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Abstract

When solving homework exercises, human
students often notice that the problem they
are about to solve is similar to an example.
They then deliberate over whether to refer to
the example or to solve the problem without
looking at the example. We present protocol
analyses showing that e�ective human learn-
ers prefer not to use analogical problem solv-
ing for achieving the base-level goals of the
problem, although they do use it occasionally
for achieving meta-level goals, such as check-
ing solutions or resolving certain kinds of im-
passes. On the other hand, ine�ective learn-
ers use analogical problem solving in place of
ordinary problem solving, and this prevents
them from discovering gaps in their domain
theory. An analysis of the task domain (col-
lege physics) reveals a testable heuristic for
when to use analogy and when to avoid it.
The heuristic may be of use in guiding mul-
tistrategy learners.

1 WHEN TO ANALOGIZE?

When doing homework exercises, human learners of-
ten notice that the problem they are about to solve is
similar to an example, then deliberate over whether to
refer to the example or to solve the problem without
its aid. As one of our subjects said, \this looks very
much like the one I had in the examples. Okay. Should
I just go right to the problem, which I distinctly re-
member? Or should I try to do it without looking
at the example?" A multistrategy machine learning
program could face the same decision. The objective
of this paper is to �nd out what heuristics good hu-
man learners use for deciding whether to do analogical
problem solving, then determine when those heuristics
would be good for a machine learning program to use.

Because we use protocol data, the only evidence we
have of analogical problem solving is episodes where

a person explicitly refers to an example, typically by
ipping pages in a textbook in order to expose the
page on which the example is printed. Thus, analogi-
cal problem solving, in this paper, means the process
of referring to a written example rather than a men-
tally held one. As will be seen later, nothing in our
conclusions relies on this restriction, so the results may
apply to analogies that refer to mental examples (or
cases?) as well as written ones.

The protocol data come from subjects learning New-
tonian physics. The subjects worked with textbook
physics problems and examples, such as the one in
Figure 1. The protocol data were collected as part
of a study by Chi, Bassok, Lewis, Reimann & Glaser
(1989). The subjects were 9 college students selected
to have similar backgrounds (Chi & VanLehn, 1991).
The subjects �rst refreshed their mathematical knowl-
edge by studying the �rst 4 chapters of Halliday &
Resnick (1981), a popular physics textbook. They
then studied the expository part of chapter 5, which
introduces the basic principles of Newtonian mechan-
ics, its history and some classic experiments. Student
were tested at this point and had to re-study parts of
the material that they did not understand. After they
had mastered the mathematical prerequisites and the
basic principles, they studied 3 examples and solved
19 problems while talking aloud. They were allowed
to refer to the examples at any time while solving prob-
lems, but they were not allowed to refer to their own
previous problem solutions. The 9 subjects' protocols,
which averaged 5 hours each, are the raw data for the
�ndings reported here. They contain many instances
of analogical problem solving. The goal is to discover
which ones helped learning and which ones hurt it.

We used a contrastive protocol analysis technique pio-
neered by Chi et al. (1989). The basic idea is to split
the subjects into two groups|e�ective learners and
ine�ective learners|then determine what the e�ec-
tive learners did di�erently from the ine�ective learn-
ers. Because the students were trained to have the
same prerequisite knowledge, the scores on their prob-
lem solving reect their learning rate during example



.

Figure 1: A physics example, with line numbers added

studying and problem solving. The 4 highest scoring
subjects constitute the e�ective learners (called Good
solvers by Chi et al.), and the 4 lowest scoring sub-
jects constituted the ine�ective learners (called Poor
solvers). The middle subject's protocol was not ana-
lyzed (until later: see below).

The next section presents a learning mechanism and
argues that it is the main source of learning by sub-
jects in this study. The argument uses new protocol
analyses as well as analyses published earlier. With
this as background, the subsequent sections present
the main result, which is that e�ective learners use
analogical problem solving sparingly. A discussion sec-
tion speculates on why this policy was better for hu-
man solvers in this experiment, and suggests condi-
tions under which this policy would be good for any
multi-strategy learner.

