
A student modeling technique for problem solving in 
domains with large solution spaces 

Cristina Conati 
Intelligent Systems Program 

Learning Research and Development Center 
3939 O'Hara St. 

University of Pittsburgh 
Pittsburgh, PA 15260 

tel. 412-624-7536 
conati=pogo.isp.pitt.edu 

Kurt VanLehn 
Computer Science Department 

Learning Research and Development Center 
3939 O'Hara St. 

University of Pittsburgh 
Pittsburgh, PA 15260 

tel. 412-624-7458 
vanlehn=cs.pitt.edu 

Poster Proposal 

Areas o~ interest: student modeling, cognitive diagnosis 

1 



1 Introduction 

In order for a coached practice environment to give effective advice, it must at minimum determine 
whether a student's actions lead eventually to a correct solution. Some model tracing tutors, for 
instance, give immediate feedback whenever the student's action does not lie along a known solution 
path. Even if the coach does not give immediate feedback, it needs to determine what path the 
student is on before it decides what it should do in response to the student's action[lJ. 

However, in some task domains, there are too many correct solution paths to represent them 
explicitly. For instance, when solving the college physics problem shown in Figure la, there are 
11 primitive equations that can be applied (Figure lb). Figures lc and ld show two of the more 
than 11!1 correct derivations. When preferred problem solving strategies can be identified, an 
approach to handle this complexity is to limit the acceptable solution paths to those generated 
by the preferred. strategies (e.g., [2, 4)). Another approach is to provide an environment that 
supports problem solving through a carefully designed interface, without providing tutorial guidance 
(e.g.,[5]). We are developing a coached practice environment for a certain class of domains whose 
problems have many distinct acceptable solution paths, and it would be too constraining to prune 
to a predefined subset. This poster presents our current research on the student model component 
and hint selection strategies for such an environment. 

.) 

BMic Equation. 
.) Fx-Tu+Tbx .. Tcx 
b) Fy-Tay+Tey+Tby 
c) Tay - T.· .. n(5O) 
d) Tby - Tb·"n(60) 
.) Tey - ·Tc·.ln(90) 
f) T.x - • T.·coa(50) 
;) Tbx - Tb°coa(60) 
Ii) Tex - Tc°coa(90) 
I) Fx - F ° coe(lncIlna F) 
I) Fy - F ° "n(lncllne F) 

'm) Tc-W 

n) T.-3O 
0) F(knot) - 0 

b) 

> 0 - T"Iin(50) .. Tb°8in(60) • To 
> 0 - .T."coa(5O) .. Tb·coa(5O) 
>Tb-31.4 
>To - 51.5 
>W-S1.5 

c) 

>W-Tc 
>To - ·Ter 
>T01 -. Tby. Tay 
> Tby - Tb • 8In(5O) 
> Tb - Tbx 1_ (60) 
>Tbx-·T_ 
>T .. -·It1.2 
>T01 --33.4·23.1 
>W-S1.5 

d) 

Figure 1: 

2 The AND/OR representation of multiple solution paths 

The task domain we are currently working in is classical physics. In physics, a correct solution 
consists of a derivation of a sought quantity via applications of generic equations (e.g., Newton's 
law) and substitution of given quantities. Such a derivation can be represented by an AND/OR 
graph (Figure 2 ) where the AND nodes (circles) are equation applications and the 0 R nodes 
(diamonds) are derived quantities. Every correct solution path corresponds to a traversal of this 
AND/OR graph. For instance, the path of Figure 1c corresponds to applying first the equations 
corresponding to nodes Al, G2, A3, A8, A9 and A10, then the equation corresponding to nodes A2, 
G2, A4, AS, A6 and A 7, then to derive the quantities corresponding to nodes 07 and 010 and finally 
to apply the equation corresponding to All to derive the sought quantity represented by 011. In 
many other task domains (e.g., theorem proving, algebraic equation solving, thermodynamics), the 
solution is also a derivation that can be represented by an AND/OR graph, and a solution path 

lThis estimate uaumes the Itudent writes only primitive equations. When combinationl of primitive equations 
and givens are written, &I in Figures Ic and Id, the number of correct solution paths is much higher. 

2 



- - - ----------------------------- - - _. - - -- _ .. _--

Fy- tay+tby+tcy Tey ,. -Tc·sln 90 

~1 

~ 
Figure 2: 

is a traversal of this graph. Each AND node corresponds to the application of a domain inference 
rule, and each OR node corresponds to a proposition. 

Our system constructs an AND/OR graph for each problem in advance, from a knowledge base 
of production rules that encodes the physics knowledge necessary to solve problems in Newtonian 
physics. As the student enters actions, the system checks off the AND nodes that correspond to the 
inferences that the student has made and the OR nodes that correspond to the quantities already 
derived. If the student makes an inference that is not part of the domain knowledge base, there 
will be no corresponding set of AND nodes for the student's action and the system can notify the 
student of the mistake. 

