
POLA: a student modeling framework for Probabilistic On-Line Assessment of
problem solving performance

Cristina Conati, Kurt VanLehn
Intelligent Systems Program

University of Pittsburgh
Pittsburgh, PA, 15260

conati@pogo.isp.pitt.edu, vanlehn+@pitt.edu

Abstract

The paper presents POLA, a student modeling framework
that performs probabilistic assessment of students’ perfor-
mance while they solve problems in introductory Physics.
Existing efforts toward probabilistic student modeling focus
exclusively on performing knowledge tracing. With POLA
we aim to turn OLAE, a system that performs probabilistic
knowledge tracing, into a system that applies probabilis-
tic reasoning to perform both knowledge and model tracing.
POLA generates probabilistic predictions about the student’s
line of reasoning without using heuristics, even when the
problem’s solution space is large. An AND/OR graph pro-
vides a compact representation of all the available solutions
for a problem. A Bayesian network built incrementally from
the AND/OR graph and from the student’s actions gener-
ates predictions about the solution that the student is follow-
ing. At the end of the problem solving session the network
provides an assessment of student’s level of mastery of the
physics knowledge involved in the problem’s solution.

Introduction
There has been a great deal of interest recently in apply-
ing probabilistic methods, especially Bayesian networks, to
reasoning about uncertainty (Pearl 1988). The problem of
inferring from a tutorial interaction what a student is think-
ing and what knowledge she has clearly is a problem of
uncertain reasoning, so there have been several recent at-
tempts to apply probabilistic reasoning to student modeling
(Villano 1992; Martin & VanLehn 1995; Petrushin 1993;
Sime 1993; Mislevy 1995; Duncan, Brna, & Morss 1994;
Gitomer et al. 1995). This paper discusses a new approach
to applying Bayesian networks to student modeling.

There are actually two types of student modeling, which
Anderson, Corbett and Koedinger (Anderson et al. 1995)
called knowledge tracing and model tracing. These are
their names for the particular techniques they use, but the
distinction is perfectly general. Knowledge tracing refers to
the problem of determining what students know, including
both correct domain knowledge and robust misconceptions.
Model tracing refers to tracking a student’s problem solving
as she works on a problem.

Model tracing is useful for systems that attempt to answer
requests for help or to give unsolicited hints and feedback
in the middle of problem solving. In fact, to do an adequate

job of helping, hinting and critiquing an on-going solution
attempt a system must at minimum understand what line of
reasoning the student is attempting to pursue.

On the other hand,knowledge tracing is useful for making
longer range pedagogical decisions, such as what problem
to assign next or what evaluation grade to assign to the
student. All the existing attempts to apply probabilistic
reasoning to student modeling have been directed toward
performing knowledge tracing only.

The research project reported in this paper aims to turn an
existing system that does probabilistic knowledge tracing,
OLAE (Martin & VanLehn 1995), into a system that applies
probabilistic reasoning to do both knowledge and model
tracing. The new system is called POLA (Probabilistic
On-Line Assessment). It will eventually become the stu-
dent modeling component of a tutoring system that offers
help upon request and gives unsolicited hints and feedback
during problem solving. The challenge is to get POLA to
follow the student’s reasoning without making unwarranted
heuristic assumptions. Instead, uncertainty in the interpre-
tation of the student’s actions is to be handled in a sound
probabilistic manner. In particular, whenever multiple so-
lutions paths are consistent with the student’s past actions,
POLA will be able to assess which one is most probably the
one that the student is following. Given such information,
the tutoring system can generate reasonable hints and an-
swer help requests. Without it, the tutoring system would
be unable to answer even the simplest help request, such as
“what should I do next?”

Student modeling in domains with large
solution spaces

Both the OLAE research and this research have been con-
ducted in the task domain of physics (Newtonian mechanics
in particular). Physics is somewhat different from other task
domains in the student modeling literature in that there are
many correct solution paths. For instance, for the prob-
lem shown in Figure 1a the 8 primitive equations in (Fig-
ure 1b) can be grouped in the two solution sets in Fig-
ure 1c, corresponding to two conceptually different solu-
tions,

���������	��
�����
and

���������	�����
. Since equations

can be generated in any order, each solution can be gener-
ated in at least � ! different ways, where � is the number of

N

value of the normal
force N?