2 GAP FILLING

Given that errors are used to determine when learn-
ing was not e�ective, a direct way to uncover dominant
learning mechanisms is to examine the subjects' errors.
If errors of a certain type are much less common among
Good solvers than Poor solvers, we can assume that a
learning mechanism employed by the Good solvers and
not the Poor solvers is reducing those errors. From the
characteristics of such errors we can infer the charac-
teristics of the learning processes. We classi�ed errors
into 5 types, which are listed below:

� Inappropriate analogies. Sometimes subjects
fetched an example that was inappropriate for the
problem being solved. At other times, subjects
fetched appropriate examples but applied them

in inappropriate ways. Both types of errors are
classi�ed as inappropriate analogies.

� Gap errors. Subjects often lacked a piece of
physics knowledge, such as the fact that the ten-
sion in a string is equal to the magnitude of a
tension force exerted by that string. Sometimes
errors would occur when the subject reached an
impasse caused by their lack of knowledge, and
used some ine�ective repair strategy (VanLehn,
1990) to work around it. At other times, the gap
would cause an error (such as a missing minus
sign) without the subject ever becoming aware of
the gap.

� Schema selection errors. All subjects knew sev-
eral methods or schemas for solving physics prob-
lems. One method was to draw forces, gener-
ate equations and solve the equations. Another
method was simply to generate equations that
contained the sought and/or known quantities
without considering what forces or other physical
quantities might be present. On some problems,
subjects chose the equation-chaining schema in-
stead of the force schema, and this caused them
to answer the problem incorrectly.

� Mathematical errors. A typical mathematical er-
ror was to confuse sine and cosine, or to drop a
negative sign.

� Miscellaneous errors.

The error classi�cation was done separately by two
coders, with an intercoder reliability of 82%. Di�er-
ences were reconciled by collaborative protocol analy-
sis.



Table 1: Mean errors per subject for each error cate-
gory

Error type Good Poor
Inappropriate analogies 1.00 2.25
Gap errors **0.25 **7.75
Schema selection 0.50 1.75
Math errors 0.25 0.75
Miscellaneous errors 1.25 1.75
Totals **3.25 **14.25

Table 1 shows the average number of errors of each
type per subject. Although the Good solvers had fewer
errors than the Poor solvers in every category, the
di�erence was signi�cant only for gap errors (t(6) =
5:36; p < :01). Moreover, the di�erence was quite large
(3.8 standard deviations), and accounts for most (68%)
of the di�erence in the total error rates of the Good
and Poor solvers.

These results suggest that Good solvers were more ef-
fective learners than Poor solvers because they em-
ployed some kind of learning process that �lled in the
gaps in their knowledge.1 There are many kinds of
mechanisms in the literature that can detect and rec-
tify incomplete domain theories. For handy reference,
let us refer to the process(es) that Good solvers use
as gap �lling even though we do not know what it
is. Table 1 suggests that gap �lling is the main learn-
ing process that di�erentiates e�ective from ine�ective
learners in this study.

This suggestion is consistent with �ndings from Chi
et al.'s (1989) analysis of the same data. They found
that during example studying, Good solvers tended to
thoroughly explain the examples to themselves, while
the Poor solvers tended to read them rather casually.
Further examination of the protocols suggested that
self-explanation consisted of actually rederiving the
lines of the solution (VanLehn, Jones & Chi, 1991).
If the main learning process is gap �lling, then this
method of studying the example should cause the sub-
jects to detect gaps in their knowledge. If a piece of
physics knowledge is required for deriving a line of the
example's solution, and students lack that knowledge,
then they will be unable to fully explain the line. The
resulting impasse might cause them to seek the miss-
ing knowledge and �ll their gap. Thus, the gap-�lling
hypothesis is consistent with the �nding that Good
solvers self-explain examples more than Poor solvers.
Moreover, it explains why self-explanation causes bet-

1An alternative explanation is that the Good solvers
never had the gaps because they learned the knowledge
before studying the examples. Analyses of pre-test data
(Chi et al., 1989), the instructional material (VanLehn,
Jones & Chi, 1991) and the subjects' backgrounds (Chi &
VanLehn, 1991) fail to support this interpretation of the
data.

ter learning (VanLehn & Jones, in press-b).

