time discretely
rather than continuously as differential equations would because that makes the mathemat-
ics accessible to students who have not taken calculus. There are several general purpose,
industrial strength tools for drawing such quantitative diagrams, including Stella (http://
www.iseesystems.com/), Powersim (http://www.powersim.com/), Dynasys (http://www.
hupfeld-software.de/pmwiki/pmwiki.php) and Vensim (http://www.vensim.com/). Tools
intended primarily for education include:

. Modellingspace (Avouris, Margaritis, Komis, Saez, & Melendez, 2003),

. CoLab (van Joolingen, De Jong, Lazonder, Savelsbergh, & Manlove, 2005) and

. Model-It (Metcalf, Krajcik, & Soloway, 2000).

Although diagrams work well for small models, it can be difficult to follow links when the
diagrams become more complex. However, system-dynamics models can be written as text,
and this may make them easier to understand when there are a large number of variables.
The caption of Figure 4 shows how its diagram can be expressed as a set of equations. Mod-
ellus is modeling tool based on equations as the model representation (Teodoro & Neves,
2011). Qualitative diagrams can also be expressed as a set of qualitative constraints
expressed as text.

4.3 Agent-based modeling languages

An agent-based model is for modeling the emergent behavior of systems. The model con-
sists of a large number of agents. Each agent is simultaneously executing a simple program.

Figure 4. A system-dynamics diagram.Working counterclockwise from the top, the equations inside
each rectangle and circle are as follows: Charget = Charget-1+It; Vct = Charget/C; Vft = S-Vct; It = Vft/
R; R = 1/(1/R1 + 1/R2). Reprinted fromMulder et al. (2010), with permission of Taylor & Francis Ltd.

378 K. VanLehn

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 

http://www.iseesystems.com/
http://www.iseesystems.com/
http://www.powersim.com/
http://www.hupfeld-software.de/pmwiki/pmwiki.php
http://www.hupfeld-software.de/pmwiki/pmwiki.php
http://www.vensim.com/


The program is expressed in a computer programming language, such as Logo or Java.
Some modeling languages are:

. NetLogo (http://ccl.northwestern.edu/netlogo/)

. AgentSheets (Repenning, Ioannidou, & Zola, 2000)

. Worldmaker (Boohan, 1995).

. OOTLS (Neumann, Feurzeig, & Garik, 1999)

. CTiM (Basu et al., 2012).

Different types of agents run different programs. For instance, Figure 5 shows a
NetLogo model of slime molds. The left panel shows the interface, which has some
buttons and sliders for controlling values inside the program and an animation of the
agents. The right panel shows the code for the agents’ programs. Some agents represent
slime molds, and they run one program. Other agents represent patches that the slime
molds move across and deposit chemicals on; the ground agents run a different program
from the slime mold agents. At this writing, NetLogo is the most widely used agent-
based modeling language for education.

Agent-based modeling overlaps with system-dynamics modeling in that both languages
can be used to model dynamic systems. For instance, a predator-prey ecosystem can be
easily modeled in both NetLogo and Stella. One study (Thompson & Reimann, 2010)
has compared these two modeling paradigms, but the small sample size and relatively
short period of the instruction prevented drawing any conclusions about their relative
effectiveness.

5. Methods for presenting systems

Although the modeling language has a major impact on the students’ thinking and learning,
the method of presenting the system to be modeled is also important. Here are five major
ways to present systems to the students:

. Succinct text: The system is described in text that succinctly mentions most of the
relevant entities and relationships, and seldom mentions irrelevant ones. For instance,

Figure 5. A NetLogo model of slime mold growth.

Interactive Learning Environments 379

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 

http://www.carnegielearning.com


one might say, “In 2010, the population of Phoenix was 1,445,632 and was increasing
at 9.4% per year. Construct a model that predicts the population from 2010 to 2040.”

. Resources: The student is given a task, such as “Predict the population of Phoenix in
from 2012 to 2040”, and a set of resources comprising text, tables, charts, pictures,
videos, diagrams, etc. The resources contain the relevant information about the
system along with irrelevant information. Examples of this mode of presentation
are the studies of Betty’s Brain (Biswas, Jeong, Kinnebrew, Sulcer, & Roscoe,
2010; Leelawong & Biswas, 2008; Schwartz, Blair, Biswas, Leelawong, & Davis,
2008; Schwartz et al., 2009).

. Simulation: The student is given a simulation without being able to view the compu-
tation that drives it. In most cases, the student can control the simulation. For
instance, the student could be given only the interface to the slime mold simulation,
shown on the left of Figure 5 which can be controlled with the buttons and sliders.
Examples of this method of presentation are studies using CoLab (Basu et al.,
2012; Bravo, van Joolingen, & de Jong, 2009; van Joolingen et al., 2005; Löhner,
Van Joolingen, & Savelsbergh, 2003; Löhner, Van Joolingen, Savelsbergh, & Van
Hout-Wolters, 2005).

. Virtual labs and virtual field studies: The student is given a simulation of a laboratory
with appropriate apparatus and supplies or is allowed to explore a virtual world using
appropriate instruments. The students’ task is to set up experiments and run them. For
instance, to study slime mold growth, the student would have to manipulate simulated
Petri dishes, pipettes and photographic measurement tools. Although such virtual lab-
oratories exists (Yaron, Karabinos, Lange, Greeno, & Leinhardt, 2010), it seems that
they have not yet been used as a presentation method for model-construction
activities.

. Real labs and real field studies: Although the model is constructed on a computer, the
system is presented in reality, such as visiting a stream and taking water samples, then
measuring pH with the litmus paper. Examples of this method of presentation are
(Metcalf et al., 2000).

For every choice of presentation type and every choice of modeling language, there is a
feasible model-construction activity. For instance, if we choose “simulation” as the method
for presenting the system and “system dynamics” as the modeling language, then we have a
learning activity where students can manipulate the simulation in order to understand how it
works, then construct a system-dynamics diagram. The student’s goal is to create a model
whose predictions match the behavior of the simulation. This is the activity most frequently
done with Co-Lab (van Joolingen et al., 2005).

Mathematical “word problems” correspond to activities where the presentation of the
system is succinct text and the modeling language is systems of equations. However,
these would be word problems done with a computer system where students enter the
equations into a computer (including calculators) and the computer solves them. Many stu-
dents find numerical answers for word problems using informal strategies that do not
involve writing equations (Koedinger, Alibali, & Nathan, 2008; Koedinger & Nathan,
2004), so they are not doing model construction.

6. Instructional objectives and assessments

Many claims have been made about the instructional benefits of model construction, and
several types of assessment have been used for testing these claims. The subsections that

380 K. VanLehn

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



follow each discuss a common instructional objective and its assessment. A final section
briefly mentions other benefits of model construction that are not easily tested with
assessments.

6.1 Improved model-construction skill

Model-construction skill is operational knowledge about the modeling language, the system
presentation and the method for getting from the presentation to the model. This is a kind
of “sense making” (Quintana et al., 2004) or “scientific reasoning”. For instance, if the pres-
entation method involves experimentation, then the control of variable strategy (“vary one
thing at a time”) is part of model-construction skill. If the experimental observations have a
chance of error, then model-construction skill includes knowing that one should do repeated
tests or samples. If the modeling language is systems of equations, then model-construction
skill includes knowing that when the number of equations is the same as the number variables,
then the solution may be a single point. If a qualitative diagram has a multi-link path between
two variables, then model-construction skill should include knowing how to determine from
the + and – labels on the links whether the variables are directly or inversely related.

The most common procedure for assessing model-construction skill uses the same
system presentation method, the same modeling language and different domain knowledge
and different systems from the ones used during instruction. For instance, several studies of
Betty’s Brain (Biswas, Leelawong, Schwartz, & Vye, 2005; Biswas et al., 2010; Leelawong
& Biswas, 2008) trained students by having them create models of the oxygen cycle in an
water-based ecosystem and then assessed them by having them create models of the nitro-
gen cycle in a land-based ecosystem. In both activities, the systems were presented with
resources and the modeling language was the qualitative diagram language shown in
Figure 2.

A less common assessment of model-construction skill involves varying the modeling
language. For instance, van Borkulo, van Joolingen, Savelsbergh, and de Jong (2012)
trained students in using the quantitative modeling language shown in Figure 4, then
tested them using a qualitative modeling language similar to the one shown in Figure 2.
This could be a considered a far transfer test of model-construction skill.

Two dependent measures are commonly used:

. Product: One measures the quality of the models that the students’ construct, typi-
cally by scoring the number of elements of the model that are correct or acceptable.

. Process: One measures the quality of the students’ behavior when constructing a
model, typically by coding videos or log data for events that are clearly unacceptable,
such as starting to construct a model before paying any attention to the presentation of
the system, or running a deterministic modeling language twice without changing the
model between runs.

6.2 Improved domain knowledge

Domain knowledge refers to general concepts and principles that apply more widely than
just the system being addressed by the model-construction activity. Model-construction
activities can impact this knowledge in three ways: by adding new domain knowledge,
by making existing knowledge more operational and robust, and by removing misconcep-
tions. Let us consider each instructional objective in turn.

Interactive Learning Environments 381

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



One goal of inquiry learning is that students develop hypotheses about a particular
system and that the hypotheses turn out to be general domain principles. For instance,
the Thinker Tools sequence of model-exploration activities led some sixth graders to dis-
cover general principles governing velocity, acceleration, mass and force (White, 1993).
Such an instructional objective can be measured with a conventional assessment, such as
asking the students to state their newly won beliefs about the domain or asking them ques-
tions about them.

Another instructional objective is for students to convert their inert, fragile prior domain
knowledge into operational, robust domain knowledge. That is, instead of discovering new
hypotheses, students are told the relevant scientific knowledge before or during the model-
construction activities. For instance, the system can be presented in the context of a set of
resources that present the target domain knowledge, as in the Betty’s Brain studies (Chin
et al., 2010). The appropriate assessments are to see if students can apply the domain con-
cepts and principles in near and far transfer situations. Retention tests may also be used to
measure robustness.

Students often have incorrect beliefs about the physical world, which are often called
misconceptions or alternative conceptions. Misconceptions often can be detected during
interviews with students or using multiple-choice tests whose foils offer responses consist-
ent with the false beliefs. Using both methods, Lee, Jonassen, and Teo (2011) showed that
having students construct models in Model-It reduced their misconceptions compared to a
control group of students who received a more standard inquiry instruction over the same
period. Their task domain was the water cycle, and observed misconceptions include
(p. 54): “When the plant gives out carbon dioxide or oxygen, they would condense on
the transparent plastic bag and water droplets formed.”

6.3 Improved understanding of a particular system

Some systems are so important that it is worth the student’s time to come to a deep under-
standing of them. For instance, the effect of greenhouse gases on global warming may be
worth understanding in detail.

Whereas model-construction skill and domain knowledge are assessed by using differ-
ent systems during the assessment from those used during the training, if the goal is to
deeply understand a particular system, then that system must be used in both training
and assessment phases. Because the system is the same in both training and assessment,
it would be wise to use a different task for assessment than for training. If the assessment
had students construct a model of the target system (e.g. global warming), and they had
already constructed such a model during training, then the assessment task might tap
only shallow, episodic memories rather than a deep understanding of the target system.
Thus, this instructional objective might be best assessed using tasks that are not model con-
struction but nonetheless tap the same deep understanding of the system as model construc-
tion. Table 3 lists candidate assessment tasks culled from a classic edited volume on mental
models (Gentner & Stevens, 1983) and from a review of assessments used in the system-
dynamics literature (Hopper & Stave, 2008).

Developing scoring methods for such assessments requires considering the use-speci-
ficity of transfer (Singley & Anderson, 1989). The basic idea is that if an assessment task
requires, say, 100 knowledge components and the model-construction task involves only
60 of them, then the expected best score on the assessment task would be only 60%, assum-
ing that the score is linearly related to the number of knowledge components that have been
mastered. Determining the number of shared knowledge components often requires a

382 K. VanLehn

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



separate study. For instance, consider a study of the transfer between tasks (Kessler, 1988):
(1) constructing a computer program, (2) debugging a given computer program and (3) cal-
culating the output of a given program with a given input by mentally executing it. These
three activities are rather similar to constructing a model, debugging a model and making
predictions using a model. Kessler thoroughly trained students on one of the three tasks, and
then tested them on all three tasks. He found large amounts of transfer between constructing
and debugging a program, but little transfer between mentally executing a program and the
other two tasks. This makes sense given that constructing and debugging programs seem
intuitively to share many steps, whereas mentally simulating the execution of a program
hardly shares any steps with the other two. If the analogy between program construction
and model construction holds, then use-specificity of transfer predicts little transfer from
model construction to mental prediction of system behaviors, which is the first set of
tasks in Table 3.

