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Cirrus is a tool for protocol analysis. Given an encoded protocol of a subject solving problems, it constructs a 
model that will produce the same protocol as the subject when it is applied to the same problems. In order to 
parameterize Cirrus for a task domain, the user must supply it with a problem space: a vocabulary of attributes 
and values for describing spaces, a set of primitive operators, and a set of macro-operators. Cirrus' model of 
the subject is a hierarchical plan that is designed to be executed by an agenda-based plan follower. Cirrus' 
main components are a plan recognizer and a condition inducer. The condition inducer is based on Quinlan's 
ID3. Cirrus has potential applications not only in psychology but also as the student modelling component in 
an intelligent tutoring system. 

1. Introduction 

Cirrus is belongs to the class of machine learning programs that induce a problem solving strategy given a 
set of problem-solution pairs. Other programs in this class are Lex (Mitchell, Utgoff, & Banerji, 1983), 
ACM (Langley & Ohlsson, 1984), LP (Silver, 1986), and Sierra (VanLehn, 1987). The induction problem 

solved by these programs is: given a problem space (i.e., a represenlfltion for problem states and a set of 
state-change operators) and a set of problem-solution pairs, find a problem solving strategy such that when 
the strategy is applied to the given problems, the given solutions are generated. 

The primary difference among the program in this class is the types of problem solving strategies they arc 
designed to induce. Cirrus is unique in that the strategies it produces are hierarchical plans that are designed 
to be run on an agenda-based plan interpreter. Section 2 describes Cirrus' representation of strategies and 
discusses the motivations for choosing it. 

A secondary differences among strategy induction programs is the amount of information contained in the 
problem-solution pairs. Some programs (e.g., ACM) expect to be given only the final state while other 
programs (e.g .• LP) expect to be given a sequence of states leading from the initial to the [mal state. Cirrus 
expects to be given a sequence of primitive operator applications leading from the initial to the final state. 
Section 3 describes this aspect of Cirrus' design. This amount of information seems larger than that given to 
most strategy induction programs. However, because Cirrus assumes a hierarchical plan-following strategy, 
there may be many changes to the internal control state (i.e., manipulations of the agenda) between adjacent 

primitive operator applications. These changes are not visible to Cirrus, so it must infer them. The amount 
of information given to Cirrus in the problem-solution pairs is really not so large after all, given the difficulty 
of its induction task. 

Another major difference among strategy induction programs is their intended application. There seem to 
be four major applications for strategy induction programs: (1) as models of human skill acquisition, (2) as a 

way to augment the knowledge base of an expert system, (3) as the student modelling component of an 
intelligent tutoring system, and (4) as a tool for data analysis. Usually, a program is useful for more than one 
type of application. Cirrus is intended to be used for the third and fourth applications, i.e .• student modelling 
and data analysis, but it may perhaps prove useful for the others as well. In section 5. we show how Cirrus 
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has been employed to-construct models of students solving arithmetic problems. 

Cirrus' intended applications share ~ characteristic that the input to Cirrus can be noisy, because ' 
generated by humans solving problems. People often make slips (Norman, 1981), wherein they It ia 
action that they didn't intend. A classic example of a slip is an arithmetic error.of the type that :rf~ an 
checkbook. The existence of slips in the problem-solution pairs means that Cirrus must USe .est one's 
algorithms, such as Quinlan's (1986) ID3 algorithm, that are fairly immune to noisy data. As;:\Ictioq 
know, no other strategy induction program has been used with noisy data. . as \\It 

The main components of Cirrus are a plan recognizer and the ID3 concept inducer. 1be -plan reco&niztt . 
a modification of a parser for context-free grammars. Although these components are not partiCularly no ~ 
their arrangement into a useful system is. Thus, this paper will concenttare on describing the design c~ 
that, we believe, make Cirrus a useful tool. Most of these concern the type of data given Cinus and !be 
representation of problem solving strategies. These points are discussed in sections 2 and 3. The plan 
recognizer and concept inducer are discussed in section 4. The performance of Cirrus is illustrated in section 
5. Section 6 summarizes and indicates directions for futher research. 

