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Abstract  

We propose a decision-theoretic architecture for selecting tutorial discourse ac-
tions. DT Tutor, an action selection engine which embodies our approach, uses a 
dynamic decision network to consider the tutor�s objectives and uncertain beliefs 
in adapting to the changing tutorial state. It predicts the effects of the tutor�s dis-
course actions on the tutorial state, including the student�s internal state, and then 
selects the action with maximum expected utility. We illustrate our approach 
with prototype applications for diverse target domains: calculus problem-solving 
and elementary reading. Formative off-line evaluations assess DT Tutor�s ability 
to select optimal actions quickly enough to keep a student engaged. 

1 Introduction 
A tutoring system achieves many of its objectives through discourse actions intended to influence 
the student�s internal state. For instance, a tutor might tell the student a fact with the intended ef-
fect of increasing the student�s knowledge and thereby enabling her to perform a problem-solving 
step. The tutor might also be concerned with the student�s goals, focus of attention, and affective 
or emotional state, among other internal attributes. However, a tutor is inevitably uncertain about 
the student�s internal state, as it is unobservable. Compounding the uncertainty, the student�s state 
changes throughout the course of a tutoring session�after all, that is the purpose of tutoring. To 
glean uncertain information about the student, a tutor must make inferences based on observable 
actions and guided by the tutor�s beliefs about the situation. The tutor is also likely to be con-
cerned with observable attributes of the tutoring situation, or tutorial state, including the discourse 
between tutor and student and their progress at completing tutorial tasks (e.g., solving problems). 

The tutor�s actions depend not only on the tutorial state, but also on the tutor�s objectives. Tuto-
rial objectives often include increasing the student�s knowledge within a target domain, helping 
the student solve problems or complete other tasks, and bolstering the student�s affective state 
(Lepper et al., 1993). Tutors also generally want to be cooperative discourse partners by coher-
ently addressing topics that are relevant to the student�s focus of attention. Objectives and priori-
ties may vary by tutor and even for an individual tutor over time. Furthermore, tutors must often 
strike a �delicate balance� among multiple competing objectives (Merrill et al., 1992, p. 280). 

To model the tutor�s uncertainty about the student�s internal state, probabilistic reasoning is be-
coming increasingly common. However, almost all probabilistic tutoring systems still model the 
tutor�s objectives implicitly at best, and use heuristics to select tutorial actions. DT Tutor uses a 
decision-theoretic approach to select tutorial actions, taking into account both the tutor�s uncer-
tain beliefs and multiple objectives regarding the changing tutorial state. This paper describes DT 
Tutor�s approach along with prototype applications for diverse domains, calculus problem-
solving and elementary reading. 
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2 General Approach 

2.1 Belief and Decision Networks 
DT Tutor represents the tutor�s uncertain 
beliefs in terms of probability using 
Bayesian belief networks. A belief net-
work is a directed acyclic graph with 
chance nodes representing beliefs about 
attributes and arcs between nodes repre-
senting conditional dependence relationships among the beliefs. Beliefs are specified in terms of 
probability distributions. DT Tutor�s chance nodes represent the tutor�s beliefs about the tutorial 
state. For each node with incoming arcs, a conditional probability table specifies the probability 
distribution for that node conditioned on the possible states of its parents. For nodes without in-
coming arcs, prior probability distributions are specified. 

At any particular time, each node within a belief network represents an attribute whose value is 
fixed. For an attribute whose value may change over time (such as a tutorial state attribute), sepa-
rate nodes can be used to represent each successive value. Dynamic belief networks do just that. 
For each time in which the values of attributes may change, a dynamic belief network creates a 
new slice. Each slice is of a set of chance nodes representing attributes at a specific point in time. 
For tutoring, slices can be chosen to represent the tutorial state after a tutor or student action, 
when attribute values are likely to change. Nodes may be connected to nodes within the same or 
earlier slices to represent the fact that an attribute's value may depend on (1) concurrent values of 
other attributes and (2) earlier values of the same and other attributes.  