Although predicting transfer accurately requires a detailed cognitive task analyses and
studies of both the model-construction activity and a given assessment task, Table 3 has
“√” bullets next to the assessments that seem most likely to overlap with model construc-
tion. These may be the most appropriate assessments if the goal is to determine which
instructional treatment causes the best understanding of the system.

Table 3. Methods for assessing students’ understanding of a system.

Assessments involving prediction.
° Qualitative relationships. Ask the student questions of the form, “If X increases, then will Y increase,
decrease or be unaffected?”

° Sketching graphs. Ask the student to sketch the relationship between two variables, or the value of a
variable over time.

° Classifying behavior. Ask the student whether the system, or a variable of the system, exhibits
oscillation, damped oscillation, asymptotic growth, unbounded growth, emergence, or some other
class of behavior that has a name known to the student.

Assessments involving faults.
° Response to a fault. When a fault is inserted into the system, how will that affect its behavior?
√ Recognizing faulty behavior. When given a system behavior or given a system whose behavior can
be tested, can the student determine if the system is operating normally or whether it has a fault?

√ Troubleshooting. When given a system whose behavior is faulty, can students find and correct the
fault?

Assessments involving redesign.
√ Extensions. Can the student modify the system to add a new capability or behavior?
° Optimization. Can the student modify the system to exhibit the same behavior while reducing the
cost, error rate, complexity, latency or some other valued measure?

Assessments involving exposition.
° Explanation. How well can the student explain or describe the system’s behavior?
° Teaching. How well can the student teach the system’s behavior to another student?
° Analogies. How well can the student construct or judge analogies to the system?
Assessments involving operating a device.
° Plan a sequence of operations to minimize time or risk of error.
° Choose which of several methods for operating the device is best for a particular situation.
° Control the output of a device despite fluctuations in its inputs.
° Design or optimize a general procedure for operating the device.
° Estimate the time or number of operations required to operate the device.
° Non-standard operation. When the normal operating procedures are blocked or fail, invent a
sequence of operations that will work.

Retention.
° In addition to performing one of the assessments above immediately after the students’ have engaged
in a model construction activity, the assessment is conducted several days or weeks later.

Interactive Learning Environments 383

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



6.4 Concept inventories and mental modeling

Concept inventories are non-quantitative assessments that are often used in quantitative
science and mathematics courses (Pfundt & Duit, 1998). They often have questions that
require students to construct a mental model, execute it, and thus predict the behavior of
a system. For instance, here is a question from the famous Force Concept Inventory
(FCI) (Hestenes, Wells, & Swackhamer, 1992):

Two metal balls are the same size, but one weighs twice as much as the other. The balls are
dropped from the top of a two story building at the same instant of time. The time it takes
the balls to reach the ground below will be:

(A) About half as long for the heavier ball.
(B) About half as long for the lighter ball.
(C) About the same time for both balls.
(D) Considerably less for the heaver ball, but not necessarily half as long.
(E) Considerably less for the lighter ball, but not necessarily half as long.

To answer such questions, students should construct a mentally held model of the system and
then execute it in order to predict its behavior (Ploetzner & VanLehn, 1997). As another
example, Figure 6 shows a question from the concept inventory of Booth Sweeney and
Sterman (2000). It also requires students to construct a mentally held model of the system
and execute it in order to predict the system’s behavior. Like many concept inventory
tasks, students sketch their answer rather than selecting it from a set of choices.

Because correctly answering a concept inventory question requires both constructing a
mental model and mentally executing it, one must be careful in interpreting scores. When
students score well on a concept inventory, then they probably have mastered both skills.
However, lack of mastery of just one skill suffices for generating low scores. In particular,
even if the instruction is completely successful at teaching model-construction skills and yet
provides no practice at mentally executing models, then scores on the concept inventories
will probably be low.

To make this issue more concrete, let us consider a specific analysis of transfer from
instruction based on model construction to assessment based on the FCI. Ploetzer and
VanLehn (1997) constructed rule-based cognitive models of both quantitative and qualitat-
ive physics problem solving. The rules for quantitative problem solving were validated
against verbal protocols of students studying examples and solving ordinary quantitative
physics homework exercises; they represented what students could reasonably learn from
such instruction. The rules for qualitative problem solving were constructed to both
answer the FCI questions and to be as similar as possible to the rules for quantitative
problem solving. If correctly answering FCI questions required only skill at constructing
models, then one would expect 100% of the FCI rules to correspond to quantitative
problem solving rules, which include rules for constructing equation-based (constraint
system) models. In fact, only 36% of the FCI rules corresponded to quantitative problem
solving rules. Of the FCI rules that did not match quantitative problem solving rules,
most involved deriving predictions from models, which is the mental equivalent of execut-
ing the model. This analysis suggests that success on the FCI requires both skills (mental
construction and execution of models) but that only one of these skills is taught in conven-
tional physics instruction.

Some educators consider mental modeling, and the correct answering of concept inven-
tory questions in particular, to be an essential instructional objective, perhaps even more
important than formal model construction. In such classes, the instructors should probably

384 K. VanLehn

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



give the students considerable practice in mentally constructing and executing models using
problems similar to those on the concept inventories. VanLehn and van de Sande (2009)
sketch such a curriculum for physics. Löhner (2005, chapter 5) presents preliminary evi-
dence about the effects of adding model execution exercises to a model-construction learn-
ing activity.

6.5 Understanding the role of models

Model-construction activities allow students to learn about the role of models in science,
business, government and other domains. For instance, students can learn:

Figure 6. A question from a system-dynamics concept inventory. Reprinted from Booth Sweeney
and Sterman (2000), with permission of John Wiley and Sons.

Interactive Learning Environments 385

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



. to distinguish the model’s structure from its predictions about the system’s behavior;

. that validating a model means testing that its predictions match known, well-under-
stood system behavior;

. that models can explain poorly understood systems by matching the observed behav-
ior and offering predictions about unobserved behavior;

. that models can make predictions about the behavior of systems that have not yet
been observed or even built;

. that models can help decision-makers by allowing them to compare the costs and
benefits of alternatives by modeling each;

. that models can be valid with respect to known observations but nonetheless make
incorrect predictions about future observations;

. that models can be modular so that even the large, complex models used for, e.g.
weather, economics and nuclear explosions can be understood in terms of submodels
which are more easily understood and validated and

. about parsimony, sensitivity, calibration, non-identifiability and many other epis-
temological concepts.

Such epistemological knowledge is declarative knowledge, so it can be assessed with
questionnaires, interviews and journals (Crawford & Cullin, 2004; Schwarz & White,
2005; Treagust, Chittleborough, & Mamiala, 2002). Schwarz et al. (2009) define two learn-
ing progressions for modeling epistemology and show how students’ drawings can be used
to assess their location along each progression.

6.6 Other less easily assessed instructional objectives

There have been many claims about the benefits of model construction, including some that
would be rather difficult to assess. This section lists a few.

. When students construct an executable model, they have constructed a machine that
thinks. Moreover, they have told it exactly how it should think. The mere fact that
they can do this is a powerful idea (Papert, 1980).

. Model construction may lead students to take ownership of their ideas and knowledge
(Penner, 2001).

. The models can become an object of discussion and communication among students
and thus help them practice evidence-based discussion skills (Schwarz & White,
2005; White, 1993).

. Model construction may help students see the “big picture” and overarching patterns
(Mandinach & Cline, 1994).

. Students may more clearly distinguish observed phenomena from underlying causal
processes and make stronger connections between them (Doerr, 1996).

. Students may develop intuitions, predilections and skills at understanding complex
phenomena in general (Hogan & Thomas, 2001; Mandinach & Cline, 1994;
Schecker, 1993; Steed, 1992).

7. Common student difficulties

Students have many difficulties with model construction, and this section lists some of the
most commonly mentioned ones. They are grouped, somewhat arbitrarily, into difficulties

386 K. VanLehn

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



with the overall problem solving method, difficulties with the modeling language and dif-
ficulties understanding the presentation of the system.

7.1 Poor problem solving strategies

The cognitive process that students should ideally do is diagrammed in Figure 1. It is
included in the Common Core State Standards in part because there is wide agreement
that this build-test cycle is the ideal way to construct a model.

More specifically, students should build an initial version of the model while being sure
to include the quantities or behaviors that they want to explain. They should then test the
model by executing it and comparing its predictions to the behavior of the system, in so
far as they know what that behavior is. If the model’s predictions do match the behavior
of the system, then students should test different cases or starting values in order to
insure that a match is obtained over a variety of test cases. If they find a mismatch
between the models’ predictions and the system’s behavior, then they need to debug the
model by locating and fixing the part of the model responsible for the incorrect prediction.
They should then resume evaluating the model.

When a system is complicated enough, students should decompose the system into parts
and perform the build-test cycle described above on one part after another. Before begin-
ning, students should identify their goal such as modeling a particular behavior, quantity
or relationship. This goal should drive their decomposition of the system. As they itera-
tively develop the model, they should reflect often on their goal in order to prevent building
unnecessary parts of the model.

Unfortunately, many students do not enact the cognitive processes described above.
This section lists common ways that student’s fail.

The goal of model construction is to construct a parsimonious model in the given mod-
eling language such that the model’s predictions match the behavior of the given system.
However, students often appear to have a different goal in mind, such as:

. to produce a single, numerical answer (Booth, 1988; Hogan & Thomas, 2001; Miller
et al., 1993). This misconception may have been encouraged by early experiences
with algebra story problems;

. to construct a model that displays everything they believe to be true about the system,
without any regard to what predictions the model makes (Hogan & Thomas, 2001). In
fact, they may never execute the model. This misconception may be encouraged by
early experience with concepts maps and

. to get the predictions of the model to match the behavior of the system without con-
sidering the domain or plausibility. As Löhner et al. (2005, p. 456) put it, “they spend
their effort trying to match their model output to the system simulation output, rather
than trying to explain the underlying mechanism.”

Even when students understand that the goal of model construction is to create a model
that explains the behavior of a system, they often fail to adequately test and debug their
model. Some noted examples of poor testing and debugging are:

. When students execute their model, they sometimes do not compare its predictions to
the system’s behavior (Metcalf et al., 2000). Thus, they do not notice when the model
is making incorrect predictions.

. Students sometimes test their models on only one or two cases (Alessi, 2000a).

Interactive Learning Environments 387

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



. To fix incorrect predictions, students sometimes add “fudge factors”, which are for-
mulas, constants or logical conditions designed to artificially fix the problem, and not
to model the system (Alessi, 2000a).

. Students sometimes make unmotivated changes to the model in the vague hope that
the results will come out right (Alessi, 2000a; Löhner et al., 2005).

As mentioned earlier, when a system is complicated enough, students should use a
decompositional method. That is, in order to create a model of a whole system, students
should divide the system into loosely coupled parts, build and test a model of each of
the parts, then integrate the parts’ models into a whole. Unfortunately, students often
create a large model before testing it (Metcalf et al., 2000). They then have trouble
finding out why it makes poor predictions.

Students often copy models from the instructional materials, perhaps thinking that it
will be easier to modify an existing model (which, unfortunately, they may not fully under-
stand) rather than start from scratch (Alessi, 2000a). Students often try to incorporate the
formulas of previous science and mathematics classes (which they often do not fully under-
stand) instead of doing true system analysis (Alessi, 2000a).

7.2 Difficulties understanding the modeling language

This section lists a few of the observed difficulties students have in understanding the
language in which models are constructed, and hence the models that they have constructed.
Although the language may be formal mathematical expressions or formal diagrams, it is
still a “foreign” language and quite non-trivial for students to learn (Koedinger et al., 2008).

Students often lose track of what the symbols in their models denote. For instance,
Paige and Simon (1966) found that algebra students would report a negative number for
L, where L should denote the length of a board. If students had kept track of the denotation
of L, they would have realized immediately that a negative length is impossible. When
building a model and especially when testing a model, it is essential that students keep
track of what the model’s symbols denote.

When students are constructing a model that is intended to be understood by someone
else, there is an additional problem, which is called “grounding”. The term comes from the
literature on analyses of natural language dialogues, and it denotes the psycholinguistic
process where two people come to a mutual understanding of what a phrase or term
means (Clark & Brennan, 1991). Often this process proceeds smoothly and invisibly, but
it occasionally breaks down. For instance, the term “next week” often denotes different
weeks for different participants in a conversation. Similarly, a variable labeled “birth
rate” in a model can denote different quantities to the student and the teacher. The
problem is exacerbated when the student is trying to communicate with a computer tutor,
which is handicapped by lack of linguistic skill. If help is offered by a teacher, computer
tutor or peer, and the participants have failed to ground all the formal terms in the
model, then the help can be extremely confusing.