2~ The representation of student models 

Cirrus' design assumes that subjects' problem solving strategies are hierarchical. That is, some 0JlCJ'8ti0ns 
are not performed directly, but are instead achieved by decomposing them into subgoals and achieving those 
subgoals. For--instance, answering a subtraction problem can be achieved by answering each of its COlumns. 
A concommitant assumption is that the same goal may be achieved by different methods under differeIU 
circumstances. For instance, answering a column can be achieved either by taking the difference between the 
digits in the column when the lOp digit in the column is larger than the bottom digit, or by fIrSt borrowing 

then taking the difference between the digits when the lOp digit is smaller than the bottom digit. These two 
assumptions, that procedural knowledge is hierarchical and conditional, are common to most current theories 
of human skill acquisition and problem solving (Anderson, 1983; VanLehn. 1983a; Laird. Rosenbloom, &: 
Newell, 1986; Anzai & Simon, 1979). 

Another assumption is that goals and the methods for; achieving them are schematic and that they must be -
instantiated by binding their arguments to objects in the problem state. Again, this is a nearly universal 

assumption among current theories of skill acquisition. 

Cirrus employs a simple knowledge representation that is consistent with the above assumptions and 
introduces very few additional assumptions. The representation is based on two types of operators. 

Primitive operators change the state of the problem. Macro operators expand into one or more operal(XS. 
Table 1 shows a common subtraction procedure in this format. 

Both types of operators specify the type of goal for which they are appropriate. Goals are just atomic 

tokens, such as C (for subtract ~olumn) or F (for borrow Erom} or R (for Regroup). Goals take arguments, 

which are shown as subscripts in our notation. . Thus, the schematic goal C j represents the gentnl idea of 

processing a column, and <; represents the instant!ated g9lLof processing the tens column (columns are 
numbeRd from right to left). The table;s notation for macro operators shows the goal to the left of an arrow, 

and the subgoals to the right of the arrow. The notation indicates argumen' passing by placing calculations in 
subscripts of subgoals. Thus, the sixth macro operator means that the goal of processing a regrouping a 

column ~) can be achieved by achieving two subgoals: borrowing from the next column to the left (Fj+l) 
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--- Table 1: Operators for subtraction 

Macro Operators 
=-1 Sub· --> C Sub· 1 

• 1 1 1+ 

2 Sub· -->C 
• 1 1 

3 C -->cr· 
• 1 1 

4. 
5. 
6. 
7. 
8. 

C -->-. 
1 1 

C -->R -. 
1 1 1 

R -->F- 1 A. 1 1+' 'i 
F- --> S· D. 

1 1 1 

F- --> D . F· 
1 "'I 1 

Primitive Operators 

Colwnn i+ 1 is not blank 
Colwnn i+ 1 is blank 
Bj is blank 
NotTj < Bj 
Tj<B j 

true 
NotTj=O 
Tj=O 

cr. Copy T j into the answer of column i 
1 Take the difference in column i and write it in the answer 

-j 
At Add ten to the top of column i 
S. Put a slash through the top digit of column i 

1 
D

j 
Decrement the top digit of column i 

and adding ten to the current column (~). 

Macro operators may have associated with them a condition that indicates when the the operator is 

appropriate for achieving its goal. No asswnptions are made about the necessity or sufficiency of the given 

conditions. In table 1, conditions are shown after the subgoals. They are described in English, with the 

convention that T j and B j refer to the top and bottom digits, respectively, of column i. Inside Cirrus, 

conditions are represented as Lisp predicates. 

This representation has been used for many types of procedural knowledge. It is a variant of the notation 

used in GPS, Strips, and their ~uccessors (Nilsson, 1980). To illustrate this generality with a classic example, 

a macro operator for personal travel might be: 

Travela,b --> Travela,Airpon(a) TakePlaneAirport(a),Airpon(b) TraveIAirport(b). b if Distance(a,b»500 

which says that when the distance between points a and b is more than five hundred miles, then a good way 

to travel between them is to take a plane, which requires travelling from a to the airpon near a, and travelling 

from the airport near b to b. 