a

c

b
�

PRIMITIVE EQUATIONS
�

mass of boy (Mb) = 75kg

weigth of bag
of flour (Wf) = 40N

Mb = 75
�
Wf = 40
G = 9.8
Wf = Mf*G
�
Wb = Mb*G
Wa = Wf + Wb
Ma = Mf + Mb
N = Wa

where
Wa = total weight of
 boy and flour
Ma = total mass of
 boy and flout

Mb = 75
Wf=40
G=9.8
Mf = Mf/G
Ma = Mf + Mb
Wa = Ma*g
N = Wa

SOLUTION SET for
�
Mb=75
Wf = 40
G = 9.8
Wb = Mb*G
Wa = Wf + Wb
N = Wa

solution "SummWeight"
SOLUTION SET for
�
solution "SummMass"

Figure 1: Physics problem with multiple solutions

primitive equations in the corresponding solution set. Thus,
there are 6! 720 ways to express

�!�������	��
�����
and

7! 5040 ways to express
�!�������	�����

. Actually these
numbers represent a lower bound for the number of differ-
ent ways of expressing solutions for this problem because
they assume that the student only writes primitive equations.
When combinations of primitive equations are written, such
as
�	� 40 " �$#&%

9 ' 8 the number of correct solution paths
increases dramatically.

Other task domains that, like physics, are characterized
by large solution spaces are, for example, algebra word
problems, geometry theorem proving and programming.
One approach to handle the complexity of model tracing
in such domains is to limit the number acceptable solu-
tion paths and to make the student follow one of the ac-
ceptable paths (Corbett & Anderson 1992; Singley 1990;
Derry & Hawkes 1993). However, the approach of limit-
ing the acceptable solutions to a predefined subset can be
too constraining for the student. Extended studies on the
educational strategies employed by human tutors (Merril,
Reiser, & Ranney 1992) revealed that teachers usually let
the student do as much of the work as possible during prob-
lem solving, allowing the student to maintain a feeling of
control and intervening only when the student makes mis-
takes. Therefore, POLA aims to provide a student modeling
framework that is able to perform model tracing in domains
with vast solution spaces without imposing unwarranted
limitations on the set of acceptable solutions.

The starting point: OLAE
OLAE is an off-line probabilistic assessment tool that col-
lects data from students solving problems in introductory
college physics. It provides an interface that presents prob-
lems and allows the student to solve them by entering alge-
braic equations. OLAE uses the student’s actions to assess
the probability that the student knows the physics rules en-
coded in its model of physics knowledge. The assessment
is performed off-line by propagating the evidence provided
by the student’s actions into a Bayesian network built upon

Application
(
 node

Fact
Node

Rule node

R1
)

R2
)

A2
*A1

*
G3
+

A3
*

A5
*

A6
*

A7
*

A8
*

A4
*

R4
)

F1
,

F4
,

F2
,

F3
,

F5
,

F7
,

F6
,

A9
-

N=775
.

F8
/

summ−masses

R3
)
summ−weights

given3
G2
+

G1
+

given1 given2

Wf = 40
0

G = 9.8
+

Mb = 75
1

Wf = 40
0 G = 9.8

+ W=M*G
0

Mb = 75
1

Mf = 4.1
1

Ma=Mf+Mb
1

Ma = 79.1
1

Wa = Ma*G
0

Wb = 735
0

Wb=Mb*G
0

Wa = Wb+Wf
0

Wa = 775
0 N = W

N = Wa
2

Wf=Mf*G
0

Figure 2: Solution graph for the problem in figure 1

an AND/OR graph representation of the problem solution.

The AND/OR representation of problem solutions
The AND/OR graph is built automatically by a problem
solver from a knowledge base of production rules that en-
codes the physics knowledge necessary to solve problems
in Newtonian physics. Some of the rules in the knowledge
base encode quantitative physics principles that must be ap-
plied to solve the problem (such as

� �3%54
). Others

encode more qualitative knowledge such as “a tension force
exists when a body is tied to a string.” Figure 2 shows
a simplified version of the AND/OR graph for the prob-
lem in Figure 1, in which only nodes related to quantitative
derivations are represented.