Students often get confused when modeling languages use symbols for both objects and
quantitative properties of objects. When students are given a list of terms such as “water”,
“tanks”, “water pressure” and “water level in a tank”, they have trouble identifying which
terms are variables (Kurtz dos Santos & Ogborn, 1994).

Students are often confused when the modeling language allows a variable’s value to be
specified using a differential. Most system dynamic models have two kinds of relationships
between variables. One can be expressed by an equation of the form x = f(V1…Vn), where

388 K. VanLehn

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



V1…Vn are variables not including x, and f is a mathematical function not including deriva-
tives or integrals. The other kind of relationship is expressed by an equation of the form dy/
dt = Σ ± v_i which says that the change in y over time is a weighted sum of variables, where
the weights are either +1 or −1. In graphical languages for system dynamic models, the
variable y is called a “stock” and the variables v_i are called “flows”. Students often
have difficulties understanding stocks and flows (Booth Sweeney & Sterman, 2000;
Cronin, Gonzalez, & Sterman, 2009; Hopper & Stave, 2008; Kainz & Ossimitz, 2002;
Metcalf et al., 2000; Sterman & Booth Sweeney, 2002). Kurtz dos Santos and Ogborn
(1994) suggest that flows that have constant values are much less confusing than flows
whose values vary over time.

Students who are learning algebra sometimes have difficulty in understanding the
formal language. As a vivid illustration, Booth (1988) listed several misconceptions
about algebra notation found during interviewing students in the 8th to 10th grades:

. Thinking that implicit multiplication is concatenation, so when y is 4, 5y is 54.

. Thinking that coefficient-variable terms, such as 5 m, act like number-unit terms.
Thus, 5 m means “5 meters,” so “5 y” would denote 5 yogurts or 5 yams or a set
of 5 other objects or units whose first letter is “y”.

. Thinking that the equals sign is a command to produce an answer.

. Thinking that different variables must stand for different numbers. Thus, a + b = a + c
can never be true because b and c must stand for different numbers.

It is likely that other formal modeling languages, even the graphical ones, also present
difficulties and afford misconceptions. For instance, after a 3-hour pilot experiment in the
author’s lab where students used a stock-and-flow language similar to the one of Figure 4,
students reported during focus groups that they did not understand the difference between
the single-line arrow and the double-line arrow. Löhner et al. (2003) found that students had
trouble entering equations that they knew about into a graphical modeling language. Hef-
fernan and Koedinger (1997) found that students could solve parts of algebra word pro-
blems but could not compose the results algebraically, suggesting a lack of fluency in
the language of algebra.

7.3 Difficulties understanding the presentation

As mentioned earlier, there are a variety of methods that instructors can employ for present-
ing a system to the student. This section just considers the two most widely used methods:
experimentation with simulations and reading text.

When the presentation of the system requires experimentation in order to uncover its
behavior, there are a variety of obstacles associated with inquiry. For instance, students’
experiments may be either motivated or unmotivated. A motivated experiment is done in
order to test a specific hypothesis, whereas an unmotivated experiment is sometimes charac-
terized as guesswork. For instance, in one model-construction study, 39% of the students’
experiments were designed with no hypothesis in mind (Löhner et al., 2005). Low domain
knowledge is often associated with frequent unmotivated experiments (Lazonder, Hage-
mans, & de Jong, 2010; Mulder et al., 2010). This is just one example of the many difficul-
ties that students have when attempting to understand a system by experimenting with it.

When the presentation of a system is text, then superficial reading is a common
problem. For instance, keywords such as “per” or “altogether” can often be used to help
translate a word problem into an equation (Paige & Simon, 1966). By the time, students

Interactive Learning Environments 389

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



have reached high school and are solving algebra story problems, the use of such superficial
reading strategies may have diminished. Koedinger et al. (2008) found that accuracy for
story problems that used operator words (e.g. “subtracted” and “multiplied”) was not
higher than for story problems that used other words instead. Heffernan and Koedinger
(1997) found that simplifying the language made little difference on the error rate of
algebra word problems.

Nonetheless, there are certain phrases in English that invite superficial reading. For
instance, Clement (1982) found that university engineering students usually translated
“there are six times as many students as professors in this university” into 6S = P. This mis-
conception was dislodged neither by hints nor by using diagrams.

System-dynamics problems often involve quantities that are ratios and that vary over
time, and the English phrases that express such concepts are often awkward and difficult
to understand. For instance, a variable named “rabbit birth rate” might be defined as
either “the number of rabbits born per year per rabbit in the population” or “the ratio of
baby rabbits born in a year to the number of rabbits in the population that year.” Faced
with such convoluted language, many students may opt for a superficial reading assuming
that it will be easier to debug the resulting model than to try to untangle the language.

The remarks made so far apply to all text, including presentations comprising a short
paragraph of text that presents all and only the information needed for constructing the
model. Another method of presentation is to give students a set of resources (e.g. multime-
dia; a list of web pages) with the relevant information about the system embedded in con-
siderable irrelevant information. Ideally, students would alternate between constructing the
model, discovering that they needed to know something about the system, searching the
resources for the desired information, and resuming construction of the model. Although
fast learners using Betty’s Brain did exhibit that pattern of reading, slow learners spent
large amounts of time reading the resources in an unfocused fashion (Segedy, Kinnebrew,
& Biswas, 2012).

8. Types of scaffolding

As the preceding section illustrated, model construction is difficult, so considerable
research has investigated methods for accelerating students’ learning. These methods for
helping learners along are often called “scaffolding”, because they can be removed when
the learner has reached mastery. That is, scaffolding is not an intrinsic part of the model-
construction activity, but is something added to the activity.

Because many creative forms of scaffolding have been invented, it is difficult to
organize this section. The list of scaffolding types has been grouped into (1) those that
require tutoring or similar interactivity from the system, (2) those that involve clarification
of the modeling language, (3) those that involve gradually increasing the complexity of the
model-construction activities, and (4) all the rest.

8.1 Tutoring

A typical computer tutor knows the solution but gives the students only prompts, hints and
feedback about it. This kind of scaffolding is covered in the first two subsections below. The
remaining subsections cover other interactive methods of scaffolding, such as answering
questions asked by students. The scaffolding methods described in this section often
require artificial intelligence or other sophisticated computation.

390 K. VanLehn

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



8.1.1 Feedback and hints on the student’s model

Several systems give feedback and hints to students on themodel.Bravo et al. (2009) extended
CoLab to do such tutoring. When the student clicked on a “Check” button, the system com-
pared the student’s model to a reference model, noted the differences between them, selected
one, and told the student about it. A formative evaluation of the system was done, but the
system was not compared to the standard version of CoLab, which lacks such tutoring.

In an early version of Betty’s Brain, students could ask Mr Davis (an agent portraying a
tutor) for help after Betty took a quiz, and he would give hints (Biswas et al., 2005). If stu-
dents asked for enough hints, Mr Davis would eventually reveal exactly how to change the
model. Unfortunately, students tended to ask for hints rapidly, ignoring them until Mr Davis
indicated how to fix the model. This form of help abuse, sometimes called gaming the
system, is quite common in other tutoring systems as well (Baker, Corbett, Koedinger, &
Wagner, 2004; Muldner, Burleson, van de Sande, & VanLehn, 2011). This led Biswas
et al. to modify Mr Davis so that he gave hints on the process of model construction
rather than the product, i.e. the student’s model. That form of scaffolding is covered next.

8.1.2 Feedback and hints on the student’s process (meta-tutoring)

Whereas the preceding section discussed feedback and hints on the students’ model as they
are constructing it, this section discusses feedback and hints on the students’ behavior.
Feedback on the model often has to mention domain knowledge. For instance, if students
have constructed a model that says that all rainfall becomes runoff, then the system might
say, “Does any water soak into the ground? Is runoff really equal to rainfall?” On the other
hand, feedback and hints about the student’s behavior seldom need to mention domain
knowledge. For instance, if students continue to add to their model without testing it,
then a possible hint is, “It’s a good idea to run your model and check its predictions
even before it’s finished.” Because domain knowledge is not mentioned, feedback and
hints on process are sometimes called “meta-tutoring” because “tutoring” is generally
reserved for domain-specific feedback and hints.

Betty’s Brain was equipped to do both tutoring and meta-tutoring (Leelawong &
Biswas, 2008). It could comment on the student’s model or it could comment on the stu-
dent’s behavior. Perhaps, the most powerful example of the latter was that Betty would
refuse to take a quiz until the student had tested her first. That is, students had to ask specific
questions of their model (e.g. if air temperature goes down, what does body temperature
do?) before the model could be given a test suite of instructor-generated questions. In a
series of studies (Leelawong & Biswas, 2008; Tan, Biswas, & Schwartz, 2006; Tan,
Wagster, Wu, & Biswas, 2007; Wagster, Tan, Biswas, & Schwartz, 2007; Wagster, Tan,
Wu, Biswas, & Schwartz, 2007), meta-tutoring was found to be significantly more effective
than the same system with meta-tutoring turned off.

Although Betty’s Brain taught students a strategy for model construction, it did so in a
piecemeal fashion as hints from Mr Davis or comments from Betty. Other model-construc-
tion systems offered more explicit scaffolding. For instance, the final version of Model-It
(also called TheoryBuilder (Metcalf, 1999)) had several features intended to guide students’
process of constructing a model (Metcalf et al., 2000). The model editor had four modes,
which were selected by clicking on one of four buttons labeled Plan, Build, Test and Evalu-
ate. The Build mode was the actual model editor. The other modes presented forms to be
filled in by the student. Figure 7 shows the form for the Test mode. Students were given
feedback and hints, which they could suppress if they desired, when they attempted to

Interactive Learning Environments 391

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



bypass a suggested activity. The Carnegie Learning’s Algebra Cognitive Tutor (www.
carnegielearning.com) and the Word Problem Solving Tutor (Wheeler & Regian, 1999)
also scaffolded problem solving strategies via lightweight constraints, implemented with
a small amount of didactic instruction followed by feedback and hints.

The meta-tutoring of Betty’s Brain placed only weak constraints on students’ behavior.
The four phases of Model-It placed somewhat stronger constraints on students’ behavior. At
the far end of this progression is procedural scaffolding, which places very strong con-
straints on student behavior. The basic idea of procedural scaffolding is to teach students
to temporarily follow a specific procedure for constructing a model. Although the procedure
is not required by the task and there are many other ways to successfully problems, the pro-
cedure is used as a temporary scaffolding to guide students who might otherwise be quite
lost. A physics tutoring system, Pyrenees (Chi & VanLehn, 2008, 2010) had students start
by identifying the quantity, such as the final velocity of a falling object, that the physics

Figure 7. Scaffolding for the test mode of Model-It. Reprinted fromMetcalf (1999), with permission
of the author.

392 K. VanLehn

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 

http://www.carnegielearning.com
http://www.carnegielearning.com


problems asked them to calculate. They were then asked to identify a physics principle,
such as the definition of kinetic energy that contains it. Then they wrote the equation
down. Next, for each unknown quantity in the equation, they repeated this process, treating
the unknown as the sought quantity. In this fashion, they constructed a set of equations that
modeled the given system. Procedural scaffolding significantly improved students’ model
construction in the task domain where it was required. Moreover, when procedural scaffold-
ing students transferred to a new task domain where procedural scaffolding was not
required, they again learned significantly faster than the control students.

Procedural scaffolding was used by Marshall et al. (1989) to scaffold arithmetic story
problem solving, and by AMT (VanLehn et al., 2011) to scaffold construction of system-
dynamics models. In all three systems, students were first given feedback and hints that
kept them following the procedure, and later the feedback and hints were turned off thus
allowing them to try solving problems without following the procedure. That is, the pro-
cedure was “faded out”.

Whereas giving students feedback and hints on their models appears to have problems,
giving them feedback and hints on the process of constructing a model has been shown to
be effective in a several studies. Such “meta-tutoring” is one of a small number of scaffold-
ing method that seems reliably useful.

8.1.3 Concrete articulation strategy

One method for helping students write equations with variables is to first ask them to write
several versions of the equation with specific numerical values for the quantities that will
eventually be variables. For instance, suppose students are asked to write an equation to
model the following system: “Cathy took a m mile bike ride. She rode at a speed of s
miles per hour. She stopped for a b hour break. Write an expression for how long the
trip took.” Before asking students to write an abstract algebraic expression, this scaffolding
method asks students to solve several concrete, arithmetic expressions e.g. “Suppose Cathy
is going at 20 miles per hour, rides 100 miles and takes a 2 hour break. Write an arithmetic
expression for how long the trip took.”