Although theorists often agree on the hierarchical, conditional nature of procedural knowledge, they 

usually disagree on how the deployment of this knowledge is controlled. For instance, VanLehn (1983. 

1986) asswnes that subjects use a last-in·fICSt·out stack of goals, and that they attack subgoals in the order 

that those subgoals are specified in the macro operators. On the other hand. Newell and Simon (1972), in 
their discussion of GPS and means·ends analysis, assume that subjects use a goal stack, but they do not 

always execute the subgoals in a fixed order. Rather, the subjects use a scheduler to choose which subgoal of 

a macro operator to execute first In principle, the scheduler's choice may be detennined by features of the 

problem state, the goal stack, or whatever memory the solver may have of past actions. The strategy for 

making such choices is geJlC.".l'ally assumed to be tasic-specific, problem-independent knowledge (e.g., that the 

third subgoal of macro operator five in table 1 should never be scheduled as the initial subgoal). 

Yet another control regime is espoused by Anderson and his colleagues (Anderson, 1983; Anderson, 

Farren, & Saurers, 1984; Anderson & Thompson, 1986). They assume that instantiated goals are stored in a 

goal-sUbgoal tree. Some goals are marked "done" and others are marked "pending." A scheduler may pick 
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any pending goal from the tree for execution. This tree regime allows the solver to work on the subgoaIs of 

one goal for a while, shift to working on another goal's subgoals, then come back to the fll'St goal's subgoals. 
The stack regimes of Sierra (VanLehn's program) and GPS do not allow such flexibility. 

VanLehn and Ball (1987) studied the performances of 26 subjects. executing various subtraction 
procedures and found that a third of them execute their procedures in such a way that the flexibility of the 

tree regime is necessary for modelling their behavior. For instance, some subjects would fll'St make all the 

modifications to the top row required by various borrows in the problem, then answer the columns, starting 

with the leftmost column and finishing with the units column. This execution order requires instantiating all 

the borrow goals, executing some of their subgoals (the ones that modify the top row), then executing the 

column-difference subgoals. This requires the ability to temporarily suspend execution of the subgoals of a 

goal, which the stack regimes do not have. 

However, VanLehn and Ball also showed that a simpler control regime, based on maintaining an agenda of 

goals (i.e., an unordered set of instantiated goals) rather than a tree, is sufficient for modelling their data. 
Moreover, the agenda regime can do anything that the stack regimes can do, because appropriate scheduling 

strategies will make an agenda act exactly like a stack. Motivated by this finding, the design of Cirrus 

assumes that the subject's problem solving sttategy is executed by an agenda regime. 

The agenda assumption implies that subjects' have two types of procedural knowledge, an operator set 

(e.g., the one shown in table· 1) and a scheduling sttategy. The job of a scheduling sttategy is to select a goal 

from the agenda given the current state of the agenda and the current state of the problem. The remainder of 

this section discusses ways to repesent scheduling sttategies and motivates the choice of the representation 

that Cirrus employs. 

In principle, the scheduling strategy can be very complicated. Blackboard architectures (Nii, 1986), for 

instance, ·approach the scheduling problem with nearly the same complicated, powerful techniques as they 

employ for attacking the base problem itself. However, one goal of Cirrus is to infer the subjects' scheduling 

strategies from data, so an unwarranted assumption of complexity and power only makes its job harder 

without producing better quality models of the subjects. The optimal choice for representation power is a 

point just slightly beyond that which seems to be minimal, given the data at hand. Thus, when new data are 

analyzed, Cirrus has a good chance of succeeding and yet the cost of infering the scheduling sttategy is kept 
reasonable. 