The problem solutions are generated forward chaining
by the problem solver starting from the problem givens and
firing rules as soon as they become applicable. Three kinds
of nodes are present in the AND/OR graph. (1) Rule nodes
(rectangles in Figure 2) that represent rules and problem
givens. (2) Application nodes (ellipses in Figure 2) that
explicitly represent rules firing. (3) Fact nodes (diamonds in
Figure 2), that represent conclusions derived during problem
solving. Application nodes are the AND nodes in the graph,
since for a rule to be applied to generate a conclusion from
certain antecedents the rule and all the antecedents must be
known. Each application node is connected to the fact node
representing the derived conclusion. Fact nodes are OR
nodes in the graph, modeling the fact that some conclusions

can be derived in multiple ways (see, for example, node F7
Figure6 2). At the end of the problem solving process the
system has generated an AND/OR graph that encodes all the
conceptually different ways in which rules and given data
can be combined to generate intermediate and final results
for the problem.

Along with the AND/OR graph the system generates for
each problem a database in which the equations correspond-
ing to facts in the AND/OR graph are stored in a normalized
form independent from the algebraic form in which they are
written. For example, the equations

�$7 40 8 9 ' 8 and
40 �$79%

9 ' 8 have the same normalized form and would
correspond to the same entry in the database, indexed to
node F4 in Figure 2. The database allows OLAE to quickly
verify the correctness of a student’s equation by normalizing
it and then by matching it with the database entries.

Probabilistic assessment with OLAE

OLAE assesses the student knowledge of physics rules from
the student’s solution of a problem using a Bayesian net-
work consisting of the AND/OR graph for that problem in-
tegrated with nodes that represent the equations entered by
the student, called action nodes. Each node in the Bayesian
network has values TRUE/FALSE, which represent (a) for
a rule node, whether the student knows the corresponding
rule. (b) For an application node, whether the student actu-
ally used a rule during the problem solution. (c) For a fact
node, whether the student knows the associated fact about
the given problem. (d) For an action node, whether the
student has performed the action.

The conditional probabilities used in the Bayesian net-
work are derived from two assumptions. First, OLAE as-
sumes that rule application is almost logical. Namely, if
the rules and all its antecedents are known, then the rule
will “almost always” be applied, where “almost always”
is represented by a leaky-AND link matrix which encodes
the probability that the AND boolean function is computed
incorrectly. Second, OLAE assumes that people rarely in-
fer the same fact twice and encodes this relationship with
a leaky-XOR link matrix between each action node and its
parent derivation nodes.

OLAE starts to assesses the student’s knowledge of
physics rules when the student has finished entering her
solution. Each equation in the student’s solution is trans-
lated into normalized form and looked up in the equation
database. If a match is found, the equation represents a
conclusion in the AND/OR graph and the associated fact
node is retrieved. A new action node representing the en-
tered equation is linked to the corresponding fact node. The
new action node is clamped to a probability of 1.0 and the
new evidence is propagated through the network. When
all the actions performed by the student have been inserted
into the network the probabilities associated with the rule
nodes provide a prediction of the student knowledge of the
corresponding physics principles.

From OLAE to POLA
The aim of OLAE is to perform knowledge tracing, not to
provide support during problem solving. Therefore, OLAE
does not need to monitor the student’s performance on-line
or to predict the student’s line of reasoning. Two major
changes have been necessary to adapt the OLAE architec-
ture to provide POLA with the capability to perform model
tracing in addition to knowledge tracing.

Exploiting the AND/OR graph
The first change that we made to OLAE was to extend the
use of the AND/OR graph to keep track of the progression
of the student in the solution space.

In order to monitor the student’s progression POLA must
be able to infer from any correct equation that the student
types the rules that have been used and the facts to which
they have been applied to derive the equation. This is simple
if the equation represents a conclusion along a problem
solution, such as

�	� 79 ' 1. In fact, to find all the rules
and conclusions that have been used to generate the equation
it is enough to retrieve in the AND/OR graph the fact node
corresponding to the equation (node : 6 in Figure 2) and all
its ancestors nodes.

The matter is more complicated for equations that com-
bine multiple but incomplete rule applications, such as�	� 4 ' 1 " �$#

, since they are not directly associated
with nodes in the AND/OR graph. From

�	� 4 ' 1 " �$#
,

POLA must be able to infer that (a) Rule W=M*G, rep-
resented by node R1 in Figure 2, has been applied to the
values of

�$7
and

4
to generate the value of 4.1 for

�$7
;

(b) Rule summ-masses, represented by node R2 Figure 2,
has been applied to the computed value of

�$7
and to the

variable
�$#

, whose value has not has not been substituted
yet.

