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Abstract

Several studies have found that learning is more
e�ective when students explain examples to
themselves. Although these studies show that
learning and self-explanation co-occur, they do
not reveal why. Three explanations have been
proposed and computational models have been
built for each. The gap-�lling explanation is that
self-explanation causes subjects to detect and �ll
gaps in their domain knowledge. The schema

formation explanation is that self-explanation
causes the learner to abstract general solution
procedures and associate each with a general
description of the problems it applies to. The
analogical enhancement explanation is that self-
explanation cause a richer elaboration of the ex-
ample, which facilitates later use of the example
for analogical problem solving. We claim that, in
one study at least, gap �lling accounts for most
of the self-explanation e�ect.

Introduction

Chi et al. (1989) found that students learn
more when they explain instructional material to
themselves. Chi et al. took protocols of students
learning college physics by studying worked ex-
ample problems. Some subjects simply read the
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solutions with hardly a pause, while others ex-
plained each solution line by deriving it from
physics principles and preceding lines. The stu-
dents who self-explained the example solutions
learned more. This co-occurrence, called the
self-explanation e�ect, has now been observed
when students study other problem solving task
domains (Pirolli & Bielaczyc, 1989; Ferguson-
Hessler & de Jong, 1990) and when students
study declarative subject matter, such as de-
scriptions of the human circulatory system (Chi
et al., 1991; Pressley et al., 1992). Training ex-
periments indicate that subjects can be taught,
or even just prompted, to self-explain, and when
they do, their learning rate increases (Chi et al.,
1991; Bielacsyc & Recker, 1991). Although the
self-explanation e�ect appears ubiquitous and
educationally important, the studies cited so far
only demonstrate that more e�ective learning co-
occurs with self-explanation. They do not reveal
why.

In analyzing the data from the original Chi
et al. (1989) study, we came to believe that
self-explanation caused students to uncover gaps
in their knowledge and �ll them. When stu-
dents did not explain the examples to them-
selves, they seem not to discover their ignorance,
so their knowledge gaps persisted and caused
errors. This hypothesis, here called gap-�lling,
is consistent with impasse-driven learning (Van-
lehn, Jones & Chi, 1991; Newell, 1990), failure-
driven learning (Schank, 1986) and other learn-
ing mechanisms.
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However, gap-�lling is not the only possible
explanation for the phenomena. Pirolli and An-
derson (1985) suggested that studying an exam-
ple creates a richer, more elaborated understand-
ing of the example, which increases the e�ective-
ness of analogical problem solving by increasing
the chances that the student will both retrieve a
useful example and adapt it successfully to solve
the problem at hand. Reimann (in press) sug-
gested that studying an example creates a prob-
lem schema: a moderately general plan for solv-
ing problems of this type. Pirolli and Reimann
are both building computational models of the
self-explanation e�ect.

The computational su�ciency of the gap-
�lling hypothesis has already been demonstrated
by implementing a computational model, called
Cascade, that learns by �lling gaps while study-
ing examples and solving problems. When Cas-
cade is directed to thoroughly explain physics
examples, it learns more and exhibits several
other behaviors characteristic of self-explainers
(VanLehn, Jones & Chi, 1991). When an in-
dividual student's protocol is �t by directing
Cascade to self-explain exactly the same exam-
ple lines that the student self-explained, Cas-
cade behaves much like the student during prob-
lem solving (VanLehn & Jones, 1993). However,
these computational studies show only that gap-
�lling su�ces to model the self-explanation ef-
fect. It could be that other types of learning,
such as schema acquisition and enhanced ana-
logical problem solving, might be just as good
at modeling the data. These hypothesized pro-
cesses are not mutually exclusive. All three or
any combination could concurrently mediate the
self-explanation e�ect.

The analyses presented below indicate that,
in this study at least, self-explanation enhances
learning mostly by �lling knowledge gaps, a little
by improving schema acquisition, and hardly at
all by facilitating analogical problem solving.

The Chi et al. study

The protocols for these analyses came from
the Chi et al. (1989) study of physics learning.