Decision theory extends probability theory to provide a normative theory of how a rational deci-
sion-maker should behave. Quantitative utility values are used to express preferences among pos-
sible outcomes of actions. To decide among alternative actions, the expected utility of each alter-
native is calculated by taking the sum of the utilities of all possible outcomes weighted by the 
probabilities of those outcomes occurring. Decision theory holds that a rational agent should 
choose the alternative with maximum expected utility. A belief network can be extended into a 
decision network (equivalently, an influence diagram) by adding decision and utility nodes along 
with appropriate arcs. For DT Tutor, decision nodes represent tutorial action alternatives, and util-
ity nodes represent the tutor�s preferences among the possible outcomes.  

A dynamic decision network (DDN) is like a dynamic belief network except that it has decision 
and utility nodes in addition to chance nodes. DDNs model decisions for situations in which deci-
sions, attributes or preferences can change over time. The evolution of a DDN can be computed 
while keeping in memory at most two slices at a time (Huang et al., 1994). 

2.2 General Architecture 
DT Tutor�s action selection engine uses a DDN formed from dynamically created tutor action 
cycle networks (TACNs). A TACN consists of three slices, as illustrated in Figure 1. The tutorial 
state (States) within each slice is actually a sub-network representing the tutor�s beliefs about the 
tutorial state at a particular point in time (slice)1. The T Act1 decision node represents the tutorial 
action decision, the S Act2 chance node represents the student turn following the tutor�s action, 
and the Util2 utility node represents the utility of the resulting tutorial state.  

Each TACN is used for a single cycle of tutorial action, where a cycle consists of deciding a tuto-
                                                           
1 For sub-network and node names, a numeric subscript refers to the slice number. A subscript of 
s refers to any appropriate slice. 
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rial action and carrying it out, observing the subsequent student turn, and updating the tutorial 
state based on the tutor and student actions. During the first phase (deciding upon a tutorial ac-
tion), slice 0 represents the tutor�s current beliefs about the tutorial state. Slice 1 represents the 
tutor�s possible actions and predictions about their effects on the tutorial state. Slice 2 represents a 
prediction about the student�s next turn and its effect on the tutorial state. The DDN update algo-
rithm calculates which tutorial action has maximum expected utility.  

In the next phase of the cycle, the tutor executes that action and waits for the student response. 
The tutor then updates the network based on the observed student action(s).  

At this point, the posterior probabilities in State2 represent the tutor�s current beliefs. It is now 
time to select another tutor action, so another TACN is created and the DDN is rolled forward: 
Posterior probabilities from State2 of the old TACN are copied as prior probabilities to State0 of 
the new TACN, where they represent the tutor�s current beliefs. The old TACN is discarded. The 
tutor is now ready to begin the next cycle by deciding which action to take next. 

With this architecture, the tutor not only reacts to past student actions, but also anticipates future 
student actions and their ramifications. Thus, for instance, it can act to prevent errors and im-
passes before they occur, just as human tutors often do (Lepper et al., 1993).  

In principle, the tutor can look ahead any number of slices without waiting to observe student ac-
tions. The tutor simply predicts probability distributions for the next student turn and the resulting 
State2, rolls the DDN forward, predicts the tutor�s next action and the following student turn, and 
so on. Thus, the tutor can select an optimal sequence of tutorial actions for any fixed amount of 
look ahead. However, a large amount of look ahead is computationally expensive with decreasing 
predictive accuracy. 

3 Application Domains 

3.1 Calculus Problem-Solving 
CTDT (Calculus Tutor, Decision-Theoretic) is a prototype action selection engine for calculus 
related rates problems (Murray & VanLehn, 2000). Singley (1990) developed a tutoring system 
for this domain with an interface designed to make student problem-solving actions observable, 
including goal-setting actions that are normally invisible. CTDT presumes an extension to Sing-
ley�s interface to make all problem-solving actions observable. This makes it easier to select tuto-
rial actions for two reasons. First, as each problem-solving action is executed through the inter-
face, CTDT has the opportunity to intervene. (However, CTDT can select a null action on its turn 
and thus allow the student to execute multiple actions without tutorial intervention). This means 
that CTDT can select a response for only a single student action per turn, rather than deciding 
which of multiple student actions to respond to. Moreover, it is easier to predict a single student 
action per turn than to predict a combination of multiple actions.  