A possible approach to this problem is to force the student
to write every rule application explicitly1. To avoid impos-
ing this constraint on the student, we have developed an
algorithm that infers from any correct equation that the stu-
dent types the rules and the givens that have been employed
to derive it. Every time the student enters an equation that
belongs to one of the problem’s solutions POLA computes
the rule applications entailed in the equation and marks
the corresponding application nodes in the AND/OR graph.
The shaded nodes in Figure 2, for instance, are marked in
the AND/OR graph if the student types

�	� 4 ' 1 " �$#
.

It is important to emphasize that, although the AND/OR
graph is generated by forward chaining, solution steps can
be generated by the student in any order. In summary, the
AND/OR graph provides a compact representation of all the
solution sets and solution paths for a problem and it allows
POLA to keep track of the actions that the student’s has
performed.

A new topology for the Bayesian network
The second change we made to OLAE to add the capability
to perform model tracing consisted in developing a new

1This is the strategy that OLAE adopts

Bayesian network capable of assessing, for each solution set
in a problem, the probability that the student is following it
given the student’s actions.

We initially thought that we could perform probabilis-
tic model tracing using the OLAE Bayesian network it-
self. However, we soon found that propagation through
this network caused incorrect assignment of probabilities.
In particular, evidence in a Bayesian network is propagated
through every link, not only from a clamped node back-
ward to its parents. Therefore, adding action nodes directly
to the AND/OR graph, as was done in OLAE, has the ad-
ditional effect of propagating evidence forward to nodes
derived from the facts related to the performed actions. For
instance, if the student enters the equation

�	� 79 ' 1 a
corresponding action node is attached to the fact node F6 in
Figure 2. Part of the effect of the evidence provided by the
action

�	� 79 ' 1 is to increase the probability of fact F6,
rule R1 and fact F1. This consequently makes both applica-
tion node A8 and fact node F7 very probable. The meaning
of high probabilities for these two nodes is very different
from the meaning of high probabilities for nodes that are
ancestors of the performed action. While high probabilities
for the ancestor nodes mean that the information encoded by
these nodes has been correctly used to derive the action, the
only possible meaning for high probabilities of descendant
nodes such as A8 and F7 is that most likely they will be
used in or derived by successive student actions.

A possible revision of the OLAE Bayesian network is
to capture these different meanings by adding more values
to nodes in the network, such as “ALREADY APPLIED”,
“ALREADY INFERRED”, “WILL BE APPLIED”. The
main drawback of this solution is that it would make the
semantics of the network more complicated and the defini-
tion of the conditional probability distributions much more
laborious. In POLA, we have adopted what appears to be a
simpler and better solution.

POLA builds the Bayesian network incrementally from
the AND/OR graph as the student enters actions, but keeps
the two structures separately. For each new action that
the student types, POLA determines which rules and which
givens have been used to derive it. If there is more than
one way to derive the student’s action the analysis returns
the set of possible derivations, each of which is a distinct
but possibly overlapping set of rule applications and givens.
Derivations are represented explicitly in the Bayesian net-
work by what we call derivation nodes. After each new
equation entered by the student the Bayesian network is
extended with an action node that represents the equation
and with a derivation node for each derivation producing
the equation. The derivation nodes are linked to the action
node through a leaky-XOR link matrix. Each derivation
node is linked to the corresponding set of application nodes
in the AND/OR graph through an AND link matrix. Each
application node is linked to the corresponding rule node
through a leaky-AND link matrix. All the priors in the net-
work are set to the default value of 0.5. Figure 3 shows
the structure of the network after the student has performed
only the action action1, which can be derived in two dif-

ferent ways, represented by the derivation nodes der1 and
der2. The first derivation consists of the application appl1
of rule1 and the application appl2 of rule2, while the second
derivation consists of the application appl3 of rule3.

This new topology still refers to the AND/OR represen-
tation of solution sets and paths, but uniquely defines the
meaning of TRUE values for application, derivation and
action nodes as “HAS BEEN PERFORMED”. Moreover,
the propagation time is reduced since the network is built
incrementally. This is an important gain since POLA must
perform the propagation of evidence on-line every time the
student enters an action.

Although this new topology fixes the propagation prob-
lem presented by the OLAE Bayesian network, it still does
not generate the correct probabilities for model tracing. The
next section describes three problems that we encountered
with this structure and how we solved them by introducing
in the Bayesian network a new kind of node to explicitly
represent the different solution sets available for a problem.