The computational su�ciency of gap-�lling has been
tested by implementing a simulation of human learn-
ing, called Cascade, that is based a particular gap �ll-
ing mechanism and comparing Cascade's behavior to
the protocols (VanLehn, Jones & Chi, 1991; VanLehn
& Jones, 1991; in press-a). Gaps can cause Cascade to
reach impasses (i.e., be unable to achieve a goal) while
trying to solve problems or rederive examples. When
Cascade's \o�cial" domain knowledge is insu�cient to
achieve a goal, it tries to apply overly general knowl-
edge that captures regularities common to many types
of scienti�c and mathematical problem solving. For
instance, one overly general rule is that scienti�c con-
cepts often correspond roughly to common sense con-
cepts. Cascade uses this rule during a problem where
a block rests on a spring. Cascade lacks the knowledge
that a compressed spring exerts a force on the objects
at its ends, so it reaches an impasse. The overly gen-
eral rule applies, because Cascade knows that springs
push back when you push on them. The overly gen-
eral rule justi�es creating an instance of a scienti�c
concept (\force") because it involves the same objects
as an instance of a lay concept (\push back"). As
a side-e�ect of the application of this overly general
knowledge, a new domain rule is proposed: If a block
rests on a spring, the spring exerts a force on it. If
this rule is used successfully enough times, it becomes
a full-edged member of the domain theory. In this
fashion, Cascade �lls gaps in its domain knowledge.

Cascade's behavior compares well with both aggregate
�ndings (VanLehn, Jones & Chi, 1991) and individual
protocols (VanLehn & Jones, 1993). This establishes
that with plausible assumptions about subjects' prior
knowledge, there is enough information present in the
environment to allow a gap �lling process to learn ev-
erything that the Good solvers learn, to do so without
implausibly large computations, and to generate out-
ward behavior that is similar to the subjects' behavior.
In short, gap �lling is a computationally su�cient ac-
count for the Good solvers' learning.

None of the results show that gap �lling is the only

learning process going on. There could be others as
well. However, Table 1 suggests that gap �lling is the
most important learning process, because it accounts
for most of the di�erence in the learning of the Good
and Poor solvers.

3 AVOIDING ANALOGY

There is already some evidence that the Good solvers
avoid analogical problem solving. This section reviews
those �ndings, then tries to ascertain whether this is a
just a correlation or whether avoiding analogy actually
causes more e�ective learning.

Chi et al. (1989) counted episodes of analogical prob-



lem solving during the �rst 3 problems. They found
that Good solvers used analogy only 2.7 times per
problem, whereas the Poor solvers used analogy 6.7
items per problem. Thus, the Good solver use analog-
ical problem solving less often than the Poor solvers.
Chi et al. also found that the Good solvers used anal-
ogy in a more focused way. When the Good solvers
referred to an example, they tended to jump into the
middle of it and read only a few lines (1.6 lines per
episode, on average). The Poor solvers tended to
start at the beginning of the example and read un-
til they found something they could use (13.0 lines per
episode). This suggests that Good solvers are basi-
cally solving the problem on their own, but they occa-
sionally use analogical problem solving to get speci�c
information from the example. The Poor solvers, on
the other hand, seem to use analogical problem solv-
ing instead of regular problem solving. These �ndings
indicate that e�ective learning co-occurs with avoiding
of analogy, but it is not clear which way the causality
runs.

Our �rst hypothesis was that the Poor solvers used
more analogical problem solving because they lacked
domain knowledge so they had to refer to the example
if they were to make any progress. Cascade embed-
ded this hypothesis. It did analogy (called transforma-
tional analogy in earlier reports) only when it reached
an impasse (VanLehn, Chi & Jones, 1991; VanLehn &
Jones, in press-a). On this account, the Chi et al. cor-
relation is due to ine�ective learning causing analogy.

However, when we �tted Cascade to individual proto-
cols, we found that we sometimes had to force it to do
analogy even though it had the knowledge to do regu-
lar problem solving (VanLehn & Jones, 1993). While
simulating all 9 subjects, Cascade used analogy 231
times, and 196 of these were caused by impasses while
35 (15%) were caused by our intervention. If we believe
the modeling, then these 35 analogies were \optional"
in that the subjects did not have to do them. They
could have used their knowledge of physics principles
instead. In most of these cases (30 of 35), the subjects
copied the example's force diagram rather than gen-
erate their own. Copying the force diagram was also
frequent among the 196 impasse-driven analogies.