Second, when CTDT can observe all of the student�s prior actions, it knows exactly what portion 
of the problem solution space the student had already completed and thus what steps the student 
is likely to attempt next. Calculus related rates problems, like problems in many other domains, 
have a prerequisite structure that induces a partial order in which problem steps may be com-
pleted � for instance, the chain rule (e.g., dx/dy * dy/dz = dx/dz) cannot be applied until the com-
ponent equations are in the required form. The student is unlikely to be able to successfully com-
plete problem steps for which prerequisites have not been completed, and is therefore less likely 
to attempt them. The student is also unlikely to repeat problem-solving steps that have already 
been completed successfully. This means that the student is most likely to attempt problem steps 
that (1) have not already been completed, and (2) have no uncompleted prerequisite steps. We 
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call these ready steps. Thus, by observing which steps the student has already completed, CTDT 
can easily determine the set of ready steps that the student is most likely to attempt next.  

Even so, predicting the next student action is still not trivial, since there may be more than one 
way to solve a calculus related rates problem (i.e., more than one solution path), and there may be 
multiple orders in which the steps of a solution path can be executed.  

3.2 Project LISTEN�s Reading Tutor 
RTDT (Reading Tutor, Decision-Theoretic) is a prototype action selection engine for Project 
LISTEN�s Reading Tutor, which uses mixed-initiative spoken dialogue to provide reading help 
for children as they read aloud (Mostow & Aist, 1999). The Reading Tutor has helped to improve 
the reading of real students in real classrooms (Mostow & Aist, in press). It displays one sentence 
at a time for the student to read, and a simple animated persona that appears to actively watch and 
patiently listen. As the student reads, the Reading Tutor uses automated speech recognition to 
detect when the student may need help, which it provides using both speech and graphical display 
actions. Thus, the Reading Tutor already has an extensively developed interface. This is in con-
trast to CTDT, for which we assumed an interface built to our specifications. Inter-operability 
with existing tutoring systems is a key to extending the applicability of DT Tutor�s approach.  

RTDT models some of the Reading Tutor�s key tutorial action decisions in just enough depth to 
determine the feasibility of applying DT Tutor to this domain. We targeted two types of unsolic-
ited help: (1) preemptive help before the student attempts a sentence, and (2) corrective feedback 
after the student has stopped reading (whether or not the student has completed the sentence). The 
Reading Tutor provides preemptive help when it believes that the student is likely to misread a 
word, and corrective feedback when it detects words read incorrectly, skipped words and disflu-
ent reading. To avoid disrupting the flow of reading, the Reading Tutor ignores errors on a list of 
36 common function words (e.g., a, the) that are unlikely to affect comprehension. For the Read-
ing Tutor�s corpus of readings, approximately two-thirds of the words in a sentence are non-
function words, or content words. 

Tutoring reading differs enough from coaching calculus problem-solving to pose challenges for 
adapting DT Tutor�s approach. First, student turns may consist of multiple reading actions, where 
each action is an attempt to read a word. Therefore, in contrast to CTDT, RTDT must predict and 
respond to multiple student actions per turn. Student turns may indeed include multiple actions in 
many target domains, so meeting this challenge is important for extending DT Tutor�s generality. 

Second, beginning readers often make repeated attempts at words or phrases and sometimes omit 
words, with the effect of jumping around within a sentence. Even when jumping around, a student 
may be able to read each individual word. Thus, the order in which beginning readers attempt 
words is not always sequential, and has very little prerequisite structure. This means that the set 
of actions that the student is likely to attempt next is less constrained than with CTDT, posing a 
challenge for predicting the student�s next turn. A similar challenge must be faced for tutoring in 
any target domain with weak structure for the order in which actions may be completed.  