The subjects, 9 college students, reviewed ba-
sic mathematical and kinematics material until
they could pass criterion tests on it. They stud-
ied chapter 5 from Halliday and Resnick (1981),
a popular physics textbook, which introduces
Newtonian mechanics and gives a brief introduc-
tion to solving physics problems. The subjects
then talked aloud as they studied 3 worked ex-
ample problems from Halliday and Resnick, then
solved 19 problems.
Three schemas (solution procedures) were re-

quired for solving the problems and understand-
ing the examples. All the examples and 16 of
the problems require the force schema, which
has 4 steps: decide which objects to focus on
(the \bodies"), �nd all the forces acting on the
bodies, instantiate Newton's law (F = ma) and
other relevant principles, then solve the result-
ing system of equations. One problem must be
solved with the scalar equation schema, which
applies means-ends analysis to a set of scalar
equations (as in solving high-school algebra word
problems). Two problems require using the kine-
matic schema, which interrelates acceleration,
velocity, distance and time. In all the problem
solving analyses, we coded only the 16 problems
that used the force schema, as that was the topic
of chapter 5. The kinematics and scalar equation
schemas were taught earlier.
From the protocols taken during example

studying it was easy to tell which of the subjects
preferred to self-explain the solutions, and which
preferred to read them casually. Using the pro-
tocol coding of Chi et al. (1989), 3 subjects were
clearly high self-explainers because they uttered
75, 55 and 41 self-explanations each. The other
6 subjects uttered 19 or fewer self-explanations
each, so we call them the low self-explainers.
Just as Chi et al. found, with a slightly dif-

ferent method, the high self-explainers learned
more than the low self-explainers. While solv-
ing the 19 problems, the high self-explainers got
an average of 16.4 problems correct, while the
low self-explainers got an average of 10.5 prob-
lems correct, a signi�cant di�erence (p < :05,
t(7) = 3:14). Because all subjects had similar
pre-test scores (Chi & VanLehn, 1991), the high
self-explainers must have learned more physics



than the low self-explainers. This result shows
only that self-explanation co-occurs with more
e�ective learning. It doesn't say how that learn-
ing was accomplished.

An error analysis

A direct way to �nd out the source of the self-
explanation e�ect is to classify the errors of both
high and low self-explainers, and see what types
of errors were reduced by self-explanation. This
should indicate which learning processes were en-
gaged by self-explanation.
Working from the protocols, 69 errors were

identi�ed and classi�ed (see VanLehn & Jones,
in prep.) using the following categories.

� Gap errors. The error was caused by lack
of knowledge of a physics principle or con-
cept. For instance, some subjects did not
know that when an object is supported by
a surface, the surface exerts a force on the
object (called the normal force).

� Inappropriate analogies. Subjects were clas-
si�ed as using analogical problem solving if
they opened the textbook to an example
or explicitly referred to an example during
problem solving. Errors were caused both
by referring to inappropriate examples and
using appropriate examples in an incorrect
manner.

� Inappropriate schemas. Although the force
schema was required for correct solution
of all problems, some subjects used the
scalar equation schema on particularly sim-
ple problems. For instance, one problem
asked for the force exerted by a 160-pound
�reman on a pole as he slide down it at
10 feet per second. Some subjects immedi-
ately invoked F = ma because F is sought
and a is given. They subgoaled to get the
mass, m, from the given weight. The force
schema would begin by choosing the �reman
as the body, then noting that there are two
forces acting on the body, a frictional one
(whose magnitude is sought) and a gravita-
tional one (whose magnitude is given).

Table 1: Mean errors per subject

Error type high SE low SE t(7)

Gap errors *0.0 *4.5 2.22
Inappropriate schemas 0.7 1.7 1.53
Inappropriate analogies 1.3 1.8 0.55
Math errors 0.3 0.7 0.88
Miscellaneous errors 1.0 1.3 0.41

Totals *2.7 10.2 2.87

� Mathematical errors.

� Miscellaneous errors.

Table 1 shows the mean errors for each error
category. For all classi�cations, the high self-
explainers had fewer errors than the low self-
explainers. However, the di�erence was signif-
icant only for one category, gap errors (p < :05
one-tailed). Moreover, this category accounts for
most (60%) of the di�erences in error rates be-
tween the high and low self-explainers. These re-
sults strongly suggests that self-explanation en-
courages some kind of gap-�lling process. There
are weak trends suggesting that schema learning
and analogical enhancement might also be en-
couraged by self-explanation, so we will examine
those hypotheses more thoroughly in the next
two sections.