To find this optimal point is tricky, because there is a tradeoff in how powerful the scheduling strategy is 

and how much of the data can be modelled. GPS represented scheduling strategies with a total order on the 

types of goals (Newell & Simon, 1972, pp. 418 and 436). However, some of the subjects' scheduling choices 

could not be predicted within this framework. 

VanLehn and Ball (1987) found that a total order is far too inflexible and that a partial order on goal types 

allowed much more of the data to be captured. For instance, the two ordering relations, Aj>-j and Rj>-i' 

represent the strategy that the difference in a column must come after the adding of ten to its top digit. but the 

relative order of the two regrouping subgoals, Ai and Fj+l' doesn't matter. VanLehn and Ball found that the 

best fitting partial orders still did not predict the observe,!i scheduling choices very well. On average, the best 

fitting partial orders left about a third of the agenda choices underdetermined. 

An underdetennined choice means that either the subject Inlely has no consistent scheduling strategy, or 
that the subject has a consistent strategy but Cirrus' representation is not adequate to represent iL In order 'to 
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avoid the latter case, the scheduling strategy representation should be just powerful enough to represent any 

subject's strategy. Since it seems unlikely that students' are guessing a third of the time, the Cirrus design 

uses a representation for scheduling strategies that is slightly more powerful than a partial order on goal 

types. 

Cirrus represents a scheduling strategy with a decision tree, such as the one shown in figure l. The tree's 

tests are predicates on the state of the agenda and the state of the problem. The leaves of the tree contain goal 

types. The scheduler simply traverses the tree, guided by the tests, until it reaches a leaf. Usually, the leaf 

will contain only one goal type and there will be only one goal of this type on the agenda. If such is the case, 

the scheduler just selects that goal instance from the agenda; otherwise, the choice is underdetermined. The 

decision tree shown in figure 1 represents the scheduling heuristics Ai>-i and FiT1>-i' but in addition, it 

represents the heuristic that one should do FiTl flI'st unless the top digit in column i+l is zero. The latter 

heuristic can not be represented by a partial order on goal types. 

Figure 1: A decision tree for a scheduling strategy 

-i on agenda? 
Yel\NO 

. A' ... 
Ye:i+7\ndaN: y(\~"1 ... g''''''N: 

T l~ ~A' F vA N. ' "1, 

i Fi+l 

In summary, the assumptions built into the design of Cirrus entail that the representation of1cnowledge has 

two components: a set of operators, and a decision tree. The operators represented knowledge about how to 

decompose goals into subgoals and when such decompositions are appropriate. The decision tree represents 

the subject's strategy for when to work: on what types of goals. 
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3. Cirrus' inputs and outputs 

Cirrus takes as inputs (1) a set of problem-solution pairs generated by someone solving problems, (2) a 

vocabulary for describing problem states, and (3) a set of operators. The latter two inputs are sometimes 

refened to as a problem space. Cirrus produces a decision tree that represents the subject's schedUling 
strategy. This section describes these inputs and outputs, and discusses the design issues behind them. 

In a problem-solution pair. the solution is represented by an encoded protocol, which is a sequence of 

primitive operator applications. For instance, the fIrst few steps of solving a subtraction problem might be 
encoded as [AI' -I' S2' D2 ... J. This sequence represents the actions of adding ten to the top digit in the units 
column, then taking the units column difference and entering it in the answer, then putting a slash through the 

top digit of the tens column, then decrementing the top digit of the tens column by one and writing the result 

above the tens column. 

Such encoded protocols may be hand-generated by a human reading a transcript of an experiment. or they 

may be produced automatically by, for instance, recording th.e user's selections from a menu-driven interface 

to an experimental apparatus or an inteUigent tutoring system. 1 Other strategy induction programs, such as 
ACM (Langley & Ohlsson, 1984), assume that only the final state (e.g., the answer to a subtraction problem) 

is available. The advantage of that assumption is that it is much easier to hand-encode a fmal state than to 

hand-encode a whole Protocol. However, we believe that the state of the art in personal computing and user 

interfaces is such that automatic generation of encoded protocols will become so common that hand· 

encoding will soon become a lost art. Thus, there will be no penalty for assuming that encoded protocols are 

the input. 

