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[1] Although only recently recognized, hanging tributary valleys in unglaciated,
tectonically active landscapes are surprisingly common. Stream power–based river
incision models do not provide a viable mechanism for the formation of fluvial hanging
valleys. Thus these disequilibrium landforms present an opportunity to advance our
understanding of river incision processes. In this work, we demonstrate that thresholds
apparent in sediment flux–dependent bedrock incision rules provide mechanisms for the
formation of hanging valleys in response to transient pulses of river incision. We simplify
recently published river incision models in order to derive analytical solutions for the
conditions required for hanging valley formation and use these results to guide numerical
landscape evolution simulations. Analytical and numerical results demonstrate that during
the response to base level fall, sediment flux–dependent incision rules may create
either temporary or permanent hanging valleys. These hanging valleys form as a
consequence of (1) rapid main stem incision oversteepening tributary junctions beyond
some threshold slope or (2) low tributary sediment flux response during the pulse of
main stem incision, thus limiting the tributary’s capacity to keep pace with main stem
incision. The distribution of permanent and temporary hanging valleys results from four
competing factors: the magnitude of base level fall, the upstream attenuation of the
incision signal, the lag time of the sediment flux response, and the nonsystematic variation
in tributary drainage areas within the stream network. The development of hanging
valleys in landscapes governed by sediment flux–dependent incision rules limits the
transmission of base level fall signals through the channel network, ultimately increasing
basin response time.

Citation: Crosby, B. T., K. X. Whipple, N. M. Gasparini, and C. W. Wobus (2007), Formation of fluvial hanging valleys: Theory and

simulation, J. Geophys. Res., 112, F03S10, doi:10.1029/2006JF000566.

1. Motivation

[2] When there is a change in the tectonic or climatic
forcing on a landscape, hillslopes and channels adjust their
form until reestablishing equilibrium with the new boundary
conditions. The spatial distribution and response time of this
transient adjustment can exert a fundamental influence on
the growth and development of mountain ranges, the timing
and delivery of sediment to depositional basins and other
fundamental processes in tectonically active landscapes. As
this signal of adjustment propagates through fluvial sys-

tems, it can often be distinguished as an oversteepened
reach. This channel reach is referred to as a knickpoint and
differentiates the relict, unadjusted portion of the landscape
upstream from the incised, adjusting reaches downstream
(Figure 1). The origin and evolution of knickpoints has
captured the interest of scientists for over a century [Gilbert,
1896; Waldbauer, 1923; Penck, 1924; Davis, 1932; von
Engeln, 1940]. Though much of the recent work examining
knickpoints focuses on the transmission of incision signals
along main stem channels [Hayakawa andMatsukura, 2003;
Haviv et al., 2006; Frankel et al., 2007], others have
examined the basin-wide distribution of knickpoints [Weissel
and Seidl, 1998; Bishop et al., 2005; Bigi et al., 2006;Crosby
and Whipple, 2006; Berlin and Anderson, 2007]. Some of
these studies recognize that in incising, nonglacial, tecton-
ically active landscapes, knickpoints are commonly located
at the junction between tributaries and the incised trunk
stream [Snyder et al., 1999; Crosby and Whipple, 2006;
Wobus et al., 2006]. These knickpoints keep the tributary
elevated or ‘hung’ above the trunk stream. In the present
study, we explore potential mechanisms for the formation of
these hanging valleys.
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[3] The Waipaoa River on the North Island of New
Zealand has provided an excellent location to study knick-
point distribution within fluvial basins because the age of
disturbance is well established [Berryman et al., 2000; Eden
et al., 2001] and there are an abundance of transient land-
forms such as terraces, incised inner gorges and knickpoints
[Crosby and Whipple, 2006]. Even in this ideal transient
landscape we found it difficult to definitively discern
between two proposed mechanisms for the formation of
hanging valleys [Crosby and Whipple, 2006]. The first
proposed mechanism hypothesized that discrete knickpoints
migrating up the trunk streams established hanging valleys
as the discrete main stem knickpoint passed tributary
junctions. The second mechanism proposed that the main
stem incised gradually, never containing a distinct knick-
point, but this progressive incision was fast enough to
outpace tributary adjustment. The presence and persistence
of knickpoints at tributary junctions limits the upstream
communication of subsequent signals of base level change

into the upper portions of the channel network, thus
extending basin response time following disturbance.
[4] The most broadly utilized formulation for fluvial

bedrock incision, the detachment-limited stream power
model [Howard and Kerby, 1983; Howard, 1994; Whipple
and Tucker, 1999] (henceforth simply termed the stream
power model), does not predict the formation of hanging
tributaries [e.g., Niemann et al., 2001]. This discrepancy
between field observation and model behavior suggests a
clear inadequacy in standard stream power river incision
models. Recently developed sediment flux–dependent bed-
rock incision relations allow sediment to behave either as a
tool for incising the bed or as armor, inhibiting erosion
[Sklar and Dietrich, 1998; Whipple and Tucker, 2002;
Parker, 2004; Sklar and Dietrich, 2004; Gasparini et al.,
2006]. We find that these new relations provide mecha-
nisms for explaining the formation and persistence of
hanging tributaries at threshold drainage areas [Crosby
and Whipple, 2006; Wobus et al., 2006; Gasparini et al.,
2007]. Indeed, the prevalence of hanging tributaries in

Figure 1. Landscapes responding to a discrete period of incision often possess hanging tributaries or
subcatchments isolated above the main stem by a large step in channel elevation. In (a) this topographic
rendering of a portion from the Waipaoa River on the North Island of New Zealand, (b) channels draining
the outlined tributary basins are elevated above and segregated from the trunk streams by steep
knickpoints. In order to understand how these features develop during a transient pulse of incision, we
utilize analytical and numerical methods to model (c) the response of channel profiles and (d) drainage
basins to discrete base level fall events. Figures 1a and 1b are modified from Crosby and Whipple [2006].
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tool-starved environments may provide the strongest exist-
ing field evidence supporting sediment flux–dependent
incision rules. Important tasks undertaken here include
(1) the quantitative assessment of the conditions under
which sediment flux–dependent incision models predict
hanging valley formation, and (2) careful determination of
what characteristics of these incision models are required by
our field observations.

