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ABSTRACT
Traditional methods of evaluating student programs are not
always appropriate for assessment of different instructional
interventions. They tend to focus on the final product rather
than on the process that led to it. This paper presents
intention-based scoring (IBS), an approach to measuring
programming ability that requires inspection of intermedi-
ate programs produced over the course of an implementation
rather than just the one at the end. The intent is to assess a
student’s ability to produce algorithmically correct code on
the first attempt at achieving each program goal. In other
words, the goal is to answer question “How close was the
student to being initially correct?” rather than the the abil-
ity to ultimately produce a working program. To produce an
IBS, it is necessary to inspect a student’s online protocol,
which is defined as the collection of all programs submit-
ted to a compiler. IBS involves a three-phase process of
(1) identification of the subset of all programs in a protocol
that represent the initial attempts at achieving program-
ming goals, (2) analysis of the bugs in those programs, and
(3) rubric-based scoring of the resulting tagged programs.
We conclude with an example application of IBS in the eval-
uation of a tutoring system for beginning programmers and
also show how an IBS can be broken down by the underlying
bug categories to reveal more subtle differences.

Categories and Subject Descriptors
K.3 [Computers & Education]: Computer and Informa-
tion Science Education—Computer Science Education

General Terms
Measurement

Keywords
intention-based scoring, online protocols, novice program-
ming, intelligent tutoring systems, structured programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’05 February 23–27, 2005, St. Louis, Missouri, USA
Copyright 2005 ACM 1-58113-997-7/05/0002 ...$5.00.

1. INTRODUCTION
Traditional methods of evaluating student programs tend

to involve scoring of the final program produced by a student
for a given project. Although such a score is certainly appro-
priate for classroom assessment, it reveals very little about
the process that went into creating the program. The final
program is also prone to influence from a variety of outside
sources, such as a tutor or helpful friends. For researchers
interested in isolating how different experimental manipu-
lations affect programming skill in a finer-grained way, a
metric that targets students during the act of programming
would be more appropriate. In this paper, we propose such a
metric called intention-based scoring (IBS) and describe an
application of it in the evaluation of an intelligent tutoring
system for novice programmers.

Assessing process is a particularly challenging problem.
To do so for programming, one approach is to use a charette,
which requires that a student solve a programming problem
in a lab environment and under a time limit [1, 8]. Because
no assistance is available (it is typically given as a test),
there is no chance for outside influence. Secondly, since
most students are not able to complete the full task within
the time limit, the resulting score of the “final” version of
the program is a actually a measure of success of the student
at some point in the middle of their implementation.

Another approach is to collect a student’s online protocol,
which is defined as all files submitted to a compiler during
an implementation [12, 13]. This provides a chain of “snap-
shots” representing a path through the space of development
of a program. Lying between each pair of these intermedi-
ate programs are compile attempts, which can be explained
by a variety of underlying cognitive activities that program-
mers engage in during programming [2, 4]. In this paper,
our goal is not to provide a cognitively plausible account for
these activities, but rather to provide a method for scoring
such protocols. We seek to quantitatively answer the ques-
tion “How close was the student to being initially correct?”

2. PROGRAMMING KNOWLEDGE
The knowledge that underlies programming is tacit: a

completed program is a poor representation of the knowl-
edge and skills needed to produce it. Studies that focus
on the content and structure of this knowledge generally
identify structured “chunks” that achieve a variety of goals,
sometimes called schemata [9] or plans [10]. In terms of such
theories, two key problems have been suggested as a way of
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understanding what programmers must do to produce a pro-
gram [3]:

• Decomposition problem: identifying the goals and
corresponding plans needed to solve the problem.

• Composition problem: implementing and assem-
bling these plans such that the problem is solved cor-
rectly.