This scaffolding method has been used in several algebra tutoring systems (Heffernan,
Koedinger, & Razzaq, 2008; Koedinger & Anderson, 1998; McArthur et al., 1989). Heffer-
nan, who coined the name “concrete articulation strategy”, found that it increased learning
compared to the same tutoring system without the method. The method is used in the
algebra tutors of Carnegie Learning (www.carnegielearning.com), and could probably be
applied to many types of model construction as well.

8.1.4 Decomposition into subsystems

One form of scaffolding is to suggest a decomposition of the system so that one can focus
on one subsystem while temporarily ignoring the rest of the system (Ramachandran &
Stottler, 2003). For instance, consider modeling this system:

Alan, Stan and Doug are picking cherries. Doug picks 7 gallons more cherries than Stan, and
Stan picks half as many cherries at Alan. If Alan picks A cherries, how many does Doug pick?

If the student has trouble writing an equation for this, the tutoring system can suggest, “Well,
suppose that Stan picks S cherries. What expression would you write using S for the number
of gallons of cherries that Doug picks?” The tutoring system has decomposed the system into
a Stan-Doug part and a Stan-Alan part, and asked the student to focus on just one part.

Interactive Learning Environments 393

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 

http://www.carnegielearning.com


This scaffolding is used by several algebra word problem tutoring systems (Heffernan,
2001; Heffernan et al., 2008; Ramachandran & Stottler, 2003), including commercial ones
(e.g. http://www.pearsonhighered.com/educator/mylabmastering/products/index.page). As
typically deployed, students first attempt to provide an answer to the given problem. If
they then ask for help, the tutoring system decomposes the problem into a series of subpro-
blems which it poses to the student.

8.1.5 Reflective debriefings

One method of scaffolding is to wait until students have finished a model-construction
activity, then ask them reflection questions such as, “What did you learn?” or “What
parts of the task were confusing?” (Buckley et al., 2004). One can also ask qualitative ques-
tions such as, “What would be different if the mass were increased substantially?”

Such reflective debriefings were used in a series of studies with a physics tutoring
system (Connelly & Katz, 2009; Katz, Allbritton, & Connelly, 2003; Katz, Connelly, &
Wilson, 2007). Using both human tutors and computer tutors, it was found that the tutoring
system’s effectiveness was increased by adding reflective debriefings. This seems likely to
work with any model-construction instructional system.

8.1.6 Answering student questions during model construction

A simple scaffolding method for human instructors to implement is to answer questions
raised by students as they are constructing models. For example, Corbett and his colleagues
augmented a model-construction system to answer questions typed by students in a chat
window (Anthony, Corbett, Wagner, Stevens, & Koedinger, 2004; Corbett et al., 2005).
If a student had not asked questions recently, the system would prompt with, “Do you
want to ask a question?” Students can ask Betty’s Brain to explain why a given variable’s
value increases, and it will present the chain of logical inferences that led to this conclusion
(Leelawong & Biswas, 2008). DynaLearn both explains its reasoning and answers other
questions as well (Beek et al., 2011).

Unfortunately, students tend not to ask substantive questions. Betty Brain constantly
nagged students to ask for explanations because students tended not to do so (Leelawong
& Biswas, 2008; Segedy et al., 2012). In one study of Corbett’s system, students asked
about 14 questions per hour. Most questions were about the user interface and about the
correctness of answers. Students seldom asked about mathematical processes, knowledge
or principles. Of the 431 questions asked during the whole study, only one was about math-
ematics principles. Corbett et al. concluded that a major problem with this form of scaffold-
ing is that students do not ask many deep questions.

This is typical of students. Even when working with a human tutor (not necessarily on a
modeling activity), students rarely ask substantive questions (Core, Moore, & Zinn, 2003;
Graesser, Person, & Magliano, 1995). Thus, the empirical record suggests that question-
answering fails as scaffolding simply because students do not ask enough questions
while they are learning.

8.2 Clarifying the modeling language

As mentioned earlier, students have many difficulties understanding the meaning of their
models. They often just push the formal symbols (e.g. nodes and links) around without

394 K. VanLehn

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 

http://www.pearsonhighered.com/educator/mylabmastering/products/index.page


any regard to what their manipulations mean. This section describes several methods for
combating this kind behavior, which Löhner et al. (2005) call “jigsaw puzzling”.

8.2.1 Notation for models

As mentioned earlier, students often ignore the meaning of modeling language elements
(e.g. variables, equations) as they try many possible ways of combining them to make
the model’s predictions match the system’s behavior (Löhner et al., 2005). One way to scaf-
fold model construction is to design the notation for the model so that the elements display
their semantics more clearly.

Several model-construction systems supplement or replace equations with other nota-
tions. For describing a functional relationship, Model-It (Metcalf et al., 2000) had students
construct a sentence (see Figure 8, top pane) or fill in a table (Figure 8, middle pane). The
system would draw a graph representing the functional relationship as described by the
student. For describing simple differential equations (i.e. x′ = y), students constructed a sen-
tence (Figure 8, lower pane) without graphical representation of the relationship. Notice that
students had space for entering unconstrained text for explaining the relationship they had
selected. Before writing an equation, Kid’s World (McArthur et al., 1989) had students first
express relationships between quantities by drawing an x-y graph or by filling in a table. Co-
Lab (van Joolingen et al., 2005) allows students to express relationships in three forms: text,
graphs and mathematics (Figure 9).

Although constraint-based models all provide notation for variables and for constraints
among variables, some also provide explicit representations of objects and processes. For-
mally speaking, an “object” is merely a set of variables and a “process” is merely a set of
constraints. They serve only to organize the model and play no role in the underlying math-
ematical structure, which is a system of variables and constraints. Nonetheless, objects and
processes may add conceptual clarity to a model. For instance, Model-It lets the user define
“stream” as an object and define properties of stream such as turbidity and nitrate_concen-
tration. The properties are variables. Prometheus (Bridewell, Sanchez, Langley, & Billman,
2006), VModel (Forbus et al., 2005) and Homer (Bredeweg & Forbus, 2003) let the user
define processes, such as “exponential growth” or “heat flow”, and indicate a set of con-
straints that define it. Figure 10 shows a model in VModel, where the rectangular nodes
represent both objects (e.g. wall, inside, outside) and processes (e.g. heat flow out), and
the oval nodes represent quantities.

Because many students find it easy to construct concept graphs, some constraint-based
languages provide a similar notation for expressing extra relationships among quantities,
objects and processes. For instance, Betty’s Brain allows students to indicate that carbon
dioxide is a type of greenhouse gas (Figure 2). Constraints among quantities can also be
given names, such as “releases” or “burns”, which describe the relationship but play no
role in the mathematics of the constraint.

Although many innovative designs for notation have been implemented, only one study
has compared notations for model construction. Löhner et al. (2003, 2005) compared a
graphical notation and a traditional equation-based notation. Although many differences
in students’ behavior were apparently caused by the difference in notation, the authors
did not draw a conclusion about which notation was better overall.

So far, the discussion has focused exclusively on notation for constraint-based and
system-dynamics languages. There has been comparatively little experimentation with nota-
tions for agent-based languages. The major agent-based language, NetLogo, uses a dialect of

Interactive Learning Environments 395

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



Figure 8. Methods of expressing relationships in Model-It. Reprinted fromMetcalf (1999), with per-
mission of the author.

396 K. VanLehn

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



the Logo programming language. CTiM provides a graphical programming language instead
(Basu et al., 2012). The two notations have not yet been compared empirically.

8.2.2 Grounding the symbols

Models often have symbols that denote objects, properties or quantities in the system.
“Grounding a symbol” is the process of getting the student and another agent (e.g. the
teacher, another student or a tutoring system) to agree on what the symbol denotes. For
instance, if the student chooses “birth rate” as a variable name in a system-dynamics
model, it could denote either the number of births per unit time or the ratio of births to popu-
lation. When the student is using a tutoring system for model construction that gives feed-
back on the students’ model, then the student and the tutoring system need to ground
symbols. That is, they need to mutually agree on what every symbol in the model stands
for. There are several common methods for doing this:

Figure 10. Objects, processes and quantities are all displayed in Vmodel. Reprinted from Bredeweg
and Forbus (2003, p.38), with permission of the American Association for Artificial Intelligence.

Figure 9. Methods for expressing relationships in CoLab. Reprinted from van Joolingen et al. (2005,
Figure 4), with permission of Elsevier Limited.

Interactive Learning Environments 397

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



. The software provides names for symbols and the students select those they wish to
use in the model. The software designers try to choose names that are so clear that the
students have no trouble understanding what they mean. This assumes that the stu-
dents read the symbols’ names carefully, which is not often the case, especially
when the names become long.

. The students name the symbols. The software has to match the students’ name to
names it expects and knows the meanings of. In one study, the software’s matches
were correct 78% of the time (Bravo et al., 2009).

. The presentation of the system has elements that can be selected and used as names.
For instance, if the presentation is text, then phrases in the text can be selected as
names for variables (Marshall et al., 1989).

Model-it (Metcalf et al., 2000), ModelingSpace (Avouris et al., 2003) and Vmodel
(Forbus et al., 2005) have students first define objects and then define variables as quanti-
tative properties of the objects. Thus, students would first define “stream” as an object then
define “phosphate concentration” as a quantitative property of it. Both objects and quan-
tities were represented with student-selected icons. However, students often chose the
same icons for different quantities.

In order to help ground variables, Model-It had students describe the range of a variable
qualitatively (Metcalf et al., 2000). For instance, after typing in “% of tree cover” as the name,
one student described the upper and lower ends of its range as “dense” and “sparse” (Metcalf,
1999). This qualitative labeling probably was more helpful than “100%” and “0%” for
keeping in mind what the variable meant. ModelingSpace had a similar feature, plus the
ability to display the qualitative value of a variable as an image (Avouris et al., 2003).

Some instructors feel strongly that grounding can be improved by requiring students to
use units on the dimensional numbers that appear in equations and variable assignments,
while other instructors believe that such attention to detail can be confusing, particularly
when the dimensional number appears inside an equation (e.g. substitution converts F =
ma to either F = 5a or F = 5kga or F = (5 kg)a or F = 5 kg a). Modeling languages
also vary on their policies for use of units.

None of these scaffolding methods have been evaluated empirically. Moreover, similar
methods have not been applied to agent-based models.

8.2.3 Comparing the model’s predictions to the system’s behavior

It is common for students to see the predictions of the model as being consistent with the
behavior of the system when in fact the two behaviors are different. This section presents
several methods for encouraging diligent comparison of predictions to behaviors.

For constraint-based models, one method involves asking students to manipulate the
values of variables with sliders and observe the effects in real time on predictions of the
system. For instance, Figure 11 shows a model in Q-Mod (Figure 25 of Miller et al.,
1993). The vertical sliders inside the nodes function both as displays of the values of vari-
ables and as controls that can be dragged by students in order to modify the values of vari-
ables. The text inside the node displays the node’s current value. This kind of user interface
is widely used for model-exploration exercises, where students are given a model and asked
to understand it by manipulating sliders and observing gauges.

For system-dynamics models, the same idea can be applied but it becomes more compli-
cated. Such models predict the values of variables over time. Thus, the display of a variable’s
predicted behavior cannot show just a single value, but must instead show a graph of the

398 K. VanLehn

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



variables’value over time.When studentsmanipulate a slider that controls a variable’s value, the
graphs of the other variables change in real time. This feature is available in many professional
system-dynamics model-construction system, as well as Model-It (Metcalf et al., 2000).

For agent-based models, a standard practice is to display the predictions of the model as
both graphs (e.g. the number of slime molds) and as an animation, as shown in Figure 5.
This practice may help students interpret the graphs and compare the predictions of the
model against the system’s known behavior.

The basic idea of animating the model’s predictions can be applied to certain constraint-
based models. For example, Animate is a model-construction system where students are
presented with succinct text and asked to construct equations in a graphical language
(Nathan, 1998; Nathan, Kintsch, & Young, 1992). However, it also has an animation that
is driven by the model. For instance, if the problem states that a helicopter leaves 2
hours after a train and overtakes it, and the student’s model uses t_train and t_copter for
the duration of the train’s and the copter’s trips, but the student states that t_train =
t_copter – 2, then the animation shows the helicopter leaving before the train. This use
of multiple representations was more effective than a no-feedback control (Nathan et al.,
1992). More interestingly, it was also more effective than a traditional hint-sequence feed-
back (Nathan, 1998). While both forms of feedback got students to correct their sign errors
and other expression errors, the animation feedback was better at getting students to under-
stand the correction and thus they did better on post-test problems, which were similar to the
training problems. Of all the methods for helping students compare the model predictions to
system behavior, this is the only one to be evaluated empirically.