2. Approach and Scope

[5] In this work, we utilize analytical and numerical
models to explore whether thresholds in existing relations
for stream incision by sediment abrasion provide a plausible
mechanism for the formation of hanging valleys. The
theoretically demonstrated consequences of these thresholds
are then considered relative to existing field studies of the
distribution of hanging valleys [Weissel and Seidl, 1998;
Bishop et al., 2005; Crosby and Whipple, 2006; Wobus et
al., 2006]. Although plausible alternative explanations for
the formation of hanging tributaries exist, thresholds in
sediment flux–dependent erosion relations provide an
excellent opportunity to compare theoretical predictions
against field data.
[6] This study recognizes that although it is difficult to

distinguish between steady state channel profiles predicted
by different stream incision rules, each incision rule dem-
onstrates a unique behavior during its transient response to
some disturbance [Howard and Kerby, 1983; Stock and
Montgomery, 1999; Whipple et al., 2000; Whipple and
Tucker, 2002; van der Beek and Bishop, 2003]. To evaluate
the real-world applicability of any particular incision rule, it
thus becomes necessary to compare the predicted transient
response with field observations from a disequilibrium
landscape with a known age and type of disturbance. The

direct comparison between modeled and observed transient
landscapes thus provides an excellent opportunity to recog-
nize the strengths and weaknesses of the present formula-
tions for stream incision (Figure 1).
[7] In this paper, we provide a comparative analysis of

how four different stream incision rules respond to two
different scenarios for base level fall. Two of the four
incision rules are simplified versions of two recent sediment
flux–dependent incision rules [Sklar and Dietrich, 1998;
Parker, 2004; Sklar and Dietrich, 2004; Gasparini et al.,
2006; Gasparini et al., 2007]. For reference, we also model
the channel response to base level fall using the detachment-
limited stream power incision rule [e.g., Howard and Kerby,
1983;Whipple and Tucker, 1999] and a simplified transport-
limited incision rule [Willgoose et al., 1991; Paola et al.,
1992a; Tucker and Bras, 1998].
[8] Because the incision rate in three of the four studied

incision rules is directly dependent on sediment flux, we
find it advantageous to employ CHILD [Tucker et al.,
2001a, 2001b], a two-dimensional landscape evolution
model (Figure 1d) wherein changes in sediment production
and transport capacity are explicitly accounted for during
the transient response [Gasparini et al., 2006, 2007]. In this
study we use a landscape evolution model to examine the
interaction between an incising trunk stream and tributary
channels with a range of drainage areas.
[9] The two base level fall scenarios modeled here

represent end-members for the range of forcing an incising
river may experience in response to a sudden, but finite
pulse of base level fall. Gasparini et al. [2007] considers
primarily main stem response to a sustained increase in the
rate of rock uplift (or base level fall), as opposed to the finite
base level fall events considered here. Our two base level
fall scenarios help evaluate the relative sensitivities of the
four incision models to the type of base level fall and allow
us to mimic the behavior of smaller tributary networks
nested within a larger catchment. In the first scenario, we
subject the modeled catchment to an instantaneous drop in
base level at its outlet. In order to provide comparison to
typical field settings (including the Waipaoa River basin,
introduced earlier), we elect to drop base level 50 m or �1/3
of the modeled basin’s steady state fluvial relief. For
example, instantaneous base level fall could result from
stream capture or surface rupture along a fault [e.g., Sklar et
al., 2005]. In the second scenario, we examine the response
of the river network following a finite but prolonged period
of base level fall. In this scenario, we impose a 10 fold
increase in the rate of base level fall and allow the model to
run until the accumulated base level fall is equivalent to the
magnitude of the instantaneous drop in base level (50 m,
Table 1). This type of disturbance could result from sea
level fall over the shelf slope break [e.g., Snyder et al.,
2002] or a temporary increase in rock uplift rate. This
scenario also serves to simulate the base level fall signal a
subcatchment nested within a larger basin might experience
if the outlet to the larger basin was subjected to an
instantaneous base level fall.
[10] We begin our analysis by introducing the four stream

incision rules utilized here and discussing the simplifica-
tions we made to these rules that allow us to write analytical
solutions. We then outline the dependence of each model’s
incision rate on local stream gradient and discuss the

Table 1. Parameters Used During Model Runs

Parameter Value

Basin dimensions, m 10000 � 10000
Basin area, m2 1.0 � 108

Node spacing, m 100
Background rate of base level fall, U, m/yr 1.00 � 10�3

KD,
a,b,c,d m2/yr 5, 5, 5, 4

Instantaneous base level fall,e m 50
Progressive base level fall,f m 50
mt 1.5
nt 1
Kt, m

3�2mt/yr 2.00 � 10�5

KSP, m
�(2m+1) 4.00 � 10�5

KSA, m
�0.5 5.00 � 10�2

KGA, m
�1 7.00 � 10�3

mb,c,d 0.5, �0.25, 0
nb,c,d 1, �0.5, 0
kw, m

1�3b/yrb 1
b 0.5
kq, m

3�2c/yr 1
c 1
b 0.5

aTransport-limited model run.
bDetachment-limited stream power model run.
cSaltation-abrasion model run.
dGeneralized abrasion model run.
eDiscrete elevation change basin outlet.
fIncrease rate of base level fall 10� and run model until 50 m new of

material is exhumed/uplifted.
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presence or absence of theoretically predicted instabilities.
After a brief discussion of the utility and mechanics of the
CHILD model, we present, for each of the four incision
rules, the transient response of the trunk and tributaries
following the two base level fall scenarios. Our subsequent
discussion focuses on the interaction between trunk stream
incision and the development of hanging tributary valleys.

3. Stream Incision Rules

[11] Our primary motivation is to understand the transient
response to base level fall of channels governed by sediment
flux–dependent bedrock incision rules. For comparison, we
also provide an analysis of the transient response to base
level fall of channels governed by the detachment-limited
stream power incision rule and a simplified transport-
limited stream incision rule. This comparative analysis
emphasizes the unique attributes and sensitivity of the
sediment flux–dependent incision models. In the following
section, we introduce all four of the stream incision rules
employed in the CHILD landscape evolution model.
[12] In all cases, we model the potential development of

extremely steep channel reaches. Under these conditions,
the small-angle approximation, (where sin(a) � tan(a) and
a denotes the bed angle in radians), is no longer valid. In
this analysis, we take considerable care to avoid the small-
angle approximation. In all equations in this text, the
variable S represents sin(a), not channel gradient. In all
figures, however, we transform sin(a) to the more intuitive
variable, channel gradient (tan(a)), using the relation,
Gradient = tan(arcsin(S)).