Schema acquisition and selection

Although there are many de�nitions of
\schema," we use the term to mean the gen-
eral procedure that textbooks teach for solv-
ing classes of equations. Chapter 5 of Halliday
and Resnick explicitly teaches a 4-step procedure
for solving force problems. Another approach
(schema) for solving physics problems, which has
often been noted in novice behavior, is to treat
F = ma, w = mg and other vectoral equations
as if they were scalar equations.

All subjects used both schemas at least once.
One subject used the scalar equation schema
only on one problem, problem 14, which is so



Table 2: Number of problems solved

Method high SE low SE
(N=3) (N=6)

Scalar equation schema 4.5 13
Force schema 3.5 3
Analogical problem solving 1 1
Unclassi�able 0 1

Total 9 18

simple that the scalar equation schema is ar-
guably the correct one to use with it. The other
subjects used the scalar equatin schema more
than once. Apparently, subjects already knew
the scalar equation schema (from high-school al-
gebra, perhaps) and had no trouble acquiring the
force schema from the text of chapter 5.

However, some errors were caused by subjects
using the scalar equation schema on problems
that required the force schema. Immediately
following problem 14 were two other problems
(one was the �reman problem described earlier)
that require the force schema for a correct solu-
tion even though they appear just as simple as
problem 14. Problem 19 was also an apparently
simple problem that required the force schema.
We coded the type of method used by subjects
on these 3 problems (see VanLehn & Jones, in
prep. for details). In addition to employing
one of the two schemas, some subjects used ana-
logical problem solving and one subject used a
method that we could not classify. Table 2 shows
the resulting distribution of methods for the high
and low self-explainers. Although the high self-
explainers chose the force schema more of often
than the low solvers, the di�erence was not sig-
nicant (�(3) = 4:88). This indicates that self-
explanation does not co-occur with better skill
at selecting schemas.

Moreover, no subject used the scalar equation
schema on any problems other than these 3 and
problem 14. Even if there were a tendency for
low self-explainers to be worse at schema selec-
tion, their poor selections on these few 3 prob-
lems could not account for the relatively large

di�erence in scores between the high and low
self-explainers. It appears that skill at selecting
schemas is not responsible for the large perfor-
mance di�erences caused by self-explanation.

Analogical problem solving

Several investigators (e.g., Pirolli & Ander-
son, 1985) have suggested that self-explanation
of an example creates a more elaborated under-
standing and memory for the example, and this
causes students to more often retrieve appro-
priate examples and apply them correctly. To
test this, we focused on 8 subjects who rou-
tinely tried to retrieve an example before solv-
ing a problem, and on 12 problems that were
isomorphic to example problems. We classi�ed
each of the 96 (8 � 12) retrieval attempts as suc-
cessful or not. Of the 24 retrieval attempts by
2 high self-explainers, 92% were successful. Of
the 72 retrieval attempts by 6 low self-explainers,
83% were successful. This is not a signi�cant
di�erence (t(5)=0.53), because all subjects were
highly successful (a ceiling e�ect). Restricting
the analysis to the 2 problems that were most
likely to cause retrieval errors also showed no
signi�cant di�erences between high and low self-
explainers (t(5)=0.85).

In order to determine whether self-explanation
facilitates analogical application, we examined
all cases where subjects explicitly referred to an
example and tried to use it to help them solve
their current problem. We classi�ed an ana-
logical application as successful if the subject
correctly mapped objects in the example to ob-
jects in the problem, and correctly imported rela-
tionships (usually equations) from the example
to the problem. Of the 22 analogical applica-
tions by high self-explainers, 82% were success-
ful. Of the 55 analogical applications by low self-
explainers, 80% were successful. This di�erent
was not signi�cant (�(5) = :033), so we conclude
that self-explanation did not help student apply
analogous examples to solve problems. Restrict-
ing the analysis to the 2 problems most likely to
cause application errors also showed no signi�-
cant di�erences (t(5)=0.0).