Representing solution sets probabilistically
The first problem is that this structure does not give enough
relevance to the evidence provided by the student’s actions
in computing the probability of alternative derivations. Fig-
ure 3 shows how evidence is propagate backward through a
first level of XOR connections (at the bottom) followed by
a level of AND connections. Evidence is distributed among
the nodes linked by the XOR relation in a way that is in-
versely proportional to the number of their AND parents.
In our domain this means that if the student types an action
that can be derived in more than one way, like action1 in
Figure 3, the most likely derivation is the one that requires
the least number of steps (least complex), which in Figure 3
is derivation der2. This is a perfectly plausible rationale in
absence of further evidence. On the other hand, if the stu-
dent’s next action provides evidence for a rule application
that is related to one of the previous derivations, we want
this derivation and the related application nodes to become
the most probable, since they belong to the same solution
set of the last rule application performed. This does not
always happen with this topology. In Figure 4, for example,
the next performed action action2 provides indirect support
for derivation der1 through application appl1 but, despite
of this, der2 still has higher probability then der1.

The second problem is that as soon as a rule node in
the Bayesian network reaches an high probability, this is
propagated to all the application nodes that are descendants
of the rule node, including application nodes that belong
to improbable derivations. Figure 5 shows an example of
this inconsistent behavior. Let’s imagine that the nodes in
the figure are part of a larger network in which derivation
node der2 has high probability. This high probability prop-
agates backward to the application node appl3 and to rule
node rule2. From here probability propagates forward to
the application node appl2, which reaches high probability
although it belongs to the improbable derivation der1 and
although there is no explicit evidence that the student has
performed the corresponding rule application. This prob-

der1 (0.25)
;

der2 (0.75)
;

action1 (1.0)

appl1 (0.5) appl2 (0.5)

rule1 (0.5) rule2 (0.5)

appl3 (0.75)

rule3 (0.75)

Figure 3: how the complexity of a derivation influences its
probability

action1 (1.0)action2 (1.0)

der3 (0.99)
<
appl1 (0.99)

der1 (0.49)
<

der2 (0.51)
<
appl3 (0.51)appl2 (0.5)

rule2 (0.5)rule1 (0.95) rule3 (0.51)

Figure 4: example of insufficient relevance of actions in
determining the most probable derivation

lem arises because this topology, as the one used by OLAE,
does not represent the fact that knowing a rule is different
from being willing to apply it.

The third problem is that the Noisy-XOR link ma-
trix between action and derivation nodes is semantically
inappropriate.2 We used it to encode our belief that very
seldom students re-derive the same result twice and there-
fore given an action only one of the possible derivations
should be TRUE. The problem is that the Noisy-XOR also
encodes the inverse implication that, when more then one
derivation for an action is true, the action is most probably
false. This implication never actually occurs in our network,
since by construction action nodes are always clamped to
TRUE and the case of an action and all its derivations being
TRUE at the same time is covered by the noise of the XOR
relation, but this does not justify the fact that the Noisy-XOR
does not represent the correct semantics in the network.

Solution nodes are the solution
We solved the three problems described above by introduc-
ing in the network solution nodes that explicitly represent
the different solution sets for a certain problem. When a
problem is selected by the student, POLA computes from
the corresponding AND/OR graph the solution sets. In the
AND/OR graph each node is marked with the solution sets
in which it is used. In the graph in Figure 2, for instance,
nodes R2, A4, F4, A6, F6, and A8 are marked as belong-
ing to solution

���������	�����
, nodes R3, A5, F5 and A7

2We thank Anthony Jameson for pointing out this problem.

action1 (1.0)

der1 (0.1)
= der2 (0.9)

=
appl1 (0.28)

rule1 (0.31)

appl2 (0.77) appl3 (0.9)

rule2 (0.85)

Figure 5: example of wrong propagation between rule and
application nodes

as belonging to solution
���������	��
�����

while all the other
nodes are marked as belonging to both solutions.

Once the solution sets have been identified, POLA starts
creating the Bayesian network adding a solution node for
each solution set. The TRUE/FALSE values of a solution
node indicate the probability that the student is pursuing
the corresponding solution set. The solution nodes are then
linked to a common ancestor, the redundancy node, whose
values explicitly represent the probability that the student is
following only one solution or more then one. The values
of the redundancy node for a problem with two solutions
are shown in Figure 6. The priors of the redundancy node
allow one to express the presumably low probability that
results are derived more than once, since the fact that the
student is pursuing multiple solutions is directly related to
the fact that the student performs two derivations of the
same result. For each new student’s action an action node
and the corresponding derivation nodes are added to the
network. An additional derivation node, like other1 and
other2 in Figure 6, is inserted for each action, to encode
the probability that the student has performed the action
by guessing or copying from other solutions. Since the
probability of mutually exclusivity of derivations is encoded
into the redundancy node, the link matrix between an action
node and its parent derivation nodes can now be defined
by an OR link, eliminating the inappropriate implications
entailed by the Noisy-XOR link.