Since there are so many correct solution paths available, when the student makes a mistake or 
asks for help, the system cannot immediately tell what the appropriate next step for the student 
should be. In fact, even if the tutor keeps track of the path the student has followed so far, many 
possible correct continuations are available. Our hypothesis is that an appropriate next step to . 
suggest would be one of the inferences (AND nodes) that is adjacent to the part of the graph that 
has been checked off so far. If more then one of these inferences are available, which one to select 
will be determined by heuristics and Bayesian reasoning. 

3 



--~---~ .~-~--~.-------------------------------

3 Hint selection 

The tutorial module is integrated with OLAE [3J, an assessment tool that collects data from stu­
dents solving problems in introductory college physics. OLAE provides an interface that presents 
problems and allows the student to solve them by drawing force diagrams and entering algebraic 
equations. We have developed an algorithm that generates all the algebraically correct equations 
the student can enter, associates them with nodes in the AND/OR graph and uses this structure 
to verify the validity of the student input and to select hints when the student asks for help. 

Given the problem of Figure la, let's suppose that the student types2 

O. Ta*sin(50) + Tb*sin(60) + Te. 

The system extracts all the inferences and intermediate results that have been implicitly performed 
to write this equation, namely those corresponding to nodes AIO, A9, AS, AI, A3, G2, and 03 in 
Figure 2. 

Let's suppose that the student asks for help now. The system collects all the AND nodes 
adjacent to the inferences the student has already applied: GI, All and A7 (nodes corresponding 
to givens are considered special instances of AND nodes). This set of nodes is called the hinting 
set and the system uses heuristics to select a node from it. 

Gl represents a given and the tutor assumes that the student knows it. It would make sense 
to give All as a hint if there was evidence that the student was following a top-down approach, 
trying to write the primitive equations closely connected to the sought quantity. There is no such 
evidence, since the student has written only one equation and has already substituted values in it. 
The system therefore applies the default heuristic of giving a. hint about an equation that allows the 
student to derive one of the variables still present in the student's equation, namely the equation 
represented by node A 7. 

In the real protocol, instead of asking for help, our student types 

o s Ta*sin(50) + Tb*sin(60). 

This equation does not correspond to any node in the AND/OR graph and the tutor detects an 
error. From the analysis of the variables present in the equation, the tutor guess that the student 
is trying to compute Tb. The fact that node A7, which allows the student to derive Tb, is part of 
the hinting set adds evidence to the tutor's guess. The tutor can therefore stop the student and 
give hints about the correct inference to use to find Tb, namely applying Fx = Tax + TQx + Tex . 

As the example shows, the topology of the AND/OR graph and the student's actions are used 
by the tutor to formulate guesses about the student line of reasoning a.nd to ela.bora.te hints when 
the student needs support. In the future, we may a.dd the capability to ask the student about the 
validity of the tutor's guesses. 

4 Future work 

Our first goal is to integrate the heuristic approa.ch for hint selection with the use of probabilities. 
Olae already has the functiona.lity to interpret the AND/OR gra.ph as a. Ba.yesian Network and to 
propa.gate probabilities from actions to rule nodes following the links in the solution graphs. We 
are planning to use these probabilities in the hint selection process. Moreover, probabilities could 
be used to exploit structural links existing among rules in the knowledge base, indicating how the 

2The equations used in this example are taken from the protocol of a student using Olae. 

4 



knowledge of a certain rule can a.ffect the knowledge of a.nother. For example, it is quite probable 
that a student who knows the rule for projecting a vector onto the z axis will know the equivalent 
rule for the y axis. 

We are planning to use real students to evaluate the hint selection heuristics developed, in order 
to have empirical data to refine them a.nd to devise new ones. ' 

References 

[1] Anderson, J.R., Corbett, A.T., Koedinger, K., Pelletier, R. Cognitive Tutors: Lessons learned, 
Cognitive Science, in preas. 

[2] Corbett, A. T., Anderson, J .R. LISP Intelligent Tutoring System: Research in Skill Acquisition, 
(1992). In Larkin, J.R. " Chabay, R.W. (Eds), Computer-Assisted Instruction a.nd Intelligent 
Tutoring Systems: Shared goals a.nd complementary approaches, pp. 201-238. Hillsdale, NJ: 
Erlbaum. 

[3] Martin, J., VanLehn, K. OLAE: Progress toward a multi-a.ctivity, Bayesian student modeler, 
(1993). In Brna, P., Ohlsson, S. " Pain, H. (Eds), Proceedings of the 1993 World Conference 
on AI a.nd Education, pp. 426-432. Charlottesville, NC: Association for the Advancement of 
Computing in Education. 

[4] Singley, M. K. The Reification of Gool Structures in a Calculus Tutor: Effect on Problem­
Solving Performance, (1990). Intelligent Leaming Environments, vol 1(2), pp 102-123. 

[5] Foss, C. L. Productive thra.shing in a computerized tutoring system, (1986). Proceedings of the 
Third International Conference of Artificial Intelligence a.nd Education . 

. . 
j • 

5 