4 Tutor Action Cycle Networks in More Detail 

4.1 TACN Components 

Figure 2 provides a closer look at the major TACN components and their interrelationships. The 
States representation in each slice actually consists of several sub-networks. These include the 
Knowledges, Focuss, and Affects sub-networks which compose the student model, and the Task 
Progresss and Discourse States sub-networks. Arcs between corresponding sub-networks in dif-
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ferent time slices represent the stability of attributes over time. For instance, the student�s knowl-
edge in slice 1, Knowledge1, is likely to be about the same as the student�s knowledge in slice 0, 
Knowledge0, except as influenced by the tutor�s action, Tutor Action1. 

The architecture shown in Figure 2 is generic. Depending on the needs of the application, fewer 
or more components may be required. For instance, the initial implementation of the RTDT 
prototype lacks a model of the student�s affective state because we focused on modeling other 
tutorial state attributes, such as multiple student actions per turn. Therefore, its TACNs do not 
include the Affects sub-networks. However, RTDT also has Tutor Efficacys sub-networks to model 
the efficacy of the various tutorial help alternatives. The Tutor Efficacys sub-networks dynami-
cally tune RTDT�s model of the effects of the tutor�s actions on the student�s knowledge, helping 
RTDT to avoid repeating ineffective tutorial actions and reducing the need for accurate condi-
tional probabilities regarding the influence of Tutor Action1 on Knowledge1.  

Selected components are described below along with illustrations from CTDT and RTDT. 

4.1.1 Tutor Action1 Nodes 

The purpose of the TACN is to compute the optimal alternative for Tutor Action1, which may 
consist of one or more decision nodes. For CTDT, Tutor Action1 consists of two decision nodes, 
one to specify the topic of the tutor action and one to specify the action type. The action topic is 
the problem-related focus of the action, such as a problem step or related rule in the target do-
main. The type is the manner in which the topic is addressed, including prompt, hint, teach, posi-
tive or negative feedback, do (tell the student how to do a step) and null (no tutor action).  

For RTDT, Tutor Action1 is currently a single decision node with values null (no tutor action), 
move_on (move on to the next sentence), read_move_on (read the sentence to the student and 
then move on), hint_sentence (e.g., read the current sentence to the student), and hint_word_i for 
each content word i in the current n-content-word sentence, i = {1, 2, �, n}. The hint_sentence 
and hint_word_i alternatives specify the topic but not the type of the tutorial action � e.g., they 
don�t specify whether the Reading Tutor should hint about a particular word by saying the word 
itself or by giving a rhyming hint. Deciding among action type alternatives would require infor-
mation than was not available for the prototype implementation. For instance, information about 
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Figure 2. TACN architecture in more detail 
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the student�s knowledge of the letter-sound mappings pertinent to a particular word would help 
RTDT determine the likelihood that a rhyming hint would supply the required knowledge.  

CTDT considers tutoring only on ready problem steps and related rules, plus the step that the stu-
dent has just completed (e.g., to give positive or negative feedback). RTDT considers every action 
alternative for preemptive help, including hinting on each content word. However, for fast re-
sponse time on corrective feedback, RTDT does not consider hinting on words that the student 
has already read correctly, because such hints are less likely to be pedagogically productive. 

4.1.2 Student Model Knowledges Sub-Network 
The Knowledges sub-network represents the tutor�s beliefs about the student�s knowledge related 
to the target domain. Each Knowledges node has possible values known and unknown. For CTDT, 
the student�s knowledge related to each problem is represented in a belief (sub-)network whose 
structure is obtained directly from a problem solution graph. See Figure 3 for an example. The 
top two rows of nodes in the figure represent rules licensing each problem step. The remaining 
nodes represent problem steps, from the givens (the goal Find dx/dz for z=c and the facts x=ayb, 
y=ezf and z=c) through each goal-setting and fact-finding step in all solution paths (this example 
has only one solution path) until the answer is found (dx/dz=bayb-1fecf-1). Arcs represent depend-
ence between nodes. For instance, knowledge of a step depends on knowledge of both its prereq-
uisite steps and the rule required to derive it.  

For RTDT, Knowledges includes nodes to represent the student�s knowledge of how to read each 
content word and the sentence. For each content word i, a Know_Word_is node represents the stu-
dent�s knowledge of how to read the word. A Know_Sentences node represents the student�s 
knowledge of how to read the sentence as a whole. 