The second input to Cirrus is a vocabulary of attributes for describing problem states. These attributes are 

used as tests in the decision tree that Cirrus builds. An attribute can be any discrete-valued function on a 
state. . IT all the functions are predicates, then Cirrus will build only binary trees; however, it can handle 

functions with any type of range.2 An attribute is a Lisp function with three inputs: the external problem 
state (e.g., a partially solved subtraction problem), the agenda, and the list of the operator applications up 

until this point. The latter argument is needed in order to implement attributes such as "Has there been a 
borrow in this problem yet?" or "Was the last primitive operator a decrement?" 

As usual when dealing with induction programs, the user must experiment with attribute vocabularies until 

the program begins to generate sensible results. This is why we consider Cirrus a tool for data analysis, and 
not an automated psychologist. The art of analysing protocols lies in intuiting what the subject thinks is 

relevant Such intuitions are encoded as attibute vocabularies, and Cirrus is used to do the bookkeeping 

involved in checking them against the data. The ultimate goal of protocol analysis is a model that is 
consistent with the data., parsimonious and psychologically plausible. Cirrus can evaluate the consistency of 

the model, but only a human can evaluate psychological plausibility. Parsimony could in principle be 

measured by Cirrus. but that is left to the human at present 

When the combination of hwnan and Cirrus have found an attribute vocabulary that seems to work for a 

sample of the subject population, then it may be reasonable to assume that it will continue to yield good 

IThe testa ol einu. reported here use hand-elooded prolOCds from the VanLehn and Ball (1987) experimenta. 

20niy values that ac:lUally occur during the tree building are placed in the tree, .0 attribute funC1iOnJ will work even if !hey have . 
infU1i1e ranges. Of <XIUrIe, one would probably want 10 include a mechanism that breaks large ranges into intervalJ. in order 10 enhance 
the genenlity ol the induced scheduling strategy. . 

i 
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odeIs for subjects who have not yet been tested. If so, then Cirrus can now be used as an automated model 
milder. Such model builders are used in intelligent tutoring systems in order to track the learning of a 
b~dent so that the system can offer appropriate instruction. Cirrus can be used as the student modelling 

~odu1e in such a system, but it must first be parameterized for a task domain by empirically deriving the 

appropriate attribute vocabulary. , ' 

The output of Cirrus is a subject model, which consists of an operator set and a deci~ion tree, as previously 
described. The subject model wiu be consistent with the set of protocols that it is given. Here, "consistency" 
means that the model will generate exactly the same primitive operator applications as ~e subjects, if the 
model is deterministic. If the model is underdetennined, say, because some of the leaves in the decision tree 
have more than one goal type in them, then one of the possible solution paths generated by the model for 
each problem must correspond to the subject's protocol. 

Currently, Cirrus does not build the whole subject model, but only the decision tree. The operator set is 
given to it. This has not been a problem in the initial application because we have a theory of how arithmetic 
is learned (VanLehn, 1983a; VanLehn, 1983b) that predicts the operator sets that subjects will have. For 
subtraction, for instance, the theory predicts that the subjects will have one of 30 operator sets (VanLehn, 
I 983b). In principle, Cirrus could itterate through these 30 possibilities and choose the one that maximize 

. the fit and parsimony of the subject models. However, this choice is currently done by the user. 

In task domains where no theory is available~Cirrus could be augmented to accept even less infonnation 
about the operator sets. It could take only the goals and subgoals of operators as input, and use standard 
machine learning techniques (Langley et ai., 1980) to induce the conditions of the operators. 

If one is studying skiU acquisition, then making a plausible assumptions about the goals and subgoals of 
operators is not as hard a problem as it may seem. It has often been observed that instruction tells the student 
what to do (Le., what subgoals go with each goals) but not when to do it (Anderson, 1983; VanLehn, 1983b). 
In cases where the instruction does mention the bodies of operators, then one can generate a plausible set of 
operator sets by introducing perturbations (e.g., deleting subgoals from operators) into the operator set that 
the material teaches. 