Although both problems are known to be a challenge for
novices, the composition problem is particularly difficult be-
cause of subtle interactions and complications that can arise
when multiple plans are to be merged [12]. For example,
when two goals each imply the need for a loop, the program-
mer must determine if one loop in the proposed solution can
be used to satisfy both plans. Complications such as this are
common for novice programmers, and since inspecting only
the final version of a program will rarely reveal them, a more
targeted evaluation approach is necessary.

3. INTENTION-BASED SCORING
IBS derives elements from previous work on identifying

bugs in online protocols. Research from this stream has fo-
cused on remediation, such as that provided automatically
by PROUST [5], as well as on establishing cognitively plau-
sible accounts for how novice bugs are produced [13]. In
this section, we present the three phases that are required
to produce an IBS.

3.1 Inspecting an online protocol
The first step in producing an IBS is to identify the sub-

set of programs from an online protocol to analyze for bugs.
This subset of programs should be the student’s initial at-
tempts at achieving each goal. A judge begins with the first
program submitted and works through the protocol chrono-
logically, checking off goals along the way. This phase is
complete when attempts at all goals have been identified or
the protocol ends (leaving some goals un-attempted). The
process of protocol subset identification is depicted in the
top half of figure 1.

The identification process is not always straightforward,
however. The first program in a protocol is not always a
legitimate goal attempt, for example. Some novices prefer
to compile very simple programs to begin, including only
things like variable declarations or simple print statements.
In cases like this, we ignore such programs and continue
searching sequentially for the first substantive attempt at
achieving a goal. A related issue is the sometimes fuzzy
question of whether or not a program represents an attempt
at achieving a goal or not. It is not quite as simple as saying
“if any plan component is present, then count it as a goal
attempt.” For example, some students prefer to declare and
initialize all variables at once. This certainly does not imply
the student is attempting to implement all plans in which
these steps participate.

To handle problems like this, the criteria for selecting pro-
grams from a protocol must be agreed upon between multi-
ple judges. In the example we present below, the consensus
with the variable declaration issue, for example, was to con-
clude that by itself, a declaration would not be counted as
an attempt at its plan. In other words, more plan compo-
nents would need to be present than just a declaration or
initialization step to count as an outright attempt at that

Figure 1: First two stages of producing an IBS.

goal. Such issues arise frequently in the subjective tagging
of data, which is why it is recommended to tag some subset
of the data together under open discussion.

3.2 Bug identification
A critical component of IBS involves the identification and

classification of bugs present in a student’s protocol. We fol-
low the same two stage process described in [5, 13]. First,
the plans being implemented by the student must be iden-
tified, and next, compared to the known correct plans of an
implementation. Bugs then fall out as differences between
these two structures. For IBS, of course, only the plans
corresponding to the new goals being implemented at each
stage should be considered.

Although there are certainly many ways to characterize
the bugs (i.e., plan differences), we adopt here a simplifi-
cation of the approach taken in [13]. Most generally, an
IBS scheme could be constructed from any similar bug clas-
sification strategy. Because our goal is not to provide an
account of cognitive plausibility, we limit ourselves to cate-
gories that relate to solving the composition problem. The
top-level categories of bugs in our coding scheme are:

• omission: A plan component is missing.

• malformation: A component is incorrectly imple-
mented.

• arrangement error: A component was placed in the
wrong location.

In addition, when inspecting a program, it is also necessary
to identify those bugs that are a result of merging of plans
(e.g., the multiple loop issue mentioned above). We refer
to bugs that are not a result of confusion between multiple
plans as isolated. Of course, some bugs can fall under mul-
tiple categories. For example, a step can be malformed, out
of place, and be a result of confusion between two plans. Be-
cause this is a subjective tagging process, it is recommended
that multiple judges be used and agreement be checked.