In slice 1, each Knowledge1 node is influenced by the tutor�s action. For instance, a tutorial hint 
about a particular problem step or word increases the probability that the node corresponding to 
the knowledge element is known. After the student turn has been observed, Knowledge1 is up-
dated diagnostically to reflect its causal role in the success of the student�s action(s). 

Knowledge2 is not directly influenced by the student�s turn because student actions generally do 
not influence student knowledge without feedback (e.g., by the tutor). Instead, Knowledge2 is in-
fluenced by Knowledge1, which is diagnostically influenced by the student�s turn.  

4.1.3 Student Model Focuss Sub-Network 
The Focuss sub-network represents the student�s focus of attention within the current tutorial task. 
For CTDT, the focus may be any problem step, so Focuss has the same problem solution graph 
structure as Knowledges. Ready steps are most likely to be in focus. Nodes representing these 
steps have some distribution over the values ready and in_focus, where in_focus means that the 
step is in the student�s focus of attention. Consistent with a human depth-first problem-solving 
bias (Newell & Simon, 1972), any such steps that are in the student�s current solution path are 
most likely to be in_focus. Focus aging is also modeled: the probability that an uncompleted step 
is in_focus attenuates with each passing time slice as other problem steps come into focus. 

For RTDT, Focuss models the likelihood of each content word being the first word in the stu-
dent�s focus of attention. Focus_Word_is nodes for each content word i in the current sentence 
have possible values in_focus and out_of_focus, where in_focus means that the word is the first 
content word in the student�s focus of attention.  

In slice 1, each Focus1 node is influenced by the tutor�s action. For instance, if the tutor hints 
about a problem step or word, the corresponding node is likely to be in_focus. For RTDT, a tutor 
hint about the sentence as a whole increases the probability that the student will attempt to read 
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the entire sentence (starting with the first word), increasing the probability that Focus_Word_11 is 
in_focus. In slice 2, the student action influences the tutor�s beliefs about the student�s focus of 
attention (in Focus2). For instance, if the student experiences an impasse on a problem step or a 
word, the corresponding node is more likely to be in_ focus.  

4.1.4 Student Action2 Nodes 
These nodes represent one or more actions taken on the student�s turn. For CTDT, a single stu-
dent action is assumed. This action is represented by two nodes, one for the action topic and an-
other for the action type. The action topic may be any problem step and the action type may be 
correct, error, impasse, or null (no student action).  

For RTDT, the student turn may include multiple reading actions, where each action is an attempt 
to read a word. Student action Word_i2 nodes represent the student�s reading of each content 
word i as not_read, error, or correct. This representation models student turns ranging from no 
productive attempt (all words not_read � e.g., a silent impasse), to all words read correctly (all 
words correct), to any combination of words not_read, read in error, and read correctly. In addi-
tion, a student action Sentence2 node models the student�s reading of the sentence as a whole as 
either fluent or disfluent.  

Both CTDT and RTDT probabilistically predict the next student action. For CTDT, Focus1 influ-
ences the student action topic. Given the action topic, whether the action type will be correct, er-
ror or impasse depends on the student�s knowledge. Therefore, both the student action topic and 
Knowledge1 influence the student action type.  

For RTDT, influences on each Word_i2 node from the corresponding Focus_Word_i1 node prob-
abilistically predict which word the student will attempt first. For any word that the student at-
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tempts, an influence from the corresponding Know_Word_i1 node predicts whether the reading 
will be in error or correct. We assume that if a student reads one word correctly, she is most 
likely to attempt the next word, and so on, until she gets stuck or makes an error. Therefore, arcs 
from each node Word_i2 to node Word_i+12, i = {1, 2, �, n-1}, model the influence of reading 
word i correctly on the likelihood that the student will attempt word i+1. For a fluent reading of 
the sentence, each word must be correct without pauses in between � i.e., the student must be 
able to read each word and the sentence as a whole. The Sentence2 node is therefore influenced by 
each Word_i2 node and by the Know_Sentence1 node. 