The trends were consistent with hypothesis
that self-explanation helps analogical problem
solving, and the trends could reach signi�cant
if more subjects were studied. However, the
small di�erence between the two groups' success
at analogical problem solving could not explain
the large di�erence in their learning rates. It ap-
pears that the high self-explainers are no better
at analogical problem solving than the low self-
explainers.

What happens to gaps

According to the gap-�lling hypothesis, incom-
plete instruction should cause incomplete knowl-
edge, which in turn should cause errors until the
gap is �lled by learning. To test this prediction,
we located 9 gaps in the textbook and exam-
ined every place in the protocols where these 9
pieces of knowledge were relevant. For each of
the 9 subjects, we classi�ed each of the 9 gaps
into one of the following patterns (the numbers
in parentheses are the number of cases of each
pattern).

� (6) The subject never used the knowledge
correctly, and these omissions caused errors.

� (17) At the �rst place where the missing
knowledge could be used, the subject's pro-
tocol showed clear signs of learning followed
by a correct usage of the knowledge. The
knowledge was used correctly on most sub-
sequent occasions.

� (14) At the �rst place where the missing
knowledge could be used, the subject used
it correctly but did not show verbal signs of
learning. The knowledge was used correctly
on most subsequent occasions.

� (44) The subject avoided all places where
the knowledge could be used. During exam-
ple studying, the subject did not self-explain
lines where the knowledge could be used.
During problem solving, the subject used
analogical problem solving to avoid oppor-
tunities for using the knowledge.

The cases in the �rst three categories support the
gap-�lling hypothesis. Although the 14 cases in
the fourth category could be interpreted as dis-
con�rming the hypothesis, it is more likely that
the students had learned the knowledge before
reading the text or that they learned the knowl-
edge at the �rst place where it could be used
but gave no signs of that learning in their pro-
tocol. Although the naturalistic design of this
study does not allow discon�rmation of the gap-
�lling hypothesis, the hypothesis receives some
support from the fact that there were 17 clear
cases of learning at exactly the placed predicted
by the hypothesis, and that there were errors at
many of the predicted places.
The biggest surprise from this analysis was

that subjects often avoided the places where
the missing knowledge could be used, most fre-
quently by employing analogical problem solving
instead of trying to solve the problem from �rst
principles. This suggests that analogical prob-
lem solving tends to preserve ignorance. If sub-
jects had not been allowed to refer to the ex-
amples, perhaps they would have discovered the
gaps in their understanding and found ways to
�ll them. This interpretation of the data, which
has strong pedagogical implications, is explored
in another paper (Vanlehn & Jones, in press).

Discussion

The primary research question was to de-
termine the type of learning that causes self-
explanation to improve post-test scores. By an-
alyzing errors, we discovered that approximately
60% of the di�erence in post-test error rates
between high and low self-explainers is due to
knowledge gaps. Knowledge gaps tend to re-
main and cause errors among low self-explainers,
whereas they tend to disappear among high self-
explainers.
Presumably, self-explanation causes students

to discover their ignorance and do something
about it. This assumption was checked by proto-
col analysis of all the places where a gap could be
detected. We found 17 clear cases of a gap being
�lled by learning, and another 14 cases where the
gap was either �lled by learning or did not exist



because the student learned the target knowl-
edge before the study. As predicted, 11 of the
17 clear cases of learning occurred with the high
self-explainers.

Another analysis checked whether analogical
problem solving was aided by self-explanation.
The results indicate, somewhat surprisingly, that
high and low self-explainers were equally good
at �nding appropriate examples and at apply-
ing analogies to those examples to help them
solve problems. Thus, it is unlikely that di�er-
ential success at analogical problem solving can
account for the self-explanation e�ect.

Self-explanation apparently has no e�ect on
whether students acquire the force schema,
which is not unreasonable given that it is taught
quite explicitly in the text. Moreover, self-
explanation did not signi�cantly improve the
students' skill at deciding whether to use the
force schema or another, simpler schema. Nei-
ther the acquisition of schemas nor the acqui-
sition of skill at selecting schemas contributed
much to the self-explanation e�ect.
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