An example of bug identification is shown in figure 2.
In this example, the student is attempting to implement a
counter plan (shown in the shaded box), but has made three
mistakes. First, the incorrect value is used for the initializa-
tion step (it should be 0). Second, the increment step is not
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Figure 2: Identifying bugs by plan differences.

placed inside the loop body (an arrangement bug). Finally,
there is no print statement (a bug of omission). In this case,
the arrangement bug is also considered a plan-merging error
since the counter is being integrated into the looping code,
which was already in place in this program from a separate
plan.

3.3 Scoring
With a bug-tagged protocol, the final step in computing

an IBS is to apply a scoring rubric. Although simple bug
frequencies could be used, it is less fair since focal steps in
plans (i.e., those that are “more” central, such as the in-
crement step of a counter plan) would count the same as
less critical components (such as an output statement). To
create a rubric, points need to be assigned to the various
plan components. Focal steps are weighted more heavily,
like updates and conditions, than are supporting steps, like
initializations and output statements. This allows us to dis-
count slips (like forgetting to print a value) and highlight
errors in critical plan steps. Finally, points for each bug
identified during the analysis are taken away from an over-
all possible score, thereby producing a final intention-based
score. In sum, this score represents the accuracy of students’
first attempts at achieving programming goals. By looking
at points lost from each of the sub-categories (like merge
errors or omissions), one can get a better feel for the kinds
of errors novices produce.

As an example, for the counter plan in figure 2, one possi-
ble assignment could be 3 points for the initialization step,
5 for the increment step, and 2 for the print step. As men-
tioned, it is best to perform this stage with expert instruc-
tors who have experience creating rubrics. In the example,
the student might lose 1 point for the incorrect initial value,
3 for the improper location of the increment step, and 2
for forgetting the print step. These partial values need to
be agreed upon in the rubric. In sum, this student would
receive 4 out of 10 possible points for this attempt at imple-
menting a counter plan.

3.4 Discussion
One difference of IBS with previous work using online pro-

tocols is that all attempts in a protocol are made available
for inspection. Most previous work considered only syn-
tactically correct compile attempts. The reasoning behind
“opening” up the protocols in this way comes from the ob-
servation that for some students in our protocols, the algo-
rithm intended by the first compile attempt was often differ-
ent than that in the first syntactically correct attempt. This
means that students’ algorithms seemed to change, possibly
inadvertently, while fixing syntax errors. The very first at-

tempt at assembling an algorithm, in our view, is a more ac-
curate representation of a student’s initial impression at how
to solve the composition problem. Also, we note that the
process is dubbed “intention-based” for two reasons: first,
programs are inspected by inferring what goals the student
is trying to achieve. Second, when a program statement is
not syntactically correct, it is necessary to infer what plan
component is being attempted. The line count + 1;, for ex-
ample, is likely an attempt to increment a counter variable.
Thus, such a statement is considered equally as correct as a
syntactic one.

There are several problems with the IBS method of eval-
uating programs. First, it is extremely tedious. In no way
is IBS intended for regular classroom evaluations – it is only
reasonable for use in targeted evaluations that require a fine-
grained understanding of student success. Second, the cre-
ation of the rubric is subject to the bias of the researcher. In
other words, the weighting of the various plan components
may indirectly impact the outcome of the study. Finally, in
the form presented here, IBS is dependent on a plan-based
theory of programming knowledge. The difficulties with this
theory, then, are naturally inherited.

4. AN APPLICATION OF IBS
We now turn to an example application of IBS in the eval-

uation of ProPl (“pro-PELL”), a dialogue-based intelligent
tutoring system for beginning programmers [6, 7].

4.1 Experiment
ProPl is intended to help novices do pre-planning of their

programs. After the tutoring, students perform their usual,
independent implementation. Subjects in the study agreed
to allow collection of online protocols. In the sections be-
low, we present the IBS results for the ProPl group when
compared to a baseline group of students whoe received no
tutoring whatsoever and a control group, who just read the
material in a similar environment. The hypothesis being
tested was that the program planning skills could be more
effectively taught if the interaction occurred as natural lan-
guage dialogue as opposed to reading alone. In addition to
results for two tutored programs (called Hailstone and Rock-
Paper-Scissors), results are also shown for a timed, post-test
charette which was not tutored (called Count/Hold). The
n’s were 9, 8, and 9 for the baseline, control, and ProPl
groups respectively.