Upon reection, it occurred to us that some of these
supposedly impasse-driven analogies may not actu-
ally be caused by trying to generate forces, failing,
and reaching an impasse. If this were the case, then
one would expect the analogy to yield new knowl-
edge about the missing force (or whatever the missing
knowledge was), thus �lling the gap and allowing the
person to draw their own force diagram the next time
it was needed. We examined all 196 cases of analogy
and found no cases were this kind of learning occurred.
If a person had an gap that caused an impasse-driven
analogy, then they would use analogy on every sub-
sequent occasion (if any) when that piece of knowl-

edge was required. It could be that what people learn
from such an impasse is that \analogy works here,"
so they continue to use it. However, it could also be
that our modeling was incorrect, and they never had
such any impasses for that gap. Instead, when they go
to certain sections of the problem (typically, the force
diagram), they would use analogy without ever consid-
ering using their domain knowledge. Perhaps some of
those 196 cases of impasse-driven analogy were really
optional analogies. Indeed, two of the subject never
tried to draw a force diagram on their own|they al-
ways copied an example's diagram.

While investigating the gap-�lling hypothesis, we dis-
covered additional support for this conjecture. Ac-
cording to the gap-�lling hypothesis, gaps in the text-
book become gaps in the student's domain knowledge,
which cause errors until they are detected and reme-
died. In order to check this story, we carefully analyzed
the �rst 5 chapters of Halliday and Resnick (1981)
and discovered 9 pieces of knowledge that are required
by the problems and are not in the text (VanLehn
& Jones, in preparation). Using Cascade, for each of
the 9 subjects, we located the places in the protocols
where the 9 pieces of knowledge could appear if they
were known, or cause errors if they were unknown. For
each of the 9 pieces of knowledge, we created a chart,
such as the one shown in Table 2, that summarizes
what happened at each possible occurrence of the gap.
The particular piece of knowledge referenced by Ta-
ble 2 is \Projecting a vector onto the negative portion
of an axis yields a negative formula." This piece of
knowledge is relevant 5 times during example studying
and 16 times during problem solving. At each place,
for each subject, we classi�ed the protocol fragment
into one of the categories shown below (the symbol in
parentheses corresponds to the code used in Table 2).

� (E) The subject omited use of the knowledge,
which resulted in an error.

� (O) The subject omited use of the knowledge, but
no error occurred. For instance, one sign error
might compensate for another.

� (blank) During example studying, the subject did
not explain the part of the example where this
piece of knowledge would be used. During prob-
lem solving, the subject used analogical problem
solving to avoid the line of reasoning that would
use the piece of knowledge.

� (U) The subject used the piece of knowledge with-
out hesitation or other signs of unusual process-
ing.

� (L) The subject seemed to learn the knowledge.
Episodes received this code if the subjects ex-
pressed puzzlement or commented on their lack
of knowledge, but eventually came up with the
right action (e.g., writing a negative sign). For
instance, subject P2 overlooked the �rst minus



Table 2: Places where the negative-projection rule could be used

Subj. Examples Problems
1 2 3 4 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P2 L U ? ? U U U U U U U U U U U U U U
S101 L L O U U U
P1 L L U O U U U U U U U U U U U
S110 O U O O U O U R
S102 L U U U O U
S109
S105 U U U U U U E
S103 E O E
S107 U E R U U U O U

sign in the �rst example, but on the second mi-
nus sign she said, \Hmm, why is [it] minus? Uh
Huh: : : . Because these axis are starting here so
this is minus." She then went back to the �rst mi-
nus sign and said, \How about the X's. It should
also be a minus. Yah, that was a minus." Sub-
ject S102 paused after seeing the second minus
and said, \Negative W: : : . It's because it's go-
ing in a negative direction it points: : : they give
it a negative value [if] it's below the Y-axis. I
mean the X-axis." Subject P1 (quoted at length
in VanLehn, Jones & Chi 1991), took several gar-
den paths before discovering the correct rule for
explaining the minus sign, which is clear evidence
of her lack of knowledge. However, her verbal be-
havior at the time of the discovery was just as
brief and cryptic as the verbal behavior of P2
and S102. Such limited verbal evidence is typi-
cal of discovery events in protocol data (VanLehn,
1991; Siegler & Jenkins, 1989). They nonetheless
seem to reliably mark transitions in the subjects'
knowledge.

� (R) The subjects' verbal behavior indicates that
they are learning the piece of knowledge, but they
used it at least one before. We believe these are
cases of relearning.

� (?) Protocol missing.