8.2.4 Students explain the model in natural language

Students sometimes have the basic idea for a model but have trouble writing it in the mod-
eling language. For instance, suppose students are given a problem such as “Alan, Stan and

Figure 11. Sliders allow both controlling and displaying quantities. Reprinted from Miller et al.
(1993, Figure 25), with permission of Elsevier Limited.

Interactive Learning Environments 399

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



Doug are picking cherries. Doug picks 7 gallons more cherries than Stan, and Stan picks
half as many cherries at Alan. If Alan picks A cherries, how many does Doug pick?”
Some students can express their idea for solving the problem as a procedure, such as
“Take half of A and add 7 to it”. However, they do not know how to write that basic
idea as an algebraic expression.

The tutoring systemMs Lindquist (Heffernan et al., 2008) sometimes asked students for
their basic approach and gave them a sequence of menus to phrase their answers. For
instance, the student might pick “Divide A by 2” from the first menu and “then add 7 to
it” from the second menu.

Model-It collected natural language explanations in several places (Metcalf, 1999;
Metcalf et al., 2000). For instance, the system prompted students to type in explanations of

. Their goal for the model and their ideas for building it;

. What predictions they expected the model to generate;

. What a quantity they defined represented

. What a constraint they defined represented

Although Model-It allowed students to turn off the prompting for such explanations,
teachers often insisted students write good quality explanations.

Although this scaffolding has not been evaluated in isolation, a tutoring system that
used it along with other scaffolding was effective when compared to classroom and
other controls (Razzaq, Mendicino, & Heffernan, 2008).

8.3 Gradually increasing the complexity

There is no doubt that model-construction tasks are complicated. In addition to the model-
ing skills and domain knowledge that are the instructional objectives, students must learn
the syntax of the modeling language, its semantics, the user interface for the editor, the
user interface for executing the model and displaying its predictions, and many other
things as well. Thus, one form of scaffolding is to introduce these details slowly. That is,
the model-construction activities start simple and gradually become more complex.
Several variants of this basic idea have been fielded so far.

8.3.1 Hiding model features

Modeling tools often have advanced features that can confuse novice users. To prevent such
confusions, the initial user interface can hide the advanced features. As users become more
skilled, they can access a property sheet that allows them to turn the features on. For
example, although Model-It (Metcalf et al., 2000) lets students enter the graphical equival-
ent of a differential equation (see Figure 8, bottom pane), this capability is initially hidden.
This form of scaffolding has not yet been evaluated.

8.3.2 Qualitative model construction as scaffolding

Modeling tools that use quantitative diagrams (e.g. Stella, CoLab and Model-It) often
provide concept maps as well. DynaLearn (Bredeweg et al., 2010) allows students to
start by creating a concept map of the system then enhance it as they move through a pro-
gression of five executable modeling languages.

400 K. VanLehn

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



Although instructors often recommend that students start model construction by
forming a concept map, students seldom do. In one study, only 3 of 60 subjects ever
used this feature even though they had been trained in its usage (Mulder et al., 2010).

This suggests that students should be required to do concept mapping before doing
quantitative model construction. Mulder, Lazonder, de Jong, Anjewierden, and Bollen
(2011) created a progression where the modeling language evolved from simple to
complex, but the system stayed the same. Unfortunately, none of the measures of learning
showed reliable differences, probably because the model-construction tasks were too chal-
lenging and few students made much progress through the sequences. Thus, the virtues of
this form of scaffolding remain unknown.

Instead of using non-executable concept mapping, students could use an executable
qualitative modeling tool to prepare for learning quantitative model construction. To
explore this kind of scaffolding, Kurtz dos Santos and Ogborn (1994) had half their students
work with a qualitative modeling tool, IQON, and half drawing similar diagrams on paper.
Both groups then transferred to using a quantitative model-construction tool, Stella. The
authors observed qualitative differences in the behaviors of the two groups, but stopped
short of recommending one form of scaffolding over another.

8.3.3 Model progressions

The progressions discussed so far vary the complexity of the modeling language and
tools. Another form of model progression varies the domain content and difficulty. For
instance, several projects have developed a sequence of simulation-based problem
solving activities and games that gradually increased in domain content and complexity
(de Jong et al., 1999; Quinn & Alessi, 1994; Swaak, van Joolingen, & de Jong, 1998;
White, 1984, 1993; White & Frederiksen, 1990). When these model progressions are
compared to unordered sequences, the results were mixed. Sometimes the progression
helped learning and sometimes it did not. However, all these model progression studies
had students do model exploration. That is, they were not asked to construct models in
a formal language.

8.4 Other scaffolding

This section simply lists types of scaffolding that do not easily fit in the preceding three
categories.

8.4.1 Teachable agents and reciprocal teaching

Awidespread belief is that teaching is also a good way to learn. Thus, several projects have
human students teach software that acts like a student (Biswas et al., 2005; Chase, Chin,
Oppenzzo, & Schwartz, 2009; Chin et al., 2010; Gulz, Haake, & Silvervarg, 2011; Leela-
wong & Biswas, 2008; Matsuda et al., 2011; Obayashi, Shimoda, & Yoshikawa, 2000;
Pareto, Arvemo, Dahl, Haake, & Gulz, 2011; Tan & Biswas, 2006; Tan, Wagster, et al.,
2007; Wagster, Tan, Biswas, et al., 2007; Wagster, Tan, Wu, et al., 2007). The software
that acts like a student is called a teachable agent or simulated student. Two modes of
interaction are employed. One mode allows the human student to directly edit the knowl-
edge of the teachable agent; the other mode requires the human student to tutor the
teachable agent using natural language, examples and other communication methods
that would be appropriate between human students. In the latter case, the teachable

Interactive Learning Environments 401

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



agent’s knowledge is not editable by the human student and is typically not displayed to
the student either.

In some studies (Chan & Chou, 1997; Reif & Scott, 1999), the role of tutor vs. tutee
switched back and forth between human and computer agent. This instructional method
is called reciprocal teaching (Palinscar & Brown, 1984).

If the knowledge representation language used for the teachable agent is a modeling
language, and the human student can edit the agent’s knowledge, then teaching the agent
is a kind of model-construction activity. Perhaps, the best known example of this class
of system is Betty’s Brain (Biswas et al., 2005; Biswas et al., 2010; Chase et al., 2009;
Leelawong & Biswas, 2008; Schwartz et al., 2008; Schwartz et al., 2009; Tan & Biswas,
2006; Tan et al., 2006; Tan, Skirvin, Biswas, & Catley, 2007; Tan, Wagster, et al., 2007;
Wagster, Tan, Biswas, et al., 2007; Wagster, Tan, Wu, et al., 2007). The users of Betty’s
Brain edit the qualitative diagrams shown in Figure 2. They are asked to pretend that the
diagram is Betty’s knowledge. Instead of executing the model and checking that its pre-
dictions match the behavior of a given system, students can either ask Betty a question
(as shown in Figure 2) or have her take a quiz composed of a small number of such
questions. Either way, the qualitative diagram is executed and its results are shown to
the student. In the case of the quiz, the results are also marked as correct vs. incorrect
depending on whether they match or do not match the behavior of the system. The
system presented to the student as a set of resources describing, e.g. the oxygen cycle
in streams and lakes.

Several studies have shown that the teachable agent cover story improves learning com-
pared to a version of the system without the teachable agent cover story (Biswas et al.,
2005; Chase et al., 2009; Pareto et al., 2011). In a particularly well-controlled experiment
(Chase et al., 2009), students used Betty’s Brain but were told that the model represented
their own knowledge and not Betty’s. The Betty agent was turned off but Mr Davis the
tutor was still present. Students who thought they were writing models learned significantly
less than students who thought they were teaching Betty. Chase et al. call this the Protégé
effect. The Protégé effect can be enhanced by having the teachable agent make small talk
with the human students during breaks in the instruction (Gulz et al., 2011). These studies
suggest that teachable agents and reciprocal teaching can be quite effective at increasing
learning during model construction.

8.4.2 Having students execute models mentally

One way to have students examine their model more closely is to have them execute it
mentally. This can be done by asking qualitative questions such as, “If reflectance of the
earth’s atmosphere decreases, what happens to the earth’s temperature?” Students can
only reason for short distances (Kurtz dos Santos & Ogborn, 1994; Löhner, 2005).
Nonetheless, this does raise their scores when quizzed on the structure of the model
(Löhner, 2005, chapter 5), and could potentially raise scores on concept inventory ques-
tions, as discussed earlier.

8.4.3 Test suites

When there are multiple ways to test a model, students often do a poor job of selecting tests.
They often focus on just a few tests out of the many possible ones (Alessi, 2000a). This
suggests giving them test suites, which are composed by an expert to more thoroughly
sample the space of all possible tests.

402 K. VanLehn

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



However, in one evaluation of Betty’s Brain, test suites proved to be harmful. Students
who had to generate their own tests performed better than students who were given test
suites in the guise of a quiz (Biswas et al., 2005). Perhaps students could utilize test
suites better if either they were given explicit instruction on how to use them, or the
test suites were covertly designed to highlight just one bug in the model and students
were prompted to find it.

8.4.4 Generic schemas

An analysis of algebra and arithmetic word problems indicates that a surprisingly small set
of schemas suffices to characterize most of them (Marshall et al., 1989; Mayer, 1981).
These schemas are not as abstract as mathematical relationships, yet they are general
enough to cover multiple word problems. For example, Marshal et al. (1989) found that
most single-step arithmetic problem could be characterized using only 5 schemas:
Change, Group, Compare, Restate and Vary. Similarly, Mayer (1981) found that 90
schemas sufficed to cover a large corpus of high school algebra problems. For instance,
there were 13 schemas for motion of an object including simple distance-rate-time, one
object overtaking another, objects moving in opposite directions, an object making a
round trip, and 9 others. There were nine schemas for work done per unit time: simple
work problems, two processes working together, one process joining another to finish a
job and six others. There were 8 schemas involving interest on investments, 5 schemas
involving mixtures, 10 schemas involving travelling on a river and so on.

While analyzing videos of competent physics students working problems in pairs at the
whiteboard, Sherin (2006) concluded that they use a type of schema he called symbolic
forms to generate parts of models. For instance, if the students viewed the system as
having balancing forces, then that would trigger their Balancing symbolic form, which
suggested an equation of the form □ =□. On the other hand, if they viewed the system
as one force canceling out another, that would trigger the cancelation symbolic form,
which suggested an equation of the form 0 =□−□.

Schema libraries were provided by some model-construction environments (Bredeweg
& Forbus, 2003; Bridewell et al., 2006; Marshall et al., 1989). A simple problem could be
solved by copying a generic schema from the library and editing it to make it applicable to
the given system. For more complex problems, students may combine multiple schemas to
form the model. Some of these systems coached students on how to combine schemas in
syntactically legal ways. Students were also able to add schemas to the library.

Unfortunately, schema-based scaffolding has not yet been evaluated. Such an evalu-
ation could be done by comparing two versions of the model-construction activity: with
and without the schema library.

8.4.5 Gamification

Gamification is adding game-like features to an educational activity. There are many ways
that gamification can be done. For example, one mode of Betty’s Brain put models in the
role of players in a game show (Schwartz et al., 2009). The host of the game show would
ask a player/model questions such as, “If the amount of fluoride in the water goes up, what
happens to tooth decay?” Models that answered the question correctly would score points.
The game show typically had four models that competed against each other. Although
observation in the classroom leaves no doubt about the motivational benefits of the game
show, its impact on learning has not been evaluated.

Interactive Learning Environments 403

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



8.5 Summary: which forms of scaffolding have demonstrated benefits?

Of the forms of scaffolding reviewed here, meta-tutoring has the most empirical evidence
for its benefits. Although giving hints and feedback on the models that students construct
appears to be problematic, giving hints and feedback on the model-construction process
(i.e. “meta-tutoring”) has been shown in several studies to produce larger learning gains
than instruction that uses the same modeling tool without the meta-tutoring. Three other
techniques from the tutoring system literature – the concrete articulation strategy, decompo-
sition and reflective debriefings – have a few evaluations behind them, but have not been
extensively tested. Finally, students ask too few questions to warrant tutoring based on
answering student questions. On the whole, the evidence suggests that reliable benefits
can be obtained with the basic approach of guiding students via prompting, hinting and
feedback through the process of model construction including decomposition, reflection
and perhaps concrete articulation.

Another form of scaffolding with good empirical support is the use of teachable agents
and reciprocal teaching. These have mostly been used with younger students in classroom
contexts, and the leading explanations for their benefits are motivational rather than cogni-
tive. It is not clear whether they will continue to provide added value when they are used by
older students or by students working alone.