3.1. Transport-Limited and Stream Power Incision
Rules

[13] We only briefly discuss the transient behaviors of the
transport-limited and the detachment-limited stream power
incision rules as these have been well explored by other
workers [e.g., Howard and Kerby, 1983; Willgoose et al.,
1991; Whipple and Tucker, 1999, 2002]. In this analysis, we
use a simplified rule for transport-limited incision where the
volumetric sediment transport capacity is a power law
function of unit stream power. This model follows the
general form of many other sediment transport equations
[Meyer-Peter and Mueller, 1948; Wilson, 1966; Fernandez
Luque and van Beek, 1976] where the volumetric sediment
transport capacity, Qt is a power law function of the stream’s
excess shear stress:

Qt / W t � tcð Þ3=2; ð1Þ

where W is channel width, t is the basal shear stress and tc
is the critical shear stress. All calculations of channel width
in this paper (both in analytical and numerical analysis)
utilize a power law relation between width and discharge,
W = kwQ

b, and a power law relationship between water
discharge and drainage area, Q = kqA

c. Combined, these two
equations describe the relation between width and drainage
area as W = kwkq

bAbc. Assuming uniform, steady flow in a
wide channel and utilizing the Darcy-Weisbach flow

resistance equation [e.g., Tucker and Slingerland, 1996],
shear stress can be expressed as a power law function of
upstream drainage area, A, and the sine of the bed angle, S:

t ¼ ktA
1=3S2=3; ð2Þ

where kt is a constant term characterizing fluid properties,
bed morphology and basin geometry. As detailed in
previous work [Willgoose et al., 1991; Paola et al.,
1992b; Tucker and Slingerland, 1997; Gasparini et al.,
2007], we assume a negligible threshold of motion for the
floods of interest (t 	 tc) and substitute equation (2) in
equation (1), allowing us to write Qt as a power law
function of the upstream drainage area and the sine of the
bed angle, Qt / kwkt

3/2A1S1, or in a generalized form:

Qt ¼ KtA
mt Snt ; ð3Þ

where Kt is a dimensional coefficient describing the
transportability of the channel sediment and mt and nt are
dimensionless positive constants. Although a critical shear
stress could easily be added to numerical simulations (and
would importantly influence equilibrium channel slope at
low rates of relative base level fall), we retain this simplified
form in order to derive analytical solutions that provide
considerable insight into the problem addressed here: how,
why, and where fluvial hanging valleys form. Under the
conditions that lead to hanging valley formation, the
assumption that t 	 tc is reasonable. We hold nt = 1 in
all simulations, consistent with most relations for bed load
transport where Qt is proportional to basal shear stress to the
3/2 power [e.g., Whipple and Tucker, 2002, equation (5)].
Given that the change in elevation is a consequence of the
difference between the rate of base level fall, U, and the
downstream divergence of sediment flux, we can solve for
how incision rate varies as a function of S or sin(a),

dz

dt
¼ U � 1

1� lp

� �
d

dx

1

W
KtA

mt Sntð Þ
� �

; ð4Þ

where lp is the sediment porosity and W is the channel
width. The effects of a shear stress threshold on channel
concavity can be mimicked by increasing the value for mt

and appropriately adjusting Kt, as first proposed by Howard
[1980]; mt could reasonably vary between 1.0 and 1.5, and
in all of our experiments we set mt = 1.5 (Table 1). Given
the form of the incision relation formulated above and nt =
1, the incision rate at a particular drainage area is a linear
function of the sine of the bed angle (Figure 2 and Table 1).
Because this incision relation has the form of a nonlinear
diffusion equation, an oversteepened reach created by base
level fall is expected to decay rapidly as it propagates
upstream.
[14] The stream power incision rule assumes that trans-

port capacity well exceeds the imposed sediment load and
thus the rate of channel incision is limited simply by the
channel’s capacity to detach bedrock from the channel bed
[e.g., Howard and Kerby, 1983; Whipple and Tucker, 1999].
In this relation, there is no explicit functional dependence of
the incision rate on the sediment flux. Changes in bed
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elevation are determined by differencing the background
rate of base level fall, U, and the bedrock incision rate. The
bedrock incision rate is a power law function of A, the
upstream drainage area, and S, the sine of the bed angle:

dz

dt
¼ U � KSPA

mSn; ð5Þ

where KSP is a dimensional coefficient describing the
erodibility of the channel bed as a function of rock strength,
bed roughness and climate, and m and n are dimensionless
positive constants.
[15] This relation can be rewritten into the same functional

form as used to describe kinematic waves [Rosenbloom and
Anderson, 1994]. As a consequence, base level fall signals
modeled with the stream power incision rule propagate
upstream through the network as discrete waves. The form
of the oversteepened reach may evolve as it propagates
upstream depending on the value of n [Weissel and Seidl,
1998; Tucker andWhipple, 2002]. In this work we utilize unit
stream power and assume m = 0.5 and n = 1 [e.g., Whipple
and Tucker, 1999]. This results in waves that propagate

upstream without changing form and as with the transport-
limited model, defines a linear dependence of the incision
rate (at any given drainage area) on sin(a) (Figure 2).