The blanks in the problem solving part of Table 2
shows that for this piece of knowledge, many gaps are
not detected because the student used analogical prob-
lem solving. When we constructed similar analyses for
all 9 gaps and all 9 subjects, we found that of the 81 (=
9x9) cases where a piece of knowledge could be learned,
in 44 cases (54%) the subject avoided all places where
the gap could be detected (as did S109 in Table 2).
This analysis clearly indicates that analogical problem
solving is thwarting gap �lling by avoiding lines of rea-
soning that would cause the gap to be detected.

This �nding makes intuitive sense. Most problems can
be solved by a 4 step process: select some objects as
the \bodies" (line 1 of Figure 1), draw a diagram for

each body showing the forces acting on it (lines 2 and
3 of Figure 1), produce a set of equations (line 6 of Fig-
ure 1), then solve the equations for the sought quantity
(omitted in Figure 1). The last step cannot usually be
replaced by analogy because the problems seldom seek
the same quantities. However, the �rst 3 steps can
often be achieved by analogy. The student can �nd
an analogous problem and copy either its force dia-
gram, its equations or both. A student who does this
avoids using the force laws (which generate forces) and
Newton's laws (which generate the equations). Miss-
ing physics knowledge can remain undetected as long
as one uses analogy to copy force diagrams and equa-
tions. To put it bluntly, analogical problem solving
often preserves ignorance.

We can now understand part of Chi et al.'s �nding
about the use of analogy by Good and Poor solvers.
The Poor solvers displayed more episodes of ana-
logical problem solving and read more lines during
each episode because they generally avoided generat-
ing their own forces and equations by copying them
from the examples. This is not just a coincidence, but
seems to have caused them to learn much less than
they would otherwise. On the other hand, the Good
solvers generally tried to generate their own forces and
equations and only referred sporadically and briey to
the examples. Thus, they could still detect their gaps
and remedy them.

4 USING ANALOGY SPARINGLY

We suspect that the Good solvers' use of analogy does
more than just allow gap-�lling to operate. It may
actively aid gap-�lling by helping to both detect and
�ll gaps. This section presents a few pieces of protocol
data to support our conjecture. However, more data
are clearly required.

There were 6 cases in the protocols where, according
to the analysis above, knowledge was learned during
problem solving. During 4 of the 6 episodes, the sub-
ject clearly referred to an example. These 4 cases,



discussed below, are di�erent enough that they begin
to show that analogy can assist gap �lling in several
ways.

Subject P2 reached an impasse and �lled it with the
aid of analogy. The subject needed to know whether
water exerted a force on a block oating on it. She
referred to an example where a string held up a block
instead of water. The close similarity of the problems
convinced her that water can exert a force. This con-
jecture both �lled a gap in the subject's knowledge
and resolved a problem solving impasse. ACT* (An-
derson, 1990) and other theories claim that analogy
is often used to resolve impasses and thereby acquire
new knowledge.

Subject S105 used analogy to detect a knowledge gap.
While drawing forces for an inclined plane problem,
the subject omitted one force (the surface normal|a
notoriously unintuitive force). He had never produced
that force in earlier problem solving, nor had he self-
explained the line in the examples that was intended
to teach it. Thus, we assume he had a knowledge gap.
After �nishing his force diagram, the subject fetched
an example, viewed its force diagram, said, \That's
the force I wasn't thinking of," and drew a normal
force on his diagram. Thereafter, the subject regu-
larly drew normal forces on his diagrams. In this case,
analogy was used to check a step in the problem solv-
ing, and that revealed a knowledge gap. Whereas the
preceding case illustrates how analogy can help in �ll-

ing gaps, this case illustrates how analogy can help in
detecting gaps. There was a second case of analogy-
based checking causing detection of a gap, but it will
not be presented here. These cases are consistent with
a �nding of Chi et al. (1989), who classi�ed analog-
ical episodes as either reading, checking or copying.
Good solvers had many fewer episodes of reading and
copying than Poor solvers, but they actually had more
episodes of checking.