4.1.5 Discourse States Sub-Network 

For CTDT, a Coherence node represents the coherence of the tutor�s action in response to the 
previous student action as either coherent or incoherent. For instance, negative feedback in re-
sponse to a correct student action is incoherent. A Relevance node, with values high and low, 
models how well the tutor cooperates with the student�s focus of attention by assessing the extent 
to which the same problem steps are in_focus before and after the tutor�s action: Problem steps 
that are in the student�s focus of attention are likely to be in_focus in Focus0. A tutorial action 
which addresses a problem step or related rule that is in the student�s focus of attention will fur-
ther increase the probability that the problem step is in_focus in Focus1. Therefore, if the same 
problem steps are most likely in_focus in Focus0 and Focus1, Relevance is most likely high.  

For RTDT, Discourse States is simply the number of discourse turns, counted as a measure of 
success at avoiding spending too much time on a sentence.  

4.1.6 Utility2 Nodes 

Utility2 consists of several utility nodes in a structured utility model representing tutor preferences 
regarding tutorial state outcomes. Total utility is a weighted sum of the utilities for each tutorial 
state component (e.g., student knowledge, focus, and affect; task progress; discourse state). The 
utility value for each component may in turn be a weighted sum of the utilities for each sub-
component. For instance, Knowledge2 rules that are important to the curriculum may be weighted 
more heavily than certain problem steps.  

The tutor�s behavior can easily be modified by changing the utilities or their weights. For in-
stance, it may be that the best way for the tutor to improve the student�s domain knowledge is to 
focus on the student�s knowledge at the expense of helping the student make progress on tutorial 
tasks (e.g., solving problems). The tutor will do this automatically if a high weight is assigned to 
the utility of student knowledge and a low weight is assigned to the utility of task progress.  

4.2 Implementation 
With input from a problem solution graph (CTDT) or text (RTDT), DT Tutor creates a TACN 
with default values for prior and conditional probabilities and utilities. Default values are speci-
fied by parameter for easy modification. An optional file specifies any prior probability or utility 
values that differ from the defaults. After creating the initial TACN, DT Tutor recommends tuto-
rial actions, accepts inputs representing tutor and student actions, updates the network, and adds 
new TACNs to the DDN as appropriate. 

We automated construction of the large number of conditional probability table entries using a 
much smaller number of rules and parameters. For instance, for RTDT, the rule for the probabil-
ity that a student will remember in slice 2 a word that she knew in slice 1 is:  

P(Know_Word_i2=known | Know_Word_i1 = known) = 1.0 � word-forget-probability 

word-forget-probability is a parameter that specifies the probability that the student will forget a 
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known word between slices. 

Both of DT Tutor�s applications are prototypes for testing the viability and generality of the ap-
proach. CTDT does not yet have an interface, and RTDT has not been integrated with the Read-
ing Tutor. Therefore, we used simulated student input for formative evaluations. 

5 Formative Evaluation 
Our goal was to determine whether DT Tutor�s prototype applications can select optimal actions 
quickly enough to keep a student engaged.  

5.1 Response Time 

One of the major challenges facing probabilistic systems for real-world domains is tractability. 
We performed response time testing on a 667-MHz Pentium III PC with 128-MB of RAM. Using 
Cooper�s (1988) algorithm for decision network inference using belief network algorithms, we 
tested with three algorithms: an exact clustering algorithm (Huang & Darwiche, 1996) and two 
approximate, sampling algorithms, likelihood sampling (Shachter & Peot, 1989) and heuristic 
importance (Shachter & Peot, 1989), with 1,000 samples each. Response times reported are the 
mean over 10 trials. The times for the approximate algorithms were extremely close, with neither 
holding an advantage in all cases, so they are reported as one below.  

For CTDT, only the approximate algorithms had reasonable response times for both problems 
tested: 1.5 seconds for a 5-step problem and 2.1 seconds for an 11-step problem. 