3.2. Sediment Flux–Dependent Models for Channel
Incision

[16] Sediment flux–dependent incision rules introduced
by Sklar and Dietrich [1998, 2004], Whipple and Tucker
[2002] and Parker [2004] explicitly model the dual role of
sediment in bedrock channel incision. In these incision
rules, when sediment flux exceeds transport capacity, sed-
iment covers and armors the bed against incision and forces
the channel toward a transport-limited behavior. For low
volumes of sediment flux, insufficient tools are available to
impact and abrade the channel bed and results in conditions
that approach the detachment-limited state.
[17] In this analysis, we distinguish two classes of sedi-

ment flux–dependent incision rules: one where saltation
dynamics (on a planar bed) plays a fundamental role in
channel incision and another where although incision is
similarly accomplished by abrasion alone, saltation dynam-
ics are not explicitly modeled. These models are derived

Figure 2. We demonstrate the dependence of incision rate on channel gradient for four channel incision
rules. Each line is for a fixed drainage area (1 � 106 m2) and sediment load. All calculations are made
without applying the small-angle approximation. Instead of plotting the x axis with sin(a), we transform
this term to channel gradient, tan(arcsin(sin(a))). The parameters for each of the models are the same as
those used in the numerical simulations presented later in the paper. As this figure illustrates, the
parameters for each of the models were chosen in order to produce similar steady state slopes (Sss.). For
both the stream power and the transport-limited models, incision rate increases rapidly with gradients. In
the saltation-abrasion model, incision rate initially increases with increasing gradient, exceeding the
background rate of base level fall at Sss. After reaching a maximum at Speak, the incision rate
monotonically decreases with increasing gradient, eventually dropping below the background base level
fall rate (the gray horizontal line) at Shang. The incision rate in the generalized abrasion model initially
increases rapidly with gradient and levels off as it asymptotically approaches a maximum incision rate at
Imax.
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through minor simplifications of existing sediment flux–
dependent river incision models proposed by Sklar and
Dietrich [1998, 2004] and Parker [2004]. Our simplifica-
tions facilitate analytical exploration and provide direct
comparison to the behavior of previously discussed incision
rules [e.g., Gasparini et al., 2006]. Our simplified formu-
lations very closely approximate the behavior of the original
equations.
3.2.1. Saltation-Abrasion Incision Rule
[18] The incision rule developed by Sklar and Dietrich

[1998, 2004] provides a process-specific, mechanistic rela-
tion for bedrock incision by the abrasion of saltating bed
load of a single grain size on a planar bed. In their rule, the
incision rate is an explicit function of both the flux of
kinetic energy normal to the bed (impacts) and the fraction
of the bed exposed to those impacts. The incision rate for
this model, ISA, is written as the product of three measurable
terms [Sklar and Dietrich, 2004, equation (1)]: the volume
of rock prepared for transport per particle impact, Vi, the rate
of particle impacts per unit area, per unit time, Pr, and the
fraction of the channel’s bedrock bed exposed to incision,
Fe:

ISA ¼ ViPrFe: ð6Þ

Each term in this expression can be expanded and expressed
as a function of excess shear stress. Sklar and Dietrich
[2004, equation (24a)] combine the three terms above into a
simple expression for bedrock incision. In this analysis, we
use their equation (24b), applicable at moderate transport
stages (1 < t*/t*c < 10) in which the term representing the
influence of incipient suspension is removed. We write their
equation (24b) in a form analogous to their equation (24a):

ISA ¼ Rbg

25ev

� �

 Qs

W
1� Qs

Qt

� �� �

 t*

t*c
� 1

 !�0:52
2
4

3
5; ð7Þ

where Rb is nondimensional buoyant density of the
sediment, g is gravitational acceleration, ev is the energy
required to erode a unit volume of rock, Qs is volumetric
sediment flux, W is channel width, Qt is volumetric
sediment transport capacity, t* is nondimensional shear
stress and t*c is nondimensional critical shear stress.
Equation (7) only applies to net erosional settings where
Qs is less than or equal to Qt. The dual role of sediment flux
in determining incision rate is apparent in the second term
of equation (7) where as the sediment flux term, Qs, goes to
zero, so does ISA. In contrast, as Qs approaches the transport
capacity, Qt, then incision rate again goes to zero as the
channel bed becomes fully covered with sediment. During
the transient response, sediment flux can vary dramatically
through time and throughout the basin as hillslopes and
tributaries respond to changes in the elevation of the trunk
stream. The negative exponent on the third term, excess
transport stage, is a consequence of the explicit inclusion of
saltation dynamics and determines that incision rate
decreases with increasing excess bed shear stress, all else
held equal. Using linear regression analysis, we find that the
excess transport stage can be reasonably approximated as a
power law function of dimensional shear stress and critical
shear stress. In order to allow an analytical solution, we

further approximate the shear stress exponent as �0.75
rather than the �0.88 value found through this empirical
regression analysis:

t*

t*c
� 1

 !�0:52

� 2
t*

t*c

 !�0:88

� 2
t
tc

� ��0:88

� 2
t
tc

� ��0:75

: ð8Þ

We find that this approximated form of the excess transport
stage term provides a reasonably strong fit to their empirical
data as well. Substituting the final term from this
approximation back into the third term in equation (7), we
can rewrite that expression as

ISA ¼ 2Rbgt0:75c

25ev

� �

 Qs

W
1� Qs

Qt

� �� �

 tð Þ�0:75: ð9Þ

We then substitute equation (2) for the shear stress term and
move the kt term into the first bracketed term in
equation (9). In this final expression, which we generically
refer to as the saltation-abrasion incision rule, we group the
terms in the first bracket of equation (9) as constants that
characterize the channel’s erodibility, KSA. Following
[Whipple and Tucker, 2002], we also define the two terms
in the second bracket as f (Qs), an expression reflecting the
role of sediment flux in setting the incision rate:

f Qsð Þ ¼ Qs

W
1� Qs

Qt

� �
: ð10Þ

The first term in this second bracket, (Qs/W), quantifies the
volume of sediment per unit width available as tools. The
value for the Qs term is the sediment supply at a particular
point in time and space. Under equilibrium conditions, Qs is
equal to the upstream drainage area times the rate of base
level fall (or rock uplift) times the fraction of sediment
delivered to the channel as bed load (b). As discussed earlier,
width is assumed to be a power law function of drainage area
(see section 3.1). The second term, (1 � (Qs/Qt)), describes
the cover effect, where increasing sediment flux relative to
transport capacity diminishes the incision rate. The form of
the transport capacity is defined above in equation (3).
When the sediment flux surpasses the transport capacity,
sediment is deposited and equations (9) and (10) are no
longer physically valid. The final expression for our
saltation-abrasion rule shares the same functional form as
the generic sediment flux–dependent incision rule pre-
sented by Whipple and Tucker [2002, equation (1)], but
instead uses significantly different values for the exponents
on drainage area and slope:

ISA ¼ KSA f Qsð ÞA�1=4S�1=2: ð11Þ

As we will address in subsequent sections, the negative
exponent on S, the sine of the bed angle, exerts an important
influence on the responses of tributaries during a transient
period of incision and reflects the explicit inclusion of
saltation dynamics over a planar bed. When addressing the
relationship between incision rate and channel gradient
(Figure 2), it is important to recognize that equation (11) has
two gradient-dependent terms: first the Qt term within f (Qs)
is dependent on the sine of the bed angle (see equations (3)
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and (10)) and second, the sine of the bed angle term, S, with
the negative exponent that occurs following the substitution
for shear stress (equation (2) into (9)). As Figure 2
demonstrates, we find that the incision rate increases with
increasing channel gradient to a maximum and then
decreases with ever-increasing gradients.
[19] The steady state channel profiles, slope-area rela-

tions, and dependence of incision rate on channel gradient
for this simplified expression are almost identical to those
predicted by the original Sklar and Dietrich [2004,
equation (24a)] incision rule. The gradient of the channel
at large drainage area asymptotically approaches that pre-
dicted by the purely transport-limited model. The steady
state longitudinal form of the channel deviates from the
transport-limited gradient only at small drainage areas in
upper reaches of the channel network [Sklar and Dietrich,
2006; Gasparini et al., 2007, Figure 1a]. However, under
steady state conditions, there is a critical drainage area
below which channel gradients become infinite. This critical
area, as described in detail by Gasparini et al. [2007,
equation (27)], is a consequence of two characteristics of
small drainage areas: (1) low sediment supply and (2) high
gradients. Because incision depends on saltating bed load,
these two factors limit the interaction of sediment with the
bed, thus limiting incision and the applicability of this
model at extremely small drainage areas. It should also be
noted that decreasing channel width at low drainage areas
may offset the diminishing sediment flux, therefore allow-
ing the channel to maintain a constant sediment flux per unit
width. Regardless, the steeper slopes observed at low
drainage areas (due to the need to transport sediment at
shallow flow depths) result in longer hop lengths for
saltating grains and a decrease in the efficiency of incision
by bed load abrasion. In the CHILD model, diffusive
hillslope processes are responsible for sediment production
and transport at drainage areas less than this critical area.
We reserve further discussion of the dependence of incision
rate on gradient for the proceeding section on model
instabilities.
3.2.2. Generalized Abrasion Incision Rule
[20] Parker [2004] presents an incision model in which

two processes dominate erosion of the channel bed: pluck-
ing of bedrock blocks and abrasion by saltating bed load.
For the abrasion component, the Parker model employs a
simplified version of the incision model of Sklar and
Dietrich [2004], based on analogy to a model of down-
stream fining due to a constant coefficient of wear. This
simplification was not intended to correct the model of
Sklar and Dietrich, but instead to provide comparison with
other mechanisms of incision. These comments notwith-
standing, the Parker model applied to bed load abrasion
alone can be used to highlight the role of specific terms in
the formulation of Sklar and Dietrich [2004] with respect to
the formation of hanging valleys. With this in mind, we
focus only on the bed load abrasion process (same method
applied by Gasparini et al. [2007]). This generalized
abrasion (GA) rule facilitates simpler analytical solutions
and a more direct comparison between the incision rules of
Parker [2004] and Sklar and Dietrich [2004]. The only
functional difference between this generalized abrasion rule
and the saltation-abrasion model (equation (11)) is that the
exponents on both the drainage area and the sine of the bed

angle are equal to zero (recall that the negative exponents in
the saltation-abrasion rule reflected details of saltation
dynamics over a plane bed that have been dropped in the
formulation of this generalized abrasion model):

IGA ¼ KGA

Qs

W
1� Qs

Qt

� �
; ð12Þ

where KGA is a dimensional constant equal to (r/Ls)
where r is the fraction of the particle volume detached off
the bed with each collision and Ls is saltation hop length.
Note that in order to have a constant incision rate, IGA, at
steady state, the f (Qs) term in equation (12) (everything but
the KGA) must be constant. Figure 2 shows that incision rate
in this generalized abrasion rule monotonically increases
toward a maximum incision rate with increasing values of
channel gradient. This behavior is a consequence of the
gradient (or sine of the bed angle) term in the equation for
the volumetric transport capacity (equation (3)). Like the
saltation-abrasion incision rule, the generalized abrasion
incision rule predicts that at large drainage areas, the
channel gradient is determined by the system’s sediment
transport capacity. At steady state the generalized abrasion
incision rule also predicts a critical drainage area at which
channel gradients become infinite as a consequence of low
sediment fluxes [Gasparini et al., 2007, equation (32)]. As
in the saltation-abrasion incision rule, the generalized
abrasion rule’s threshold drainage area increases with
decreasing values of the dimensional constant, KGA

(stronger rocks). Unlike the saltation-abrasion incision
rule, the generalized abrasion rule’s critical drainage area
is insensitive to rate of base level fall (or rock uplift). We
reserve further discussion of the dependence of incision
rate on gradient for the proceeding section on model
instabilities.

4. Predicted Transient Instabilities

[21] There are no transient instabilities in the transport-
limited or the stream power incision rules as formulated
above. The proceeding section outlines instabilities pre-
dicted to occur in the two sediment flux–dependent incision
rules. These instabilities provide mechanisms for the for-
mation of temporary and permanent hanging valleys. In
each case, we assume that during the initial response to base
level fall, changes in sediment flux lag behind the profile
adjustment (or Qs = Qs�initial). We justify this assumption by
suggesting that the hillslope response (which determines
sediment flux) is dependent on the transmission of the
incision signal through the network. If this assumption is
violated and sediment flux does not lag during adjustment,
the instabilities predicted below will underestimate thresh-
old gradients or overestimate threshold drainage areas.