Subject 101 learned a rule while engaged in a mixture
of analogical problem solving and self-explanation.
While trying to project forces onto axes, the subject
decided to see what a similar example had done. He
could partially explain the example's equations, but
he could not self-explain the negative signs. He gave
up, copied the negative signs and said, \Well let's see
if I can just push these in: : : . This is called copying
too much from the book. I hate that." This is clearly
a case of analogical problem solving of the worst kind.
However, after solving the equations and producing
a negative formula, he said, \So, according to this,
my x-component is equal to �9, which means, okay.
That makes sense. That makes sense. One of these
has to always be negative, doesn't it?" Apparently,
the subject �gured out why there is a negative sign.
His reasoning appears to be based on some kind of
symmetry argument, which is an overly general line
of mathematical reasoning, but not the best one for

learning this rule. A bit later in the protocol, he failed
to use his new knowledge, but corrected his oversight
a few lines later (we coded this as a learning event in
Table 2). After that, he used the rule fairly consis-
tently. This case illustrates how analogy can combine
with self-explanation to produce learning via a kind of
justi�ed analogy (Kedar-Cabelli, 1985).

We believe that these cases are just a few of the many
ways that analogy can support learning. Note that
all these uses of analogy only briey interrupt regular
problem solving in order to achieve a speci�c meta-
goal, such as detecting a gap or �lling one. Wholesale
analogy, the kind used by the Poor solvers, avoids de-
tecting gaps and thus tends to retard learning. Thus,
we hypothesize that learning is most e�ective when
analogy is used sparsely, as an augmentation to regu-
lar problem solving rather than a replacement.

5 DISCUSSION

The preceding sections showed that in one study, ef-
fective human learners used analogical problem solving
sparingly. With a little bit of computational common
sense, we can generalize this result and formulate a
heuristic for when such sparse analogical problem solv-
ing should be e�ective.

There are four steps to solving a Newtonian mechanics
physics problem:

1. De�ne a system. One must (a) select an idealiza-
tion of the physical world consisting of idealized
bodies that have idealized relationships to other
objects and move in idealized trajectories, and (b)
decide whether to base the analysis on forces, en-
ergies or momenta. In Figure 1, line 1 corresponds
to part a (albeit, tersely), and part b is missing
because the text has only introduced one type of
analysis (forces) at this point.

2. Explicate physics quantities. For each body in the
system, one notes the forces, energies or momenta
associated with that body. Often, a diagram is
drawn to help one remember them. In Figure 1,
this occurs during line 2.

3. Generate equations. The equations are instances
of general principles. In Figure 1, the equations
are produced on line 6. They are instances of
Newton's �rst law.

4. Solve the equations for the sought quantity.

Although logically distinct, these steps are often inter-
mingled in an solver's work. Solvers have no trouble
learning this basic procedure. It is often printed in the
textbook. It is a specialization of the general 3-step
procedure (de�ne a system, formulate a mathemati-
cal model, solve it) that is used for all mathematical
analysis problems, from lowly arithmetic and algebraic



word problems to esoteric branches of science and en-
gineering (see any textbook on systems theory, e.g.,
Shearer, Murphy & Richardson, 1971).

The system de�nition step is quite di�erent from the
others. There are no real principles for de�ning a sys-
tem. Sometimes a chain is treated as a single body,
sometimes as an in�nite sequence of in�nitely small
bodies, and sometimes as two bodies. Textbooks give
few heuristics for de�ning systems. Although the prob-
lems used in our data are too simple to reveal how
the subjects learn about system de�nition, it is plausi-
ble that system-de�ning can be learned by analogical
problem solving and/or and case-based reasoning.

All the steps except system de�nition are governed
by well-known principles, such as the force laws (for
step 2), Newton's laws (for step 3) and mathemati-
cal transformations (for step 4). Moreover, once the
system has been de�ned, the analysis is completely de-
termined. In step 2 (explication of physics quantities),
one produces all the forces (or energies or momenta)
acting on the system's bodies. In step 3 (equation
generation), one produces all the equations implied by
those physics quantities.2 In step 4, the equations are
solved mechanically. The point here is that in physics
and many other mathematical analysis task domains,
the most important decisions are made during system
de�nition, and the rest of the analysis follows more
or less deterministically from those choices. Although
analogical problem solving would be useful for learning
search control, search control is not very important for
steps 2 and 3.

Although principles can be used for steps 2 and 3,
it may be that case-based reasoning is more e�cient
than principle-based reasoning. If so, analogical prob-
lem solving would be an e�ective way to master those
steps. The output of step 2 is completely determined
by the output of step 1, and case-based reasoning ap-
pears to be the most e�ective way to de�ne systems
(step 1), so case-based reasoning should be just as ef-
fective for delineating forces and other quantities (step
2). However, generation of equations (step 3) depends
only only on the earlier steps, but on the exactly which
quantities are sought and which are given. Even when
problems have very similar systems, they rarely have
similar givens and soughts, so case-based reasoning
should seldom be helpful generating equations. In ad-
dition, it is much easier to remember the diagrams
produced by steps 1 and 2 than the systems of equa-
tions produced by step 3.