4. Computational Details of Cirrus 

Cirrus perfonns the following operations in order. 
1. Plan recognition. Cirrus parses each protocol using the given operator set as if it were a 

context-free grammar. This converts the protocol, which is a sequence of primitive operator 
applications, into a parse tree whose leaves are the primitive operator applications and whose 
interior nodes are macro operator applications. 

2. Tree walking. The parse tree is traversed depth-fll'St in order to infer what the state of the 
agenda must have been at each cycle of execution. The output of tree walking is a micro state 
protocol, which is the original protocol augmented by aU the agenda states and state changes 
that happen between the changes in the external problem' state. This protocol represents what 
one would see if one could see the subject's internal actions as well as the external ones. 

3. Attribute encoding. In preparation for building a decision tree, Cirrus collects all instance of 
agenda selections. These are represented initially as the selected item paired with the total state 
(Le., the problem, the agenda, and the preceding operator applications) at the time of the 
selection. Each total state is converted to an attribute vector by ruMing aU the attribute 
functions on it The output of this stage is a set of pairs, each consisting of an agenda selection 
and the attribute vector for the total state at the time of the agenda selection. 

I 
'f 
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4. DecisiDlI Tree construction. The last stage is to build a decision tree that will sort the set of 
pairs by the goal type of the agenda selection. Cirrus uses Quinlan's (1986) ID3 algorithm. 
Although we included Quinlan's .Chi-squared test (op. cit, pg. 93) hoping that it would prevent 
ID3 from trying to predict the occurrence of noise (i.e., slips), we realize now that it is 
inappropriate for this purpose. A slip tends to show up as a single instance of an agenda 
selection that is not of the same type as all the other agenda selections in the seL The 
Chi-squared test is not an appropriate test for detecting an exception. It is good for taking a 
hetrogeneous set and showing that any way one discriminates it, the resulting partitions are just 
as hetrogeneous as the original set, so partitioning the set is pointless. However, with a set that 
is homogeneous with one exception, virtually any discrimination helps, so slips almost always 
remain undetected by the Chi-squared test. 

The use of a parser for plan recognition deserves some discussion, for it is not as common an AI technique 

as decision tree building, which is the only other nonlrivial operation performed by Cirrus. If an ordinary 

context-free parser built the parse 1reeS, then a parse tree would obey the following constraints (for easy 

reference, we say that A is a "suboperator" of B if A appears just beneath B in the parse tree): 
1. If two operators are suboperators of the same macro operator, then their order in the parse tree 

is the same as their order in the right side of the macro operator's rule. 

2. If two operators are suboperacors of the same macro operator, and they are adjacent in the pane 
tree, then the portion of the protocol that each covers must 1101 overlap. ('Ibis is guuanteed by 
the fact that a parse tree is a tree, in that operators have just one parent in the Iree.) 

3. If two operators are suboperators of the same macro operator, and they are adjacent in the parse 
tree, then the portion of the prorocol that each covers must be contiguous. 1bere can not be 
primitive operator applications between them. . 

If the control regime were the deterministic stack regime used by Siena, then this kind of parsing would be 
appropriate. If the control regime were the scheduled stack regime used by GPS, then relaxing the frrst 

constraint would be necessary. Because Cirrus uses an agenda control regime, both the fll'St and third 

constraints must be relaxed. The third constraint must be removed because the agenda regime makes it 
possible to stop working on ~ne macro operator's subgoals, work on some other macro operator's subgoals, 
then go back to the original macro operator's subgoals. This implies that suboperators of the same macro 

operator need not abuL 

Relaxing these constraints is a minor change to the parsing algorithm, but it drastically increases the search 

space for parse trees. Consequently, we added more assumptions to Cirrus. It is assumed that (1) the values 

of arguments can not be changed once the goal has been instantiated, and (2) the values of a subgoal's 
arguments are calculated exclusively from the values of the goal's arguments, regardless of the rest of the 
total state at the time of instantation. This makes the parser appropriate for attribute grammars (Knuth. 