For the Reading Tutor�s corpus of readings, sentence length ranges from approximately 5 to 20 
words as reading level progresses from kindergarten through fifth grade, with approximately two-
thirds content words, so we tested response times for preemptive help on sentences with 2 to 14 
content words. Our response time goal was 0.5 seconds or less. For all three algorithms, response 
times for sentences with up to 7 content words were less than 0.5 seconds, ranging from 0.04 sec-
onds for 2 content words to .49 seconds for 7 content words. Response times for the exact algo-
rithm blew up starting at 10 content words with a time of 12.48 seconds. Response times for the 
approximate algorithms remained promising (as explained below) for up to 12 content words, 
ranging from .59 seconds for 8 content words to 3.14 seconds for 12 content words. However, 
response times for even the approximate algorithms blew up at 13 content words with times of 
23-26 seconds. Therefore, response time for preemptive help was satisfactory for students at 
lower reading levels, did not meet the goal for longer sentences (starting at 8 content words), and 
was entirely unsatisfactory even with the approximate algorithms for the longest sentences (13-14 
content words). Response time would tend to increase if the number of tutor action types is in-
creased (see section 4.1.1), although the amount of increase would be at most linear in the propor-
tion of additional action alternatives considered. 

For decision-making purposes, it is sufficient to correctly rank the optimal alternative. When only 
the rank of the optimal alternative was considered, the approximate algorithms were correct on 
every trial. While this result cannot be guaranteed, it may make little practical difference if the 
alternative selected has an expected utility that is close to the maximum value. Moreover, many 
sampling algorithms have an anytime property that allows an approximate result to be obtained at 
any point in the computation (Cousins et al., 1993), so accuracy can continue to improve until a 
response is needed. For RTDT, response times for corrective feedback should generally be faster 
because RTDT does not consider helping with words that have already been read correctly. In any 
case, faster response times can be expected as computer hardware and probabilistic reasoning 
algorithms continue to improve. Therefore, the response times reported above for the approximate 
algorithms show promise that DT Tutor applications for real-world domains will be able to re-
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spond accurately enough within satisfactory response time. To handle the more challenging cases 
(such as the longest sentences faced by RTDT) in the near-term, application-specific adjustments 
may be required � e.g., abstraction in the knowledge representation within TACN components. 

5.2 Action Selections 

DT Tutor�s decision-theoretic representation guarantees that its decisions will be optimal given 
the belief structure and objectives that it embodies. Nevertheless, the first step in evaluating a tu-
toring system is to see if it behaves in a manner that is consistent with strong intuitions about the 
pedagogical value of tutorial actions in specific situations. Such a sanity check cannot of course 
be a complete test. The space of network structures and probability and utility values, in combina-
tion with all possible student actions, is infinite, so the most we can do is sample from this space. 
However, if DT Tutor can handle many situations in which our intuitions are strong, we are more 
apt to have faith in its advice in situations where intuitions are less clear, and this is a prerequisite 
for testing with human subjects. Therefore, we tested DT Tutor�s behavior in clear-cut situations. 

First, we used default parameters to initialize TACNs with intuitively plausible probability and 
utility values. Next, we simulated student action inputs while perturbing probability and utility 
values to probe dimensions of the situation space. For instance, to test whether CTDT and RTDT 
would give preemptive help when warranted, we simply perturbed the prior probabilities for stu-
dent knowledge of one or more domain elements (e.g., problem steps or words) to be most likely 
unknown and then verified that the application would suggest appropriate preemptive help. 

The tests showed that DT Tutor is capable of selecting tutorial actions that correspond in interest-
ing ways to the behavior of human tutors. Notable action selection characteristics include the fol-
lowing:  

• Preemptively intervenes to prevent student errors and impasses, as human tutors often do 
(Lepper et al., 1993). 

• Does not provide help when the student does not appear to need it. Human tutors often foster 
their students� independence by letting them work autonomously (Lepper et al., 1993). 

• Adapts tutorial topics as the student moves around the task space and predicts the influence of 
the tutor�s actions on the student�s focus of attention.  

• With equal utilities for knowledge of rules and steps, CTDT tends to address the student�s 
knowledge of rules rather than problem-specific steps (because rule knowledge helps the stu-
dent complete steps on her own). Effective human tutoring is correlated with teaching gener-
alizations that go beyond the immediate problem-solving context (VanLehn et al., in press).  