It is worth recalling that our top-level goal is to de-
termine when analogical problem solving is advisable
for e�ective learning. So far, we have argued that

2Actually, there are choices to make during step 3 re-
garding how to rotate the coordinate axes or whether to
omit certain equations. These choices a�ect the di�culty
of step 4, but not the ultimate outcome.

case-based reasoning and/or analogy should be used
during the system de�ning step and possibly during
the quantity delineation step, whereas principle-based
reasoning should be used instead of analogy during the
equation generation step (we ignore the equation solv-
ing step, since it involves skills acquired prior to study-
ing the task domain). We next consider how principles
can be learned during steps 2 and 3.

Suppose the learner already knows many principles,
so the learning problem is to detect a gap (missing
principle) and �ll it, rather than to learn a whole batch
of principles at once. In order to detect a gap, one must
try to use principles instead of analogies to achieve
goals, for otherwise the body of knowledge containing
the gap will not be referenced and detecting the gap
would be impossible.

Although impasses in principle-based problem solving
will uncover some gaps, not all gaps cause impasses.
Thus, it is good to check intermediate results because
early detection of an error will facilitate locating the
gap that caused it. Analogy is one way to check inter-
mediate results.

By considering the nature of the task domain, one can
predict which intermediate results should be checked.
In physics, missing knowledge of physics quantities will
cause step 2 to produce too few forces, energies, etc.,
but this will not causes impasses until much later, if at
all. Consequently, it is good to use analogical problem
solving to check the results of step 2 before moving on
to step 3. This is just what subject S105 did in the case
mentioned earlier.3 In general, when the goal is \gen-
erate all X that you can think of," where X in S105's
case is \forces," then gaps will not cause impasses,
so it is wise to use analogy to check the outcome of
generate-all-X goals. Experienced learners of mathe-
matical analysis may know this heuristic for increasing
their learning rate. They may know other heuristics
as well.

Once a gap is detected, analogy is certainly one possi-
ble way to �ll it, but it is not easy to predict whether
one should use analogy or some other technique, such
as instantiating an overly general rule (VanLehn, Jones
& Chi, 1991) or explanation pattern (Schank, 1986). A
heuristic for this decision would be hard to formulate.

We have arrived �nally at our goal, which are heuris-
tics for deciding when to use analogical problem solv-
ing. The heuristics are:

1. If the task domain, or some part of the task do-
main (e.g., steps 2 and 3), has principles, and
they are more e�ective knowledge than cases, and
they require little search control, then the target
knowledge should be principles.

3In order to �ll such gaps, Cascade 3 used analogy es-
sentially as a check of step 2, although the implementation
was rather baroque (VanLehn & Jones, 1991; in press-a).



2. If the target knowledge is principles, they should
be acquired by gap �lling, which implies:

(a) Gap detection: Try to use principles instead
of analogies, as a gap may show up as an im-
passe. Use analogy to check the intermediate
results derived via principles, as this may un-
cover gaps that do not produce impasses.

(b) Gap �lling: Analogical problem solving is one
possible technique for �lling gaps. Others
should be considered as well.

3. If the target knowledge is not principles but cases
or search control, then analogical problem solving
may be useful.

This conclusion was suggested by human data. There
is evidence that the Poor solvers use analogy \whole-
sale," as a replacement for principle-based solutions to
steps 1, 2 and 3. There is also evidence that Good
solvers avoid analogical problem solving in general.
There is some evidence, albeit only a few protocol ex-
cerpts, that when Good solvers do use analogy, it is
used as an aid to gap �lling. In this last section, we
have reected on the human data and, supported by
common sense, derived a heuristic for when analogi-
cal problem solving should aid learning. This heuris-
tic could have several uses. (1) It helps explains why
the Good solvers learned more than the Poor solvers.
(2) It is a prescription for e�ective learning that could
perhaps be taught to human students. (3) It could be
embedded in a multi-strategy learning.

Clearly, all these implications are testable in their own
fashions. A good next step would be to augment Cas-
cade so that we can experimentally test whether the
heuristic does increase learning. If this succeeds, one
could try teaching human students the heuristic and
see if their learning increases as predicted.
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