1968) and affIx grammars (Koster, 1971) in that it can use the argument values of the goals in order to 

constrain the search. This vastly improves the performance of the parser, at least for subtraction. 

One constraint that the parser does not use, although it could. is provided by the conditions on the macro 

operators. 1besc could be tested during parsing in order to pnme parse trees where macro operators were 

applied inappropriately. Howevez, since we intend that Cirrus eventually be able to induce these conditions 

or modify existing ones, we designed the parser to ign<R them~ 

Lastly, the parser is very similar to the one used in Siem (VanLehn, 1987). Sima can learn new 

macro-operar.ors from prorocols. Thui iiis posSible to mC;mfy Cirrus so that when it is given an operator set 

that is incomplete. it can discover new operalOrS. It is . not clear whether this is a useful feature in the 

applications fo- which Cirrus is intended. 
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- Figure 2: Paul's problem solutions (above) and protocols (below) 

8 4 7 8 3 0 5 
4 5 3 

6 0 t 8 3 0 2 
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2 3 3 
2 7 5 5 9 

3 4 0 8 
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2. -I CT2 CT3 CT4 

3. -I -2 -3 

4. S2 Al -I 02 -2 

S. S2 Al -I 02 -2 

6. S2 Al -I 02 CT2 CT3 

7. S2 Al -I 02 S3 ~ 03 -2 S4 ~ -3 04 -4 

8. S2 Al -I 02 S3 ~ -2 °3 -3 

9. S2 Al -I D2 S3 ~ -2 D3 -3 CT4 

10. S2 Al -I D2 -2 S4 A3 04 -3 -4 
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5. Analyzing a subtraction protocol 
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This section illustrates the operation of Cirrus by describing the analysis of a protocol from Paul, a third 

grade student who has just learned subtraction. Paul worked a twelve-item test while we recorded his writing 
actions. Figure 2 shows his solution to the problems, first as a worked problem and second as a sequence of 
primitive operator applications. During the encoding process, we fJltered out one recognizable slip. Paul 
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wrote his answer to problem 1 illegibly, so he went back and rewrote it. These actions are not included in the 
encoded protocol. Although this particular instance of "editing" the data is quite clearly appropriate, part of 
the process of understanding a protocol may involve conjecturing that certain actions are slips and changing 

tbem to what the USC2' thinks the subject intended to do. If this makes Cirrus generate a dramatically _better 
analysis, the conjecture is supported. 

Figure 3: The parse tree for Paul's problem four 

83 
ti. 

The protocols are parsed, using the grammar of table 1. This yields a set of parse trees. Figure 3 shows 
the parse tree for problem 4. The parse trees are walked, the attribute vectors are collected, and a decision 
tree is produced. Figure 4 '~ows the decision tree that represents Paul's scheduling strategy. The leaves of 

the tree show how many agenda selections of each type have been sorted to that leaf. 

Paul's most common strategy for borrowing is to do the scratch mark, then the add ten and column 
difference, then return to complete the borrowing by doing a decrement (see figure 3). However, on some 
columns, Paul does the standard strategy of scheduling the decrement so that it immediately follows the 
scratch mark. These two strategies have much in common, and most of the decision tree is devoted to 

representing these commonalities. The most interesting part of the tree is the subtree just to the right of the 
node labelled "Just S" This subtree encodes the sub-strategy for what to do just after a scratch mark has been 

performed. It repesents Cirrus' best guess about the conditions that triggez Paul's two strategies. The 
auributcs chosen have to do with the existence of zeros in the top row of the problem. Apparently, for 
borrow-from-zero problems (Jroblems 11 and 12), Paul prefers to usc the strategy be was l3ught rather than 

the sttategy he invented. On the basis of this itJtu.itioo .. the USC2' would probably want to augment the attribute 

vocabulary with an auiibUie that indicates a column requires borrowing from zeros, because the attributes 
. currently available to Cirrus are sucb that it must usc an implausible attribute. T=B originally, in order to 
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Figure 4: Paul's decision tree. 
"lust X" means that action X was the most recently executed primitive operator. 