4.2 Training and agreement
After solving the three problems in terms of goals and

plans, 15% of all programs were used to train together with
two expert judges. After this, another 20% were tagged in-
dependently, and then, to confirm agreement, a kappa sta-
tistic of .865 was computed on the tags.1 With consistency
of the bug identification procedure confirmed, the remaining
protocols were tagged independently.

4.3 Composite intention-based scores
Intention-based scores are shown in table 1 for the three

programming projects involved in the study. Some signifi-
cant and marginally significant differences exist between the

1This measure is superior to percent agreement because it
factors out agreement by chance. Generally, a kappa value
above 0.80 is considered reliable.

375



problem baseline ctrl ProPl

Hailstone 69.3 (16.4) 79.8 (15.4) 86.1 (9.46)
RPS 67.7 (22.5) 59.5 (18.7) 77.5 (16.4)
CH n/a 49.1 (26.3) 64.1 (29.8)

Table 1: Composite IBSs, out of 100.

groups. We first consider how the baseline group compared
with each of the other groups. For Hailstone, the ProPl
students outscored baseline students to a statistically signif-
icant level (t(16) = 2.12, p = .0017) with a very large effect
size (es = 1.03).2 The control group also outperformed the
baseline group on Hailstone, but not significantly. On the
RPS problem, the baseline group outperformed the control
group, but the difference is not significant. ProPl students
did outperform the baseline students, but again, not to a
significant level.

We now turn our attention to the ProPl and control
groups. All students in these groups took the same pretest,
and so ANCOVAs were used for statistical tests in order to
factor out pretest performance. Although ProPl students
outperformed the control students on each project, the only
significant difference is on RPS. ProPl students were sig-
nificantly better than control subjects (F (1, 15) = 7.88, p =
0.015, es = .96). On Count/Hold (the untutored posttest
charette), ProPl students outperformed those in the con-
trol group to a marginally significant level (F (1, 22) = 3.59,
p = .072, es = .57).

4.4 Decomposed intention-based scores
The results shown in table 1 are composite scores; that

is, the bug categories are lumped together to produce the
overall score. To reveal how these points were distributed
across the various bug categories, we now proceed to break
down the points lost using two sub-categories of bugs.

4.4.1 Merging related errors
In this section, we present the number of points lost re-

lated to merging related problems per opportunity to make
an error. It would be misleading to use the raw points
missed. For example, a student who attempts two goals out
of a possible five would have far fewer opportunities to pro-
duce merging errors than someone who attempts to solve all
five. The resulting merge error score would be deceptively
low. Similar arguments can be made for plan component
omissions and isolated errors. We therefore normalize, and
use total number of goals attempted throughout the protocol
as a denominator. For merge errors, we use the total number
of attempted goals, minus one because at least two plans
are required for a merge error to be possible.

Figure 3 shows the points lost from merging related errors
over the three programming problems. For the Hailstone
problem, the control group (M = .38, SD = .65) produced
significantly fewer merging related errors than the baseline
group (M = 2.31, SD = 1.9), t(15) = 2.76, p = 0.015. The
ProPl group (M = .36, SD = .45) performed similarly
well when compared to the baseline group (t(16) = 3.02,

2Effect size was computed using Glass’ delta, that is,
Mexp−Mctrl

SDctrl

Figure 3: Points lost per plan-merging opportunity.
Standard error bars are shown.