4.1. Instabilities in the Saltation-Abrasion Incision
Rule

[22] In Figure 2, we demonstrate that the steady state
incision rate predicted by the saltation-abrasion incision rule
derived from Sklar and Dietrich [1998, 2004] initially
increases from extremely small values at low gradients,
past the steady state gradient at Sss, to a maximum incision
rate at Speak. For gradients greater than Speak, the incision
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rate decreases monotonically with increasing gradient,
reaching an incision rate equal to the background rate of
base level fall (or rock uplift) rate at Shang. The nonmono-
tonic form of the solid curve in Figure 2 is the basis for the
instabilities observed in the saltation-abrasion incision rule.
[23] The first of the two instabilities in the saltation-

abrasion incision rule occurs if a channel’s gradient exceeds
the gradient required for the incision rate to keep pace with
the background base level fall rate, Shang (Figure 2). Beyond
this critical gradient, the stream can no longer effectively
erode the bed at a rate sufficient to keep pace with the
background base level fall rate, U. This creates a runaway
negative feedback that results in the formation of a perma-
nent hanging valley (a waterfall) in all cases.
[24] Both steady state channel gradient, Sss, and Shang are

recognized as two of the three roots of equation (11) when
ISA = U, where U is the rate of base level fall (Figure 2). We
can derive analytical expressions for Sss and Shang by
starting with equation (11) and setting ISA = U, substituting
equation (3) for Qt and setting Qs = bAU (the steady state
sediment flux at a given base level fall rate, where b is the
percentage of the eroded material that is transported as bed
load). We also use a power law width-discharge relation and
a power law discharge-area relation to set W = kwkq

bAbc as
outlined by Whipple and Tucker [1999]:

U ¼ KSA

bAU
kwkbqA

bc
1� bAU

KtAmt Snt

� �" #
A�1=4S�1=2: ð13Þ

The solution for steady state gradients as a function of area
is found by setting nt = 1 (as discussed above), making the
substitution x = S�1/2 thus allowing equation (13) to be
rearranged into a relatively simple cubic form,

x3 � S�1
t x ¼ �S�1

t

1

K 0bA1�bc�1=4

� �
; ð14Þ

where we group variables and define St as

St ¼
bU
Kt

A1�mt : ð15Þ

In the two expressions above, St defines the steady state
transport-limited gradient [e.g., Whipple and Tucker, 2002],
K0 = KSA/(kwkq

b), and the generic cubic form of equation (14)
is x3 + px = j. The three real roots of this cubic equation are

S1 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

3
p

� �s
cos

qþ 2p
3

� � !�2

ð16Þ

Sss ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

3
p

� �s
cos

q
3

� � !�2

ð17Þ

Shang ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

3
p

� �s
cos

qþ 4p
3

� � !�2

; ð18Þ

where q is defined as

q ¼ cos�1

1

2
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� 1

27
p3

r
0
BB@

1
CCA: ð19Þ

These roots define the three potential values for sin(a) at
which the incision rate is equivalent to the background rate
of base level fall (Figure 2). The first root, S1, is unphysical
and is not addressed in Figure 2. The second root, Sss, is a
physically meaningful solution that describes the value of
sin(a) at steady state. At this value, the channel exhibits a
stable, partially covered bed and can erode and transport
material at a rate sufficient to keep pace with the
background rate of base level fall (or rock uplift). The
third root, Shang, is often, but not always, also physically
valid and describes the value of sin(a) above which the
incision rate decreases below the background base level fall
rate (Figure 2), facilitating the formation of a permanent
hanging valley. Naturally, Shang is only physically mean-
ingful for values between 0 and 1 (sin(a) = 1 for a vertical
cliff). At values of sin(a) higher than Shang, the saltating bed
load no longer impacts the bed effectively or frequently
enough to maintain a sufficiently high incision rate to keep
pace with the background rate of base level fall. Basins
upstream of these oversteepened reaches are terminally
divorced from the lower reaches unless other processes act
to reduce channel gradient. Combining equations (14), (15)
and (19) into (18) we can derive the value of sin(a) at Shang
as

Shang ¼ 2

ffiffiffiffiffiffiffi
1

3St

r

 cos 1

3
cos�1

�1

2StK 0bA1�bc�1=4ffiffiffiffiffiffiffiffiffiffi
1

27S3t

s
0
BBBB@

1
CCCCAþ 4

3
p

0
BBBB@

1
CCCCA

2
66664

3
77775

�2

:

ð20Þ

As presented in Figure 3, the channel gradient required to
form a permanent hanging valley increases with drainage
area (the increase in Shang with drainage area is exactly
commensurate with the decrease in Sss with drainage area).
In large tributaries, there is no physically meaningful
solution for Shang, because values predicted by equation (20)
exceed unity. As discussed later, this implies that larger
tributaries will be able to keep up with a given pulse of main
stem incision but smaller tributaries experiencing the same
magnitude base level fall signal at their junction with the
main stem might not. This determines which tributaries
form hanging valleys during periods of rapid base level fall.
[25] The second transient instability associated with the

saltation-abrasion incision model creates temporary hanging
valleys that fail to keep pace with main stem incision for a
period of time, but eventually recover and equilibrate to the
main stem. These occur when the transient pulse of incision
increases the value of sin(a) greater than Speak, but less than
the previously discussed Shang (Figure 2). We can derive the
value for Speak at any particular drainage area by solving for
when the change in incision rate with respect to sin(a)
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equals zero. We find that this value is three times the initial
transport-limited channel gradient or

Speak ¼
3b
Kt

UinitialA
1�mt : ð21Þ

Because mt is greater than one (Table 1), the negative
exponent on area in equation (21) means that Speak increases
with decreasing drainage area. This implies that the
difference between Speak and Shang decreases with decreas-
ing drainage area, as does the difference between Sss and
Shang (Figure 3). As a result, smaller tributaries are far more
susceptible to the formation of permanent hangs than larger
tributaries which will either (1) respond quickly in an
essentially transport-limited manner or (2) develop a
temporary hanging valley and then recover. For an
instantaneous pulse of base level fall, a temporary hanging
valley forms as the pulse of main stem incision steepens the
tributary outlet to values between Speak and Shang. The

gradual subsequent incision of this oversteepened reach
exceeds the background rate of base level fall, and thus
eventually decreases the height and maximum gradient of
the oversteepened reach, resulting in a positive feedback
loop in which gentler gradients promote greater incision
rates and thus more rapid decay of the temporary hanging
valley knickpoint. This positive feedback leads to the
eventual recovery of the temporary hanging valley to a
graded condition. Note that we discuss here only finite
episodes of increased base level fall. If accelerated rates of
main stem incision were sustained indefinitely owing to a
persistent change in rate of base level fall (or rock uplift),
permanent hangs would from wherever channels are
steepened beyond Speak – this may be the most common
circumstance leading to formation of hanging tributaries
[Wobus et al., 2006], but is not the case in the Waipaoa field
site. In addition, our derivations of Speak and Shang assume
we are observing the initial response of the channel (where
Qs = Qs�initial); any partial communication of the incision
signal to the upper basin will increase sediment delivery and