• CTDT tempers its actions based on consideration of the student�s affective state (e.g., avoiding 
negative feedback). Human tutors consider the student�s affect as well (Lepper et al., 1993).  

• RTDT avoids repeating ineffective tutorial actions.  

6 Related Work 
Very few tutoring systems have used decision theory. Reye (1995) proposed a decision-theoretic 
approach for tutoring systems, mentioning an implementation in progress for tutoring SQL. Reye 
(1996) also proposed modeling the student�s knowledge using a dynamic belief network. CAPIT 
(Mayo & Mitrovic, 2001, to appear), a decision-theoretic tutor for capitalization and punctuation, 
bases its decisions on a single objective and ignores the student�s internal state in order to focus 
on observable variables. DT Tutor is a domain-independent architecture which considers multiple 
objectives, including objectives related to a rich model of the student�s internal state.  

Tutoring is a type of practical, mixed-initiative interaction. Within this broader domain, systems 
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by Horvitz and colleagues (e.g., Horvitz et al., 1998; Horvitz & Paek, 1999) also model the state 
of the interaction, including the user�s state, with connected sets of Bayesian models, and employ 
decision theory for optimal action selection. Some of these systems (e.g., Horvitz & Paek, 1999) 
use value-of-information to guide user queries and observation selection, which DT Tutor does 
not (yet) do. To model temporal evolution, a number of probabilistic approaches have been tried, 
including dynamic and single-stage network representations (e.g., Horvitz et al., 1998). DT Tutor 
appears to be alone among systems for mixed-initiative interaction in (1) using a dynamic deci-
sion network to consider uncertainty, objectives, and the changing state within a unified para-
digm, and (2) explicitly predicting the student�s next action and its effect on the interaction. 

7 Future Work and Discussion  
We are currently selecting the domain for the first full-fledged implementation of DT Tutor�s ac-
tion selection engine in a complete tutoring system, either by combining it with an existing tutor-
ing system (such as the Reading Tutor) or by building our own user interface. We are also inves-
tigating applications that are more explicitly dialogue-oriented. Whichever domain we select, our 
next major milestone will be testing the effectiveness of DT Tutor�s approach with students.  

Efficiently obtaining more accurate probability and utility values is a priority. However, precise 
numbers may not always be necessary. For instance, diagnosis (say, of the student�s knowledge) 
in Bayesian systems is often surprisingly insensitive to imprecision in specification of probabili-
ties (Henrion et al., 1996). For a decision system, it is sufficient to correctly rank the optimal de-
cision alternative. Moreover, if the actual expected utilities of two or more alternatives are very 
close, it may make little practical difference which one is selected. 

This work has shown that a decision-theoretic approach can be used to select tutorial discourse 
actions that are optimal, given the tutor�s beliefs and objectives. DT Tutor�s architecture balances 
tradeoffs among multiple competing objectives and handles uncertainty about the changing tuto-
rial state in a theoretically rigorous manner. Discourse actions are selected both for their direct 
effects on the tutorial state, including the student�s internal state, and their indirect effects on the 
subsequent student turn and the resulting tutorial state. The tutorial state representation may in-
clude any number of attributes at various levels of detail, including the discourse state, task pro-
gress, and the student�s knowledge, focus of attention, and affective state. A rich model of the 
tutorial state helps DT Tutor to select actions that correspond in interesting ways to the behavior 
of human tutors. Response time remains a challenge, but testing with approximate algorithms 
shows promise that applications for diverse real-world domains will be able to respond with satis-
factory accuracy and speed.  

As an action-selection engine, DT Tutor plays at most the role of a high-level discourse planner, 
leaving the specifics of dialogue understanding and generation (parsing, semantic interpretation, 
surface realization, etc.) to other components of the tutoring application. It performs near-term 
discourse planning by anticipating the effects of its actions on the student�s internal state, the stu-
dent�s subsequent discourse turn, and the resulting tutorial state. To predict how its actions will 
influence the tutorial state, including the student�s internal state, DT Tutor�s architecture includes 
strong domain reasoning and student modeling.  
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