As Sections 7.2 and 7.3 indicated, many notations have been tried for modeling
languages, and many methods for helping students over the complexities and semantic
issues of the languages have also been tried. Unfortunately, little experimental evidence
exists about the effectiveness of notation-based scaffolding. It seems plausible that there
are large benefits, but the experiments still need to be done.

Little evidence exists concerning the benefits of the remaining forms of scaffolding,
which are covered in sections 7.4.2 onwards. Of these, generic schemas seem most plausi-
bly helpful, but again, experimental evidence is lacking.

9. Conclusions

The study of model construction as a learning activity is fairly new, and the field has spent
most of its energy just trying to find ways to get students to engage in model construction
successfully. Many of the studies have been formative evaluations whose results are
intended only to help redesign the instruction. Many papers allude to pilot studies but do
not report their findings in detail. In only a few cases has the model-construction instruction
reached a state of maturity that the developers thought it would be useful to do a summative
evaluation. Although all these evaluations were mentioned earlier, they will be summarized
here followed by suggestions for future work.

9.1 Summative evaluations of model construction compared to other instruction

Eight studies have compared instruction based on model construction to instruction that
does not involve model construction. In four of these, concept mapping was the comparison
instruction:

. Chin et al. (2010, study 1) found that Betty’s Brain was significantly more effective
than using commercial concept-mapping software. Sixth-grade students studied
global warming for 11 classes over a 3-week period.

404 K. VanLehn

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



. Biswas et al. (2005, study 1) found that Betty’s Brain was significantly more effective
than concept mapping using Betty’s modeling language but with execution turned
off.1 Fifth-grade students learned about river ecosystems during three one-hour ses-
sions with the software. Students engaged in additional independent study between
sessions in order to prepare themselves to use the software.

. Kurtz dos Santos and Ogborn (1994) found that IQON caused different behaviors
than having students do concept mapping using its notation on paper. Qualitative
observation of both learning and transfer behavior was presented, but no numerical
measures of learning.

. Löhner (2005, chapter 5) compared students using CoLab to students doing concept
mapping using CoLab’s modeling language with execution turned off. Students in
grades 11 and 12 constructed either executable models or concept maps of the green-
house effect over 4 50-minute lessons that include some guided model exploration as
well as model construction. For factual knowledge, the concept-mapping instruction
was significantly more effective. For predicting the system’s behavior, the model con-
struction instruction was more effective. For explanation questions, there was a floor
effect – both conditions answered poorly.

These four studies suggest that concept mapping is less effective than instruction based
on model construction. However, this might be due to a difference in the availability of
feedback. If students in the concept-mapping condition received no feedback on the correct-
ness of their maps, that might explain their disadvantage. Although Chin et al. (2010) care-
fully controlled for feedback, it is not clear that the other studies did.

Three of the studies compared model construction to having students write summaries
and explanations:

. van Borkulo et al. (2012) found that learning from CoLab was superior to writing
summaries guided by a worksheet. Students in the 11th grade first learned about
model construction for 2.5 hours then learned about global warming using either
CoLab or writing. Perhaps due to the short duration of the manipulation, statistically
reliable differences were observed for only two of eight assessments types.

. Lee et al. (2011) found that Model-It was significantly more effective than having stu-
dents write while doing literature research. Fifth-grade students learned about the
water cycle during a 10-week unit, whose second half involved either using
Model-It or continuing with their directed study of the water cycle literature.

. Schwartz et al. (2008, study 1) compared Betty’s Brain to having students write short
explanations to questions. The small number of students (16 college students) and the
short duration (40 minutes) prevented quantitative measures of results, but qualitative
observations suggest the Betty’s instruction was superior.

In all these studies, students were presented information about the system via access to
multimedia resources, and they were asked to answer the same set of questions about the
system. The experimental groups formulated their answers as models, and the control
group formulated their answers as writing. It is not clear how much feedback on the
writing was given to students in the control groups.

The last study compared model construction to three different types of model explora-
tion (Hashem & Mioduser, 2011). This study had science majors in college work with two
different NetLogo models. Prior to pre-testing, the model-construction group spent 48
hours learning how to program NetLogo, and the model-exploration groups attended a

Interactive Learning Environments 405

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



two-hour introduction to NetLogo. The instructional manipulation occurred over two 90-
minute sessions. It was preceded by a pre-test, and followed by a post-test and interviews.
Model construction proved to be more effective than model exploration by a moderately
large effect size: d = 0.48 (Hashem & Mioduser, 2011, Table 2).

As usual when reviewing studies of learning, the results are diverse and incomplete.
Nonetheless, the results strongly suggest that model construction can be more effective
than concept mapping and perhaps writing and concept exploration as well.

9.2 Future work

Perhaps, the major problem with using model construction for instruction is that it takes a
long time for students to become skilled enough that they can actually start learning about
the system and the domain. For instance, most of the studies of Betty’s Brain take about 10
lessons spread over 2 or 3 weeks. It takes that long for the benefits of modeling to show up.
Figure 12, from (Chin et al., 2010), illustrates this vividly. The x-axis divides show student
performance on a pre-test, two mid-tests and a post-test. That is, about every 4 hours of
instruction, there was a test. The students’ scores on three different types of test questions
are shown: those requiring short, medium and long chains of reasoning. The model-con-
struction group begins to pull away from the concept-mapping group (who were using
the commercial software Inspiration) only after 8 hours of instruction, and only on
medium-length chains of reasoning. It is not until 11 lessons have been conducted that
the benefits of model construction appear on all question types.

Of the experiments reviewed here, most of those that showed statistically significant
differences used long time periods for the instruction. The experiments that produced
null effects typically used short time periods (e.g. 2 hours) for the instruction. Clearly,
experimenters should all be using multi-hour instruction in model construction despite
the difficulty of running such experiments.

Figure 12. It takes many hours of instruction before model construction shows benefits over concept
mapping. Reprinted from Chin et al. (2010, Figure 4), with the kind permission of Springer Science
and Business Media.

406 K. VanLehn

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



Unless some method for dramatically speeding up students’ learning of model construc-
tion is found, educators must face the prospect that meeting the new standards in modeling
is going to require a substantial commitment of class time. On the other hand, once students
have acquired the appropriate model-construction skills, it appears that they can use them to
more easily acquire a deep understanding of systems and domains. Thus, a primary goal for
future work should be to reduce the time required for students to become fluent in model
construction.

Acknowledgements
This research was supported by the National Science Foundation under grants DRL-0910221, IIS-
1123823 and DUE-1140901 and by the Office of Naval Research under contract N00014-13-C-0029.

Note
1. Although Biswas et al. (2005) do not present a statistical analysis of this comparison, the means

and error bars on Figure 5(b) suggest that it would be reliable and large. However, these measures
were taken over the models and concept maps constructed by students as they used the software,
and thus do not comprise a typical post-test.

Notes on contributor
Kurt VanLehn is the Diane and Gary Tooker Chair for Effective Education in Science, Technology,
Engineering and Math in the Ira A. Fulton Schools of Engineering at Arizona State University. He
received a Ph.D. from MIT in 1983 in Computer Science, was a post-doc at BBN and Xerox
PARC, joined the faculty of Carnegie-Mellon University in 1985, moved to the University of Pitts-
burgh in 1990 and joined ASU in 2008. He founded and co-directed two large NSF research
centers (Circle; the Pittsburgh Science of Learning Center). He has published over 125 peer-reviewed
publications, is a fellow in the Cognitive Science Society, and is on the editorial boards of Cognition
and Instruction and the International Journal of Artificial Intelligence in Education. Dr VanLehn’s
research focuses on intelligent tutoring systems and other intelligent interactive instructional
technology.

References
Alessi, S. M. (2000a, December). The application of system dynamics modeling in elementary and

secondary school curricula. Paper presented at the RIBIE 2000 – The Fifth Iberoamerican
Conference on Informatics in Education, Viña del Mar, Chile.

Alessi, S. M. (2000b). Building versus using simulations. In J. M. Spector & T. M. Anderson (Eds.),
Integrated and holistic perspectives on learning, instruction and technology (pp. 175–196).
Dordrecht, The Netherlands: Kluwer.

Anthony, L., Corbett, A. T., Wagner, A. Z., Stevens, S. M., & Koedinger, K. R. (2004). Student ques-
tion-asking patterns in an intelligent algebra tutor. In J. C. Lester, R. M. Vicari, & F. Praguacu
(Eds.), Intelligent tutoring systems: 7th international conference, ITS 2004 (pp. 455–467).
Berlin: Springer-Verlag.

Avouris, N., Margaritis, M., Komis, V., Saez, A., & Melendez, R. (2003). ModellingSpace:
Interaction design and architecture of a collaborative modelling environment. Paper presented
at the Sixth International Conference on Computer Based Learning in Sciences (CBLIS),
Nicosia, Cyprus.

Baker, R. S. J. d., Corbett, A. T., Koedinger, K. R., & Wagner, A. Z. (2004). Off-task behavior in the
cognitive tutor classroom: When students “Game the System”. In E. Dykstra-Erickson & M.
Tscheligi (Eds.), Proceedings of the SIGCHI conference on human factors in computing
systems (pp. 383–390). New York, NY: ACM.

Interactive Learning Environments 407

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



Basu, S., Kinnebrew, J. S., Dickes, A., Farris, A. V., Sengupta, P., Winger, J., & Biswas, G. (2012). A
science learning environment using a computational thinking approach. Paper presented at the
Proceedings of the 20th International Conference on Computers in Education, Singapore.

Beek, W., Bredeweg, B., & Lautour, S. (2011). Context-dependent help for the DynaLearn modelling
and simulation workbench. In G. Biswas (Ed.), Artificial intelligence in education
(pp. 4200–4422). Berlin: Springer-Verlag.

Biswas, G., Jeong, H., Kinnebrew, J. S., Sulcer, B., & Roscoe, R. D. (2010). Measuring self-regulated
learning skills through social interactions in a teachable agent environment. Research and
Practice in Technology Enhanced Learning, 5(2), 123–152.

Biswas, G., Leelawong, K., Schwartz, D. L., & Vye, N. J. (2005). Learning by teaching: A new agent
paradigm for educational software. Applied Artificial Intelligence, 19, 263–392.

Boohan, R. (1995). Children and computer modelling: Making worlds with WorldMaker. In J. D.
Tinsley & T. J. van Weert (Eds.), Proceedings of the sixth world conference on computers in edu-
cation (pp. 975–985). London: Chapman and Hall.

Booth, L. R. (1988). Children’s difficulties in beginning algebra. In F. Coxford (Ed.), The ideas of
algebra, K-12 (1988 Yearbook) (pp. 20–32). Reston, VA: NCTM.

Booth Sweeney, L., & Sterman, J. D. (2000). Bathtub dynamics: Initial results of a systems thinking
inventory. System Dynamics Review, 16(4), 249–286.

van Borkulo, S. P., van Joolingen, W. R., Savelsbergh, E. R., & de Jong, T. (2012). What can be
learned from computer modeling? Comparing expository and modeling approaches to teaching
dynamic systems behavior. Journal of Science Education and Technology, 21, 267–275.

Bravo, C., van Joolingen, W. R., & de Jong, T. (2009). Using Co-Lab to build system dynamics
models: Students’ actions and on-line tutorial advice. Computer and Education, 53, 243–251.

Bredeweg, B., & Forbus, K. D. (2003). Qualitative modeling in education. AI Magazine, 24(4), 35–46.
Bredeweg, B., Liem, J., Beek, W., Salles, P., & Linnebank, F. (2010). Learning spaces as represen-

tational scaffolds for learning conceptual knowledge of system behavior. In M. Wolpers (Ed.),
EC-TEL (pp. 46–61). Berlin: Springer-Verlag.

Bredeweg, B., Linnebank, F., Bouwer, A., & Liem, J. (2009). Garp3 – Workbench for qualitative
modelling and simulation. Ecological Informatics, 4, 263–281.

Bridewell, W., Sanchez, J. N., Langley, P., & Billman, D. (2006). An interactive environment for the
modeling and discovery of scientific knowledge. International Journal of Human-Computer
Studies, 64, 1099–1114.

Buckley, B. C., Gobert, J. D., Kindfield, A. C. H., Horwitz, P., Tinker, R. F., Gerlits, B.,…Willett, J.
(2004). Model-based teaching and learning with BioLogica: What do they learn? How do they
learn? How do we know? Journal of Science Education and Technology, 13(1), 23–41.

Chan, T.-W., & Chou, C.-Y. (1997). Exploring the design of computer supports for reciprocal tutoring.
International Journal of Artificial Intelligence and Education, 8, 1–29.