At this point POLA retrieves in the AND/OR graph the
solution sets to which each derivation belongs. Each appli-
cation node in a derivation is connected to the corresponding
solution node and to the node corresponding to the applied
rule, as shown in Figure 6 and in Figure 7. The conditional
probability distribution for an application node is defined
by a leaky-AND matrix, that represents two assumptions.
First, that it is possible that the rule has not been applied
even though the rule and the solution are TRUE. Second,
it is possible that the application has been performed even
though either the solution or the rule are FALSE, by guess-
ing or copying from other solutions. In interpreting the
meaning of the Noisy-AND link between application, rule
and solution nodes, it is important to keep in mind that
application nodes are inserted in the network only when a
student’s action provides evidence for them. Therefore the

action1 (1.0)action2 (1.0)

der3 (0.99)
>
appl1 (0.99)

sol1 (0.92)
?

sol2 (0.02)
both (0.06)
@

sol1 (0.98) sol2 (0.08)

rule1 (0.98)

der1 (0.93)
>
appl2 (0.93)

rule2 (0.9)

der2 (0.1)
>
appl3 (0.1)

REDUNDANCY

rule2 (0.53)

other2 other1

Figure 6: solution nodes augment the relevance of the stu-
dent actions

action1 (1.0)

der1 (0.03)
A der2 (0.96)

A
appl1 (0.45)

rule1 (0.5)

sol1 (0.1) sol2 (0.94)

appl3 (0.96)
appl2 (0.15)

rule2 (0.94)

REDUNDANCY

other1

Figure 7: solution nodes regulate the propagation of evi-
dence between rule and application nodes

AND relation encodes the fact that, when an action that may
require a certain rule application has been typed, if the rule is
known and the solution set to which the application belongs
is probable, then the rule has probably been applied. The
other possible meaning of the AND relation, namely that if
a rule and a solution are highly probable then the applica-
tion of the rule in the context of that solution will probably
happen, is not represented by our network. As a matter of
fact the decision of building the network incrementally has
been taken to avoid modeling the distinction between infer-
ences that have been made in the past and inferences that
will be made in the future. A sound representation of this
distinction will require an explicit representation of time in
the network.

The links between a solution node and the application
nodes belonging to the corresponding solution set provide
an explicit representation of the student’s intention to apply
a rule within a specific solution set. These links empha-
size the relevance of the evidence coming from student’s

actions, thus solving the first problem mentioned in the pre-
vious section. Figure 6 shows how the addition of solution
nodes

�CBED
1 and

�FBED
2 makes derivation G ��H 1, for which in-

direct evidence is provided by
�JIK�L
B � 2, more probable then

G ��H 2, adjusting the proportion of the probabilities of G ��H 1
and G ��H 2 shown in Figure 4. A direct assessment of the
probability of each solution is immediately available from
the values of

�FBED
1 and

�CBED
2.

Moreover, the introduction of solution nodes solves also
the problem of the wrong propagation of evidence from
rule nodes to application nodes. In fact, the links between
application and solution nodes prevent the high probabil-
ity of a rule node from spreading to the application nodes
that belong to unlikely solutions, modeling the fact that a
rule application node can have high probability only if it
is part of an highly probable solution or if there is direct
evidence that the rule has been applied. Figure 7 shows
the same situation represented in Figure 5 encoded in the
new topology. In Figure 7 the low probability of node

�CBED
1

prevents the high probability of node
HM�NDO�

2 to propagate
to node

�MPEP�D
2 through the leaky-AND link matrix, fixing

the too high probability reached by
�MP&P�D

2 in the network of
Figure 5.

Current version of POLA
The addition of solution nodes to the Bayesian network
used by POLA allows the system to generate reasonable
probabilistic predictions about the solution that the student is
following even when multiple solutions are consistent with
the student’s actions. Moreover, the network still propagates
to rule nodes the evidence coming from student’s actions,
maintaining for POLA the capability that OLAE had for
performing knowledge tracing.

As an illustration of how POLA works, we now summa-
rize the steps that POLA performs to build the network in
Figure 8. The network is built after the student has entered
as her first action the equation

�	� 775, in the attempt to
solve the problem in Figure 1.