Figure 3. In the saltation-abrasion (S-A) model, the dependence of incision rate on channel gradient
varies with drainage area. Note that all calculations were made without applying the small-angle
approximation. Instead of plotting the data relative to sin(a), we plot it relative to a more intuitive
variable, channel gradient, tan(arcsin(sin(a))). The gradient at which incision rate falls below the
background base level fall rate and permanent hanging valleys form, Shang, decreases with decreasing
drainage area. This reveals that small tributaries have a greater probability of creating hanging valleys
than large ones. Although difficult to perceive in this figure, the channel gradient at which the S-A model
achieves peak incision rates, Speak, increases with decreasing drainage area. Note that drainage basins
with drainage areas greater than �2.5 � 106 m2 will never produce permanent hangs from a response to a
finite base level fall, indicating that the formation of permanent hangs in these circumstances will only
occur at relatively small drainage areas. Tributaries or drainage basins with drainage areas of greater than
�2.5 � 106 m2 can only become permanently hung if the incision rate is permanently increased above the
maximum incision rate allowable for that drainage area (thus plotting above a given line).
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ultimately increase the predicted values of both Speak and
Shang.

4.2. Instabilities in the Generalized Abrasion Incision
Rule

[26] Unlike the saltation-abrasion incision rule, the gener-
alized abrasion incision rule (adapted from Parker [2004])
does not have a hump or discrete maximum value in the
relation between incision rate and channel gradient (Figure 2).
Although the exponent on S (sin(a)) in equation (12), is
zero, there is still a functional dependence on the channel
gradient through the Qt term defined in equation (3). In the
generalized abrasion incision model, for a fixed sediment
flux, the incision rate increases asymptotically with channel
gradient toward a maximum value, Imax (see Figure 2):

Imax ¼
KGAb
kwkbq

A1�bcUinitial: ð22Þ

This asymptotic approach to Imax prevents the incision rate
from ever declining below the background rate of base level
fall in response to channel steepening. The only way the
channel could therefore create a permanent hanging valley
(or waterfall) would be in the unlikely case where the
sediment flux in the upper basin decreases to zero or if base
level fall (or rock uplift) was maintained indefinitely at a
rate exceeding Imax.
[27] Similar to the saltation-abrasion model, in response

to a finite period of increased base level fall temporary
hanging valleys will form in the generalized abrasion
incision rule if the transient incision rate exceeds the
maximum incision rate associated with the initial sediment
flux. Solving equation (22) for drainage area, we find the
maximum drainage area at which a temporary hanging
valley could form

Atemp ¼
kwk

b
q

KGAb
Imax

Uinitial

 ! 1
1�bc

: ð23Þ

Following a pulse of incision, the oversteepened reach at
Atemp decreases channel gradient because the main stem
incision rate returns to just balancing the background rate of
base level fall (Uinitial) while the tributary continues to incise
at a rate equal to Imax, resulting in a progressive decay of
hanging valley height and the maximum gradient of the
oversteepened reach. In addition, sediment flux from
upstream increases in response to the incision, resulting in
a positive feedback, accelerating incision of the upper lip of
the oversteepened reach. This results in the eventual, if
asymptotic, readjustment of the tributary to graded condi-
tions following the transient pulse of incision.
[28] Evidence from the Waipaoa River and experimental

studies suggest that through most of the channel network,
the base level fall signal experienced at a point along the
channel is not a discrete, on/off pulse of incision but rather
gradually builds toward a maximum incision rate and then
declines [Gardner, 1983; Crosby and Whipple, 2006;
K. Berryman et al., The postglacial downcutting history in
the Waihuka tributary of the Waipaoa River, Gisborne
District, New Zealand, and implications for tectonics and
landscape evolution, manuscript in preparation, 2007,

hereinafter referred to as Berryman et al., manuscript in
preparation, 2007]. This rise and fall in the wave of incision
experienced at a tributary junction allows an initial signal of
incision to propagate up into the tributary before the large
magnitude incision rate potentially results in the formation
of a hanging valley that effectively isolates the tributary
from the main stem. This partial communication of the
initial incision signal may increase tributary sediment flux
enough that when the large magnitude incision rate creates
an oversteepened reach, the hanging tributary’s elevated
sediment flux is sufficient to allow eventual recovery.

5. Numerical Simulations of Transient
Landscape Response

[29] We utilize the CHILD numerical landscape evolution
model to compare the transient responses of landscapes
governed by four different stream incision rules [Tucker et
al., 2001a; Tucker et al., 2001b; Gasparini et al., 2007]. The
CHILD numerical landscape evolution model provides an
explicit accounting of sediment production and transport at
every model node, thus offering an excellent tool for
exploring the transient response of sediment flux–dependent
channel incision rules. Triggered by base level fall, channel
incision accelerates sediment delivery from diffusion dom-
inated hillslopes and generates a spatially and temporally
complex sediment flux response. During each model run, at
any point along the main stem channel the sediment flux
fluctuates as a consequence of both the local adjustment of
hillslopes and the integrated, upstream network response to
the pulse of incision. This unsteady sediment flux response
directly impacts the continued fluvial communication of the
transient base level fall signal through the system.
[30] Although numerical landscape evolution models are