Chase, C. C., Chin, D. B., Oppenzzo, M., & Schwartz, D. L. (2009). Teachable agents and the
Protégé effect: Increasing the effort towards learning. Journal of Science Education and
Technology, 18(4), 334–352.

Chi, M., & VanLehn, K. (2008). Eliminating the gap between the high and low students through meta-
cognitive strategy instruction. In B. P. Woolf, E. Aimeur, R. Nkambou, & S. P. Lajoie (Eds.),
Intelligent tutoring systems: 9th international conference: ITS2008 (pp. 603–613). Berlin:
Springer.

Chi, M., & VanLehn, K. (2010). Meta-cognitive strategy instruction in intelligent tutoring systems:
How, when and why. Journal of Educational Technology and Society, 13(1), 25–39.

Chin, D., Dohmen, I. M., Cheng, B. H., Oppezzo, M., Chase, C. C., & Schwartz, D. L. (2010).
Preparing students for future learning with teachable agents. Educational Technology Research
and Development, 58, 649–669.

Clariana, R. B., & Strobel, J. (2007). Modeling technologies. In J. M. Spector (Ed.), Handbook of
research on educational communications and technology (pp. 329–344). New York: Taylor &
Francis.

Clark, D. B., Nelson, B. C., Sengupta, P., & D’Angelo, C. (2009). Rethinking science learning
through digital games and simulations: Genres, examples and evidence. An NAS commissioned
paper.

Clark, H. H., & Brennan, S. E. (1991). Grounding in communication. In L. B. Resnick, J. M. Levine,
& S. D. Teasley (Eds.), Perspectives on socially shared cognition (pp. 127–149). Washington,
DC: American Psychological Association.

408 K. VanLehn

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



Clement, J. (1982). Algebra word problem solutions: Thought processes underlying a common mis-
conception. Journal of Research in Mathematics Education, 13(1), 16–30.

Collins, A., & Ferguson, W. (1993). Epistemic forms and epistemic games: Structures and strategies
to guide inquiry. Educational Psychologist, 28(1), 25–42.

CCSSO. (2011). The common core state standards for mathematics. Retrieved October 31, 2011, from
www.corestandards.org

Connelly, J., & Katz, S. (2009). Toward more robust learning of physics via reflective dialogue exten-
sions. In G. Siemens&C. Fulford (Eds.), Proceedings of the world conference on educational mul-
timedia, hypermedia and telecommunications 2009 (pp. 1946–1951). Chesapeake, VA: AACE.

Corbett, A., Wagner, A. Z., Chao, C.-y., Lesgold, S., Stevens, S. M., & Ulrich, H. (2005). Student
questions in a classroom evaluation of the ALPS learning environment. In C.-K. Looi & G.
McCalla (Eds.), Artificial intelligence in education (pp. 780–782). Amsterdam: IOS Press.

Core, M. G., Moore, J. D., & Zinn, C. (2003). The role of initiative in tutorial dialogue. In P. Paroubek
(Ed.), Proceedings of the 11th conference of the European chapter of the association for compu-
tational linguistics (EACL) (pp. 67–74). Morristown, NJ: Association of Computational
Linguistics.

Crawford, B. A., & Cullin, M. (2004). Supporting prospective teachers’ conceptions of modelling in
science. International Journal of Science Education, 26(11), 1370–1401.

Cronin, M., Gonzalez, C., & Sterman, J. D. (2009). Why don’t well-educated adults understand
accumulation? A challenge to researchers, educators and citizens. Organizational Behavior
and Human Decision Processes, 108, 116–130.

Doerr, H. M. (1996). Stella ten-years later: A review of the literature. International Journal of
Computers for Mathematical Learning, 1, 201–224.

Erden, M., Komoto, H., van Beek, T. J., D’Amelio, V., Echavarria, E., & Tomiyama, T. (2008). A
review of function modeling: Approaches and applications. Artificial Intelligence for
Engineering Design, Analysis and Manufacturing, 22(2), 147–169.

Forbus, K. D., Carney, K., Sherin, B. L., & Ureel Il, L. C. (2005). VModel: A visual qualitative mod-
eling environment for middle-school students. AI Magazine, 26(3), 63–72.

Gentner, D., & Stevens, A. L. (1983). Mental models. Mahah, NJ: Erlbaum.
Goel, A. K., Rugaber, S., & Vattam, S. (2009). Structure, behavior, and function of complex systems:

The structure, behavior, and function modeling language. Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, 23, 23–35.

Graesser, A. C., Person, N., & Magliano, J. (1995). Collaborative dialog patterns in naturalistic one-
on-one tutoring. Applied Cognitive Psychology, 9, 359–387.

Gulz, A., Haake, M., & Silvervarg, A. (2011). Extending a teachable agent with a social conversation
module – Effects on student experiences and learning. In G. Biswas, S. Bull, J. Kay, & A.
Mitrovic (Eds.), Artificial intelligence in education (pp. 106–114). Berlin: Springer.

Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal
of Science Education, 22(9), 1011–1026.

Hashem, K., & Mioduser, D. (2010). Learning by modeling (LbM) – The contribution of computer
modeling to students’ evolving understanding of complexity. Paper presented at the Second
International Conference on Educational Technology and Computer (ICETC), Shanghai, China.

Hashem, K., & Mioduser, D. (2011). The contribution of learning by modeling (LbM) to students’
understanding of complexity concepts. International Journal of e-Education, e-Business,
e-Management and e-Learning, 1(2), 151–157.

Heffernan, N. T. (2001). Intelligent tutoring systems have forgotten the tutor: Adding a cognitive
model of human tutors (PhD dissertation). Carnegie Mellon University, Pittsburgh, PA.
Retrieved from http://gs260.sp.cs.cmu.edu/diss/diss.pdf

Heffernan, N. T., & Koedinger, K. R. (1997). The composition effect in symbolizing: The role of
symbol production vs. text comprehension. In M. G. Shafto & P. Langley (Eds.), Proceedings
of the nineteenth annual meeting of the cognitive science society (pp. 307–312). Mahwah, NJ:
Erlbaum.

Heffernan, N. T., Koedinger, K. R., & Razzaq, L. (2008). Expanding the model-tracing architecture: A
3rd generation intelligent tutor for algebra symbolization. International Journal of Artificial
Intelligence in Education, 18, 153–178.

Hestenes, D. (2007).Modeling theory for math and science education. Paper presented at the ICTMA-
13: The International Community of Teachers of Mathematical Modelling and Applications,
Indiana, IL.

Interactive Learning Environments 409

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 

http://www.corestandards.org


Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force concept inventory. The Physics Teacher,
30, 141–158.

Hmelo-Silver, C., & Pfeffer, M. G. (2004). Comparing expert and novice understanding of a complex
system from the perspective of structures, behaviors and functions. Cognitive Science, 28, 127–
138.

Hogan, K., & Thomas, D. (2001). Cognitive comparisons of students’ systems modeling in ecology.
Journal of Science Education and Technology, 10(4), 319–345.

Hopper, M., & Stave, K. (2008). Assessing the effectiveness of systems thinking interventions in the
classroom. Paper presented at the International Conference of the System Dynamics Society,
Athens, Greece. Retrieved from http://www.systemdynamics.org/conferences/2008/proceed/
index.htm

Jacobson, M. J., & Wilensky, U. (2006). Complex systems in education: Scientific and educational
importance and implications for the learning sciences. Journal of the Learning Sciences, 15(1),
11–34.

Jonassen, D., & Strobel, J. (2006). Modeling for meaningful learning. In D. Hung & M. S. Khine
(Eds.), Engaged learning with emerging technologies (pp. 1–27). Amsterdam: Springer.

de Jong, T., Martin, E., Zamarro, J.-M., Esquembre, F., Swaak, J., & van Joolingen, W. R. (1999). The
integration of computer simulation and learning support: An example from the physics domain of
collisions. Journal of Research in Science Teaching, 36(5), 597–615.

de Jong, T., & van Joolingen, W. R. (1998). Scientific discovery learning with computer simulations
of conceptual domains. Review of Educational Research, 68(2), 179–201.

van Joolingen, W. R., De Jong, T., Lazonder, A., Savelsbergh, E. R., & Manlove, S. (2005). Co-Lab:
Research and development of an online learning environment for collaborative scientific discov-
ery learning. Computers in Human Behavior, 21, 671–688.

Kainz, D., & Ossimitz, G. (2002).Can students learn stock-flow-thinking? An empirical investigation.
Paper presented at the System Dynamics Conference, Palermo, Italy.

Katehi, L., Pearson, G., & Feder, M. (2008). Engineering in K-12 Education: Understanding the status
and improving the prospects. Retrieved October 31, 2011, from http://www.nap.edu/catalog.php?
record_id=12635

Katz, S., Allbritton, D., & Connelly, J. (2003). Going beyond the problem given: How human tutors
use post-solution discussions to support transfer. International Journal of Artificial Intelligence in
Education, 13, 79–116.

Katz, S., Connelly, J., & Wilson, C. (2007). Out of the lab and into the classroom: An evaluation of
reflective dialogue in Andes. In R. Luckin & K. R. Koedinger (Eds.), Proceedings of AI in edu-
cation, 2007 (pp. 425–432). Amsterdam, The Netherlands: IOS Press.

Kessler, C. (1988). Transfer of programming skills in novice Lisp learners (PhD dissertation).
Carnegie Mellon University, Pittsburgh, PA.

de Kleer, J., & Brown, J. S. (1981). Mental models of physical mechanisms and their acquisition.
In J. R. Anderson (Ed.), Cognitive skills and their acquisition (pp. 285–310). Mahwah, NJ:
Erlbaum.

Koedinger, K. R., Alibali, M. W., & Nathan, M. J. (2008). Trade-offs between grounded and abstract
representations: Evidence from algebra problem solving. Cognitive Science, 32, 366–397.

Koedinger, K. R., & Anderson, J. R. (1998). Illustrating principled design: The early evolution of a
cognitive tutor for algebra symbolization. Interactive Learning Environments, 5, 161–180.

Koedinger, K. R., & Nathan, M. J. (2004). The real story behind story problems: Effects of represen-
tations on quantitative reasoning. Journal of the Learning Sciences, 13(2), 129–164.

Kurtz dos Santos, A. d. C., & Ogborn, J. (1994). Sixth form students’ ability to engage in compu-
tational modelling. Journal of Computer Assisted Learning, 10(3), 182–200.

Lazonder, A., Hagemans, M. G., & de Jong, T. (2010). Offering and discovering domain information
in simulation-based inquiry learning. Learning and Instruction, 20, 511–520.

Lee, C. B., Jonassen, D., & Teo, T. (2011). The role of model building in problem solving and con-
ceptual change. Interactive Learning Environments, 19(3), 247–265.

Leelawong, K., & Biswas, G. (2008). Designing learning by teaching agents: The Betty’s Brain
system. International Journal of Artificial Intelligence and Education, 18(3), 181–208.

Löhner, S. (2005). Computer based modeling tasks: The role of external representation (PhD disser-
tation). University of Amsterdam, Amsterdam, The Netherlands.

Löhner, S., Van Joolingen, W. R., & Savelsbergh, E. R. (2003). The effect of external representation
on constructing computer models of complex phenomena. Instructional Science, 31, 395–418.

410 K. VanLehn

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 

http://www.systemdynamics.org/conferences/2008/proceed/index.htm
http://www.systemdynamics.org/conferences/2008/proceed/index.htm
http://www.nap.edu/catalog.php?record_id=12635
http://www.nap.edu/catalog.php?record_id=12635


Löhner, S., Van Joolingen, W. R., Savelsbergh, E. R., & Van Hout-Wolters, B. (2005). Students’
reasoning during modeling in an inquiry learning environment. Computers in Human
Behavior, 21, 441–461.

Mandinach, E. B., & Cline, H. F. (1994). Classroom dynamics: Implementing a technology-based
learning environment. Mahwah, NJ: Erlbaum.

Marshall, S. P., Barthuli, K. E., Brewer, M. A., & Rose, F. E. (1989). Story problem solver: A schema-
based system of instruction. San Diego, CA: Center for Research in Mathematics and Science
Education, San Diego State University.

Matsuda, N., Yarzebinski, E., Keiser, V., Raizada, R., Stylianides, G. J., Cohen, W. W., & Koedinger,
K. R. (2011). Learning by teaching SimStudent – An initial classroom baseline study comparing
with Cognitive Tutor. In G. Biswas & S. Bull (Eds.), Proceedings of the international conference
on artificial intelligence in education (pp. 213–221). Berlin: Springer.