Before the student starts solving the problem, the only
nodes in the Bayesian network are the root node redun-
dancy and its children, solution nodes

�
1 and

�
2, repre-

senting solution
���������	�����

and solution
���������	��
�����

respectively. As soon as equation
�	� 775 is entered,

POLA retrieves from the AND/OR graph the two differ-
ent sets of application nodes that can be used to derive
the equation, namely nodes QSR 1 TUR 2 TKR 3 TKR 4 TUR 6 TLR 8 V and
QSR 1 TUR 2 TKR 3 TKR 5 TUR 7 V in Figure 2. Then it adds to the net-
work an action node, labeled

�	� 775 in Figure 8, that
represents the entered equation, a derivation node for each
set of applications (nodes G ��H 1 and G ��H 2 in Figure 8) and
an additional derivation node (other1 in the figure), whose
prior represents the probability that the action has been de-
rived in an unorthodox way.

The derivation nodes are linked to the action node through
an OR link. Each derivation node is linked through an AND
link matrix to the application nodes in the corresponding set.
Application nodes are the nodes at the third level in Figure 8.
Each application node is linked through a leaky-AND link

g3

Wf=40
W

W=M*GWf=Mf*G
X

der1 der2

W=M*G
YWf=Mf*G
X

Wa=775
Z

other1

W=M*G
[

W=M*G
\Ma=Mb+Mf Wa=Ma*G

X
G=9.8
]

Ma=775
^

W=M*G
YWb=Mb*G
_

W=M*G
\Wa=Wb+Wf

X

summ−masses

summ−weight

g1 g3

xs1 xs2 xs3

g2

s1 (0.508) s2 (0.521)

REDUNDANCY

Figure 8: state of the Bayesian network after the student’s input “Wa=775”

matrix to the corresponding rule node and to the solution
node representing the solution set to which the application
belongs. Rule nodes in Figure 8 are the nodes labeled
summ-masses, summ-weight, W=M*G,

�
1,
�
2 and

�
3.

When an application belongs to two or more solutions,
a node (like ` � 1, ` � 2 and ` � 3 in Figure 8) is interposed
between the application node and the solution nodes and its
conditional probability distribution is defined by an OR link
matrix. All the prior probabilities in the network are set to
the default value of 0.5.

The action node corresponding to
�	� 775 is then

clamped to 1.0 and propagation is run. Although it is im-
plausible that

�	� 775 be the first action that the stu-
dent performs, we are using this situation to show how
the Bayesian network assigns probabilities to alternative
solution sets when only ambiguous actions are available.
Although the action

�	� 775 belongs to both solution���������	�����
and solution

�!�������	��
�����
, there is a slight

difference in probability between the corresponding solu-
tion nodes

�
1 and

�
2. The difference is due to the fact

that derivation der1, that is part of solution
�
1, has smaller

probability than der2 because it consists of fewer rule ap-
plications. This behavior of the network favors solutions
that require less steps, in absence of further evidence. The
behavior can be changed by changing the priors of the val-
ues of node redundancy to favor the solution that is a priory
believed to be more probable.

Figure 9 shows an example of how probabilities change in
favor of the solution

�!�������	�����
, represented by node

�
1,

when explicit evidence to support this solution is provided
by the action

�$7 40 8 9 ' 8. As far as the assessment of
rule knowledge is concerned, the network correctly assigns
high probability to the rule node summ-masses connected
with

�
1, while increases only slightly the probability of

summ-weight, connected to the less probable solution node�
2. Rule nodes W=M*G,

�
1,
�
2 and

�
3 have very high

probability since they belong to both solutions. Finally,
Figure 9 shows how probabilities are coherently assigned to
the application nodes attached to the rule node W=M*G. The
two application nodes Wa=Ma*G and Wf = Mf*G correctly
have probability much higher than Wb=Mb*G since they
are associated with the most probable solution

�
1.

Conclusions and future work
The previous sections described how we have modified
OLAE, an off-line assessment system that performs proba-
bilistic knowledge tracing, to develop POLA, a probabilistic
student modeling framework that performs both knowledge
and model tracing.

POLA generates predictions about the student’s current
line of reasoning without using heuristics, even when the
solution space is large. An AND/OR graph provides a com-
pact representation of all the available solution sets and
solution paths and allows POLA to keep track of the stu-
dent’s progresses in the solution space. A Bayesian network
built incrementally from the AND/OR graph and from the
student’s actions handles the uncertainty created by actions
that are consistent with multiple solution paths.