useful for studying the interaction between sediment pro-
duction, sediment transport and channel incision at the
network scale, they also present limitations. In all model
runs, we define hillslope erosion only as a diffusive process,
where the rate of sediment delivery is controlled by a
diffusion coefficient, KD, and the local hillslope gradient.
This limits the hillslope transport processes to creep and
rain splash erosion. In our application of the CHILD
numerical model, we study the transient response within
large basins (1 � 108 m2) (Figure 1d) and thus use a large
node spacing of �100 m (Table 1). This large node spacing,
and the subsequent numerical diffusion, contributes to the
progressive decay of the incision signal as it propagates
upstream. Although this influences evolution of the form of
the transient signal in the stream power incision model
(Figures 4e–4h), we are less concerned in the other models.
Results from model runs that utilized smaller node spacing
were hard to distinguish from the runs at the larger node
spacing. As discussed by Whipple and Tucker [2002] and
Gasparini et al. [2006, 2007], large drainage area regions in
models using sediment flux–dependent incision rules
respond to pulses of incision largely in a transport-limited
manner. Because this diminishes the impact of numerical
diffusion on the modeling of the sediment flux–dependent
incision rules (our main focus), we are confident that
numerical diffusion does not limit the findings of this study.
[31] Another unintended consequence of large node spac-

ing is that the instantaneous base level fall at the outlet
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Figure 4. Numerical simulations of main stem profile evolution and normalized incision rates are
observed following base level fall. Normalized incision is calculated by dividing the incision rate by the
long-term, predisturbance background rate of base level fall. Shown are (a–d) plots that reflect
simulations governed by the transport-limited (T-L) incision rule and (e–h) plots that reflect simulations
governed by the stream power (S-P) incision rule. In Figures 4a and 4e, the gray line represents the
channel profile immediately after the base level fall; the dotted line represents the first profile illustrated
after the base level fall; and the dash-dotted line is the final profile illustrated. In Figures 4c and 4g, the
dotted and dash-dotted lines illustrate the incision rate for the dotted and dash-dotted profiles in Figures 4a
and 4e, respectively. In Figures 4b and 4f, gray lines reveal the evolution of the channel profile during
progressive base level fall (no incision rates are shown for these times), and the dotted lines represent the
first profile shown after the base level fall rate returns to the background rate; the dash-dotted line is the
final profile shown. In Figure 4b, the profile changes very slowly, and therefore the differences between
each time plotted are not discernable (plotting times were chosen to show the pattern in incision rate).
Note that the y axis differs between Figures 4c and 4d. In each of the plots, the time between each channel
profile and incision plot is not necessarily steady; rather, the times plotted were chosen to illustrate the
general behavior of the system. Note that the incision signal in the S-P case migrates up the main stem as
a discrete step, while in the T-L case, the increase in high sediment delivery during the transient prevents
the downstream reaches from reequilibrating.
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creates a step whose channel gradient, instead of being a
vertical step, is the ratio between the vertical base level fall
and the horizontal node spacing. For example, an instanta-
neous 100 m base level fall on a grid with 100 m node
spacing, instead of being near vertical, would have a
gradient close to 1 (45 degrees).
[32] In order to test the response of each incision rule to

the base level fall scenarios discussed above, we first create
four steady state landscapes, each fully adjusted to a
particular incision rule. To do this, we start each model
landscape as a 10 km by 10 km square of random, low-
amplitude topography with a single outlet in one corner and
zero-flux edges. Each initial surface is then subjected to
uniform and steady rock uplift (or steady base level fall) at
the outlet until the network and hillslopes reach equilibrium.
These four steady state landscapes provide the initial
condition for the base level fall experiments. As we only
study the basin’s response to finite base level fall, and not a
sustained change in the background uplift (or base level fall)
rate (as explored by Gasparini et al. [2007]), all model
parameters are identical before and after the disturbance
(Table 1).
[33] For each incision rule, we first examine the responses

of the trunk stream to the two base level fall scenarios (as
defined in section 2; see Figures 4 and 5). Next, we focus on
how the trunk stream’s response influences tributary re-
sponse (Figure 6) as a function of their size and position
within the drainage network. The modification of the
incision signal as it propagates up the trunk stream provides
each tributary with a unique base level fall signal, poten-
tially resulting in significant along-stream variation in
tributary response.

5.1. Transport-Limited Channel Incision Rule

[34] The transport-limited incision rule, although compu-
tationally expensive in CHILD, is relatively robust over a
wide range of parameters (Table 1). Because the transport-
limited incision rule is a nonlinear diffusion equation, the
oversteepened reach created by the instantaneous base level
fall decays rapidly as the convex kink in the channel profile
propagates upstream (Figures 4a, 4b, and 6a). As a conse-
quence, the highest incision rates of all four incision models
are observed during the initial transport-limited adjustment
to instantaneous base level fall. As the base level fall signal
propagates upstream, the peak in incision rate moves
surprisingly slowly upstream (Figures 4c and 4d). Although
the maximum incision rates are extremely high in this
model, the location of the peak incision rate does not sweep
upstream at the same rate as was observed in the other
models. We suggest that this is a consequence of the lower
reaches being overwhelmed by the high sediment fluxes
generated during transient adjustment.
[35] For the scenario where base level lowers progres-

sively through time (Figures 4b and 4d, gray lines), much of
the channel network efficiently steepens as the transport-
limited channel responds to the temporarily higher rate of
base level fall. No distinct knickpoints are created along the
channel profile (Figure 4b). Once the rate of base level fall
returns to the lower background value, a diffuse pulse of
incision sweeps up the main stem channel and slowly
decreases the channel gradient of the transiently oversteep-
ened channels (Figures 4d and 6b). As in the instantaneous

base level fall example above, the highest incision rates
occur near the outlet and progressively diminish as the
signal translates upstream.
[36] The response of the landscape to the two base level

fall scenarios is very similar and it could be argued that the
instantaneous fall scenario, after a number of time steps,
closely resembles the initial form of the progressive base
level fall scenario. The only significant difference between
the two cases is that the response in the progressive base
level fall model is slightly faster than the response to an
instantaneous base level fall. Neither of the two models
creates temporary or permanent hanging valleys during the
transient response. The only delay in response is a conse-
quence of the lag in hillslope sediment delivery following
the pulse of incision.

5.2. Stream Power Incision Rule

[37] The detachment-limited stream power incision rule
runs much more efficiently than any of the other incision
rules in CHILD because sediment flux does not need to be
explicitly accounted for