Mayer, R. E. (1981). Frequency norms and structural analysis of algebra story problems into families,
categories and templates. Instructional Science, 10(2), 135–175.

McArthur, D., Lewis, M., Ormseth, T., Robyn, A., Stasz, C., & Voreck, D. (1989). Algebraic thinking
tools: Support for modeling situations and solving problems in Kids’ World. Santa Monica, CA:
RAND Corporation, p. 22.

Metcalf, S. J. (1999). The design of guided learning-adaptable scaffolding in interactive learning
environments (PhD dissertation). University of Michigan, Ann Arbor, MI.

Metcalf, S. J., Krajcik, J., & Soloway, E. (2000). Model-It: A design retrospective. In M. J. Jacobson
& R. B. Kozma (Eds.), Innovations in science and mathematics education: Advanced designs for
technologies of learning (pp. 77–115). Mahwah, NJ: Lawrence Erlbaum Associates.

Miller, R., Ogborn, J., Briggs, J., Borough, D., Bliss, J., Boohan, R., … Sakonidis, B. (1993).
Educational tools for computational modelling. Computers and Education, 21(3), 205–261.

Moxnes, E. (2000). Not only the tragedy of the commons: Misperceptions of feedback and policies for
sustainable development. System Dynamics Review, 16(4), 325–348.

Mulder, Y. G., Lazonder, A., & de Jong, T. (2010). Finding out how they find it out: An
empirical analysis of inquiry learners’ need for support. International Journal of Science
Learning, 32(15), 2033–2053.

Mulder, Y. G., Lazonder, A. W., de Jong, T., Anjewierden, A., & Bollen, L. (2011). Validating and
optimzing the effects of model progression in simulation-based inquiry learning. Journal of
Science Education and Technology, 21, 722–729.

Muldner, K., Burleson, W., van de Sande, B., & VanLehn, K. (2011). An analysis of students’ gaming
behaviors in an intelligent tutoring system: Predictors and impacts. User Modeling and User-
Adapted Interaction, 21(1–2), 99–135.

Nathan, M. J. (1998). Knowledge and situational feedback in a learning environment for algebra story
problem solving. Interactive Learning Environments, 5, 135–159.

Nathan, M. J., Kintsch, W., & Young, E. (1992). A theory of algebra-word-problem comprehension
and its implications for the design of learning environments. Cognition and Instruction, 9(4),
329–389.

National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting
concepts, and core ideas. Washington, DC: National Academies Press.

Neumann, E. K., Feurzeig, W., & Garik, P. (1999). An object-based modelling tool for science inquiry.
In W. Feurzeig & N. Roberts (Eds.), Modelling and simulation in science and mathematics edu-
cation (pp. 138–148). New York: Springer.

Novak, J. D., & Canas, A. J. (2008). The theory underlying concept maps and how to construct and
use them. Pensacola, FL: Florida Institute for Human and Machine Cognition.

Obayashi, F., Shimoda, H., & Yoshikawa, H. (2000). Construction and evaluation of a CAI system
based on “Learning by teaching” to Virtual Student. Transactions of Information Processing
Society of Japan, 41(12), 3386–3393.

Paige, G., & Simon, H. A. (1966). Cognitive processes in solving algebra word problems. In B.
Kleinmuntz (Ed.), Problem solving: Research, method and theory (pp. 51–119). NewYork:Wiley.

Palinscar, A. S., & Brown, A. L. (1984). Reciprocal teaching of comprehension-fostering and com-
prehension-monitoring activities. Cognition and Instruction, 1, 117–175.

Papert, S. (1980). Mindstorms. New York: Basic Books.
Pareto, L., Arvemo, T., Dahl, Y., Haake, M., & Gulz, A. (2011). A teachable-agent arithmetic game’s

effects on mathematics understanding, attitude and self-efficacy. In G. Biswas & S. Bull (Eds.),
Proceedings of artificial intelligence in education (pp. 247–255). Berlin: Springer.

Interactive Learning Environments 411

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 



Penner, D. E. (2001). Cognition, computers and synthetic science: Building knowledge and meaning
through modelling. Review of Research in Education, 25, 1–37.

Pfundt, H., & Duit, R. (1998). Bibliography: Students’ alternative frameworks and science education
(5th ed.). Kiel, Germany: Institute for Science Education.

Ploetzner, R., & VanLehn, K. (1997). The acquisition of informal physics knowledge during formal
physics training. Cognition and Instruction, 15(2), 169–206.

Quinn, J., & Alessi, S. M. (1994). The effects of simulation complexity and hypothesis-generation
strategy on learning. Journal of Research in Computing in Education, 27(1), 75–92.

Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G.,… Soloway, E. (2004).
A scaffolding design framework for software to support scientific inquiry. Journal of the Learning
Sciences, 13(3), 337–386.

Ramachandran, S., & Stottler, R. (2003). A meta-cognitive computer-based tutor for high-school
algebra. In D. Lassner & C. McNaught (Eds.), Proceedings of world conference on educational
multimedia, hypermedia and telecommunications 2003 (pp. 911–914). Chesapeake, VA: AACE.

Razzaq, L., Mendicino, M., & Heffernan, N. T. (2008). Comparing classroom problem-solving with
no feedback to Web-based homework assistance. In B. P. Woolf, E. Aimeur, R. Nkambou, & S. P.
Lajoie (Eds.), Intelligent tutoring systems: 9th international conference, ITS2008 (pp. 426–437).
Berlin: Springer.

Reif, F., & Scott, L. A. (1999). Teaching scientific thinking skills: Students and computers coaching
each other. American Journal of Physics, 67(9), 819–831.

Repenning, A., Ioannidou, A., & Zola, J. (2000). AgentSheets: End-user programmable simulations.
Journal of Artificial Societies and Social Simulations, 3(3). Retrieved from http://jasss.soc.surrey.
ac.uk/3/3/forum/1.html

Schecker, H. (1993). Learning physics by making models. Physics Education, 28, 102–106.
Schwartz, D. L., Blair, K. P., Biswas, G., Leelawong, K., & Davis, J. (2008). Animations of thought:

Interactivity in the teachable agent paradigm. In R. Lowe & W. Schnotz (Eds.), Learning with
animations: Research and implications for design (pp. 114–141). Cambridge: Cambridge
University Press.

Schwartz, D. L., Chase, C., Chin, D. B., Oppezzo, M., Kwong, H., Okita, S. Y.,…Wagster, J. (2009).
Interactive metacognition: Monitoring and regulating a teachable agent. In D. J. Hacker, J.
Dunlosky, & A. C. Graesser (Eds.), Handbook of metacognition in education (pp. 340–358).
New York: Taylor & Francis.

Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Acher, A., Fortus, D., … Krajcik, J. (2009).
Developing a learning progression for scientific modeling: Making scientific modeling accessible
and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632–654.

Schwarz, C. V., & White, B. Y. (2005). Metamodeling knowledge: Developing students’ understand-
ing of scientific modeling. Cognition and Instruction, 23(2), 165–205.

Segedy, J. R., Kinnebrew, J. S., & Biswas, G. (2012). Supporting student learning using conversta-
tional agents in a teachable agent environment. Paper presented at the Proceedings of the 10th
International Conference of the Learning Sciences, Sydney, Australia.

Sherin, B. L. (2006). Common sense clarified: The role of intuitive knowledge in physics problem
solving. Journal of Research in Science Teaching, 43(6), 535–555.

Singley, M. K., & Anderson, J. R. (1989). The transfer of cognitive skill. Cambridge, MA: Harvard
University Press.

Steed, M. (1992). Stella, a simulation construction kit: Cognitive process and educational impli-
cations. Journal of Computers in Mathematics and Science Teaching, 11, 39–52.

Sterman, J. D., & Booth Sweeney, L. (2002). Cloudy skies: Assessing public understanding of global
warming. System Dynamics Review, 18(2), 207–240.

Stratford, S. J. (1997). A review of computer-based model research in precollege science classroom.
Journal of Computers in Mathematics and Science Teaching, 16(1), 3–23.

Swaak, J., van Joolingen, W. R., & de Jong, T. (1998). Supporting simulation-based learning: The
effects of model progression and assignments on definition and intuitive knowledge. Learning
and Instruction, 8(3), 235–252.

Tan, J., & Biswas, G. (2006). The role of feedback in preparation for future learning: A case study in
learning by teaching environments. In M. Ikeda, K. Ashley, & T.-W. Chan (Eds.), Intelligent
tutoring systems: 8th international conference, ITS 2006 (pp. 370–381). Berlin: Springer-Verlag.

412 K. VanLehn

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 

http://jasss.soc.surrey.ac.uk/3/3/forum/1.html
http://jasss.soc.surrey.ac.uk/3/3/forum/1.html


Tan, J., Biswas, G., & Schwartz, D. L. (2006). Feedback for metacognitive support in learning by
teaching environments. In R. Sun & N. Miyake (Eds.), Proceedings of the 28th annual
meeting of the cognitive science society (pp. 828–833). Mahwah, NJ: Erlbaum.

Tan, J., Skirvin, N., Biswas, G., & Catley, K. (2007). Providing guidance and opportunities for self-
assessment and transfer in a simulation environment for discovery learning. In D. S. McNamara &
J. G. Trafton (Eds.), Proceedings of the 29th annual meeting of the cognitive science society (pp.
1539–1544). Austin, TX: Cognitive Science Society.

Tan, J., Wagster, J., Wu, Y., & Biswas, G. (2007). Effect of metacognitive support on student beha-
viors in learning by teaching environments. In R. Luckin, K. R. Koedinger, & J. Greer (Eds.),
Proceedings of the 13th international conference on artificial intelligence in education
(pp. 650–652). Amsterdam: IOS Press.

Teodoro, V. D., & Neves, R. G. (2011). Mathematical modeling in science and mathematics edu-
cation. Computer Physics Communications, 182, 8–10.

Thompson, K., & Reimann, P. (2010). Patterns of use of an agent-based model and a system dynamics
model: The application of patterns of use and the impacts on learning outcomes. Computers and
Education, 54, 392–403.

Treagust, D. F., Chittleborough, G., & Mamiala, T. (2002). Students’ understanding of the role
of scientific models in learning science. International Journal of Science Education, 24(4),
357–368.

VanLehn, K., Burleson, W., Chavez Echeagaray, M.-E., Christopherson, R., Gonzalez Sanchez, J.,
Hastings, J., … Zhang, L. (2011). The affective meta-tutoring project: How to motivate students
to use effective meta-cognitive strategies. Paper presented at the 19th International Conference on
Computers in Education, Chiang Mai, Thailand.

VanLehn, K., & van de Sande, B. (2009). Acquiring conceptual expertise from modeling: The case of
elementary physics. In K. A. Ericsson (Ed.), Development of professional expertise:
Toward measurement of expert performance and design of optimal learning environments
(pp. 356–378). Cambridge: Cambridge University Press.

Wagster, J., Tan, J., Biswas, G., & Schwartz, D. L. (2007). How metacognitive feedback affects be-
havior in learning and transfer. Paper presented at the 13th International conference on
Artificial Intelligence in Education: Workshop on Metacognition and Self-Regulated Learning
in ITSs, Marina del Rey, CA.

Wagster, J., Tan, J., Wu, Y., Biswas, G., & Schwartz, D. L. (2007). Do learning by teaching environ-
ments with metacognitive support help students develop better learning behaviors? In D. S.
McNamara & J. G. Trafton (Eds.), Proceedings of the 29th annual meeting of the cognitive
science society (pp. 695–700). Austin, TX: Cognitive Science Society.

Weld, D. S. (1983). Explaining complex engineered devices. Cambridge, MA: Bolt, Beranek and
Newman, p. 50.

Wheeler, J. L., & Regian, J. W. (1999). The use of a cognitive tutoring system in the improvement of
the abstract reasoning component of word problem solving. Computers in Human Behavior, 15,
243–254.

White, B. Y. (1984). Designing computer games to help physics students understand Newton’s Laws
of Motion. Cognition and Instruction, 1(1), 69–108.

White, B. Y. (1993). ThinkerTools: Causal models, conceptual change and science education.
Cognition and Instruction, 10(1), 1–100.

White, B. Y., & Frederiksen, J. R. (1990). Causal model progressions as a foundation for intelligent
learning environments. Artificial Intelligence, 42, 99–157.

Yaron, D., Karabinos, M., Lange, D., Greeno, J. G., & Leinhardt, G. (2010). The chemcollective–
virtual labs for introductory chemistry courses. Science, 328(5978), 584–585.

Interactive Learning Environments 413

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

],
 [

M
r 

K
ur

t V
an

L
eh

n]
 a

t 1
3:

35
 1

1 
Ju

ly
 2

01
4 