"RUC.T<B" means that the top digit is less than the bottom in the rightmost unanswered column. 
"T=B originally" means that the column's digits were equal in the initial problem state. 

"' top zeros" counts the number of zeros in the top row. 
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differentiate the tens column of problem 11 from the others.3 This symbiotic exploration of hypotheses about 

cognition is exactly what Cirrus is designed to expedite. 

Although experimentation with attribute sets in inevitable with any induction algorithm, this particular 

example indicates a problem that seems to be unique to 103. The desired attribute, which should distinguish 

borrow-from-zero columns from other kinds of columns, is a conjunction of two existing attributes, Tj<Bj 
and Ti+1=O. We had thought that ID3 would capture this conjunction as a subtree with two tests, say, Ti<Bj 
on the upper node and Ti+l=O on the lower node. However, the Tj<Bj test is always true at this point in the 

tree, so it has no discriminatory power; hence, ID3 would never choose it. This seems like a major problem 

'A similar situation exisu at the leaf under the false branch of RUC.T<B. Although the leaf is shown al containing two typel of . 
I,CIIda selectiOOl, 33 OCICUrtal(:t:1 of take~ifference and 2 occunatces of dec:ranenl, Cirrus actually placed a 1&'1e lubtree hen: filled . 
with implaUlible attributes. Again, strajghtening out this sublree would require experimelll&lian with the auribule vocabulary. 
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with 103. Its only ciJre may be to augment the original attribute vocabulary with all possible conjunctions of 
attributes. a combinatorially infeasible solution. This suggests that 103 may not be the right choice for an 

induction algorithm, a possibility we wis~ to explore in further research. 

6. Directions for further research 

The only way to evaluate the utility of Cirrus as a tool is to use it as such. This ·is the fll'St item on our 

agenda for future research. Our hope is that the combination of Cirrus and human analyst is a more 

productive combination than human analyst alone. In particular. we will be reanalyzing the rest of the 
VanLehn and Ball protocols in the hope that Cirrus will help uncover patterns that were overlooked by the 
unaided human theorists. 

As mentioned earlier, we intend to have Cirrus induce the conditions on macro-operators insteaU of having 

the user supply them. 

There is nothing in our theory of skill acquisition that stipulates that 103 is the right model of scheduling 
or macro-operator conditions. ' (Indeed. we fmd the decision tree format a difficult one to understand -- a 

common complaint about decision trees (Quinlan. 1986).) We would like to try a variety of concept 

formation techniques. We are particularly interested in exploring techniques based on models of human 

concept acquisition (Smith & Medin, 1981). If people learned their conditions and strategies by induction, 

then using the same inductive mechanisms, with the same built-in biases. seems like a good way to infer 

those conditi9ns. 

Lastly, there is a sense in which Cirrus is a theory of problem solving. H Cirrus fails to analyze a protocol, 

then the protocol lies outside its theory of problem solving.4 There are two ways analysis can fail: (1) The 

parser may be unable to parse some of the protocol. This indicates either that the operator set is wrong (i.e., a 

parameter to the theory has the wrong value -- a minor problem) or that the subject is using a more powerful 

plan following regime. It would be interseting to use Cirrus as a filter on large quantities of protocol data, 

looking for subjects who are using a more powerful control regime. (2) The second kind of failure occurs 

when the decision tree builder builds unintelligible trees. This could be the fault of the attribute vocabulary 
(again, a minor problem with an incorrectly set parameter), or more interestingly, the theory of scheduling 
strategies could be wrong. We actually believe that die latter may be the case, and look forward to finding 
evidence forit by uncovering protocols that Cirrus can not analyze. 
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