POLA represents a new approach to applying Bayesian
networks to student modeling, since the other existing ef-
forts to use probabilistic reasoning in student modeling have
been focused on knowledge tracing only (op. cit.).

We have started to evaluate the accuracy of the model
tracing generated by POLA using protocols collected
through OLAE from 3 students solving the example prob-
lem presented in this paper and from 2 students solving a
more complex problem involving 4 different solution sets
and 18 primitive equations. The predictions generated by

Wf=40
a

W=M*GWf=Mf*G
b

der1 der2

W=M*G
cWf=Mf*G
b

Wa=775
d

other1

W=M*G
e

W=M*G
fMa=Mb+Mf Wa=Ma*G

b
G=9.8
g

Ma=775 W=M*G
cWb=Mb*G
h

W=M*G
fWa=Wb+Wf

b

summ−masses

summ−weight

s1 s2

g1 g3

xs2 xs3

g2

REDUNDANCY

other2 der3

Mf=40/9.8
i

xs1

Figure 9: state of the Bayesian network after the student’s input “Mf=40/9.8”

POLA on these 5 protocols have always been consistent
with the solution that each student actually followed, but
we plan to perform a more formal evaluation with more
protocols and more complex problems.

Another step in the future of POLA will be to define
more precise prior probabilities for rule, solution nodes and
for the redundancy node, through interviews with physics
experts and the observation of the students behavior during
the interaction with POLA. Later, when large samples of
students are available, these subjective estimates can be
replaced by empirical ones.

References

Anderson, J.; Corbett, A.; Koedinger, K.; and Pelletier, R.
1995. Cognitive tutors: Lessons learned. The Journal of
the Learning Sciences 4(2):167–207.

Corbett, A., and Anderson, J. 1992. Lisp intelligent tutor-
ing system: Research in skill acquisition. In Larkin, J., and
Chabay, R., eds., Computer-Assisted Instruction and Intel-
ligent Tutoring Systems: Shared goals and complementary
approaches. Hillsdale, NJ: Erlbaum. 201–238.

Derry, J. S., and Hawkes, L. W. 1993. Local cognitive
modeling of problem-solving behavior: An application of
fuzzy theory. In Lajoie, S., and Derry, S., eds., Computers
as Cognitive Tools. Hillsdale, NJ: Lawrence Erlbaum.

Duncan, D.; Brna, P.; and Morss, L. 1994. A bayesian
approach to diagnosing problems with prolog control flow.
In Proceedings of the Fourth International Conference on
User modeling.

Gitomer, D.; Steinberg, H.; S., L.; and Mislevy, R. J. 1995.
Diagnostic assessment of troubleshooting skill in an intel-
ligent tutoring system. In Nichols, P.; Chipman, S.; and

Brennan, R., L., eds., Cognitively diagnostic assessment.
Hillsdale, NJ: LEA.
Martin, J., and VanLehn, K. 1995. A bayesian approach
to cognitive assessment. In Nichols, P.; Chipman, S.; and
Brennan, R. L., eds., Cognitively diagnostic assessment.
Hillsdale, NJ: LEA.
Merril, D. C.; Reiser, B. J.; and Ranney, J. G. 1992.
Effective tutoring techniques: A comparison of human
tutors and intelligent tutoring systems. The Journal of the
Learning Sciences 3(2):277–305.
Mislevy, R. J. 1995. Probability-based inference in cogni-
tive diagnosis. In Nichols, P.; Chipman, S.; and Brennan,
R., L., eds., Cognitively diagnostic assessment. Hillsdale,
NJ: LEA.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible inference. Los Altos, CA:
Morgan Kaufmann.
Petrushin, V. A.and Sinitsa, K. M. 1993. Using probabilis-
tic reasoning techniques for learner modeling. In Proceed-
ings of the 1993 World Conference on AI and Education,
426–432.
Sime, J. 1993. Modelling a learner’s multiple models with
bayesian belief nets. In Proceedings of the 1993 World
Conference on AI and Education.
Singley, M. K. 1990. The reification of goal structures in
a calculus tutor: Effect on problem-solving performance.
Intelligent Learning Environments 1(2):102–123.
Villano, M. 1992. Probabilistic student models: Bayesian
belief networks and knowledge space theory. In Proceed-
ings of the 2nd International Conference on Intelligent
Tutoring Systems. Berlin: Springer-Verlag.