Figure 4: Plan part omission points lost per plan
implementation attempt.

p = .008). On RPS, the ProPl group (M = .19, SD = .21)
outperformed both the baseline group (M = .85, SD = 1.0)
to a marginally significant level (t(17) = 1.98, p = .075, es =
.66) and the control group (M = .91, SD = 1.1), F (1, 15) =
3.71, p = .076, es = .65. Finally, on the Count/Hold project,
the ProPl group (M = .07, SD = .24) again surpassed the
control group (M = .61, SD = .74) but this time to a
highly significant level (F (1, 15) = 5.77, p = .026) and with
an extremely large effect size (es = 2.3).

4.4.2 Component omission errors
Moving now to omission errors (figure 4), several differ-

ences were found to be significant. Interestingly, the baseline
group lost fewer points in Hailstone for missing plan parts
(M = .57, SD = .59) than the control group (M = 1.1,
SD = .53) to a marginally significant level (t(16) = −1.85,
p = .085, es = 1.0). This suggests the baseline group had
a greater opportunity for merging errors because they had
more plan components to deal with. When compared to the
ProPl group, the difference is not significant. This hap-
pened again on RPS with the baseline group (M = 1.22,
SD = .62) outperforming the control group (M = 1.95,
SD = .67), but to a significant level (t(16) = −2.20, p =
.046, es = 1.2). The control group, in general, seemed to
be more forgetful than the other two groups. The ProPl
group (M = .71, SD = .63) also was significantly better
than the baseline group on RPS (F (1, 15) = 15.6, p = .0017,
es = 1.9). A similar difference appeared on Count/Hold
with the ProPl group (M = .72, SD = .62) losing sig-
nificantly fewer points than the control group (M = 1.84,
SD = 1.13), F (1, 15) = 9.22, p = .0065, es = .99.
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5. DISCUSSION
Several of the detected differences are suggestive of the im-

pact ProPl had on students in the study. First, the higher
composite IBSs of ProPl students suggests that they bene-
fited in general from the tutoring by having initial attempts
that were closer to correct than students in the other con-
ditions. Looking at the decomposed scores, both groups re-
ceiving intervention did equally well over the baseline group
on the first program.

The longer term effect, however, seems to favor the ProPl
group. In the following two problems (and most impor-
tantly, the third, untutored program), ProPl students lost
significantly fewer points from errors related to the interac-
tions between plans. That is, dialogue-based tutoring seems
to help novices establish a stronger understanding of the is-
sues involved with achieving multiple goals in one program.
Given that this is known to be a major difficulty for novices
[12], this result bodes well for the efficacy of natural lan-
guage tutoring to help novice programmers.

The plan part omission results are not as compelling given
the relationship between the baseline and control groups. It
is surprising that the baseline group produced more complete
plans than the control group – the control group received
some of this information beforehand. Given the very high
level of merging-related problems shown in figure 3, there
was a price for being more complete. On the positive side,
the ProPl group again demonstrates a trend in the correct
direction of getting better with respect to plan completeness.
Taking these differences to the most general conclusion, this
may suggest that they were able to adopt a more abstract
view of programming by thinking at the level of plans rather
than the line-by-line view normally adopted by novices.

6. SUMMARY AND FUTURE WORK
In this paper we presented intention-based scoring, an ap-

proach to assessing online protocols produced by novice pro-
grammers. This metric focuses on the process of program-
ming by providing a score of a student’s ability to solve the
composition problem. An IBS is computed by inspecting
the first attempt at solving each programming goal over the
course of an entire implementation followed by the appli-
cation of a traditional rubric to those programs. We then
demonstrated how to use IBS to evaluate a tutoring system
for novices and were able to break the scores down based on
the bug categories to evaluate the system in a finer-grained
way.

IBS is limited in its application, however. It is bound
to a plan-based theory of programming knowledge and is
tedious to compute. These problems suggest two lines of
future work. The first is to explore other methods of judg-
ing the quality of intermediate programs, perhaps in other
programming paradigms. The second, and perhaps more in-
teresting, is to use the large amount of tagged data to build
automatic classifiers for bug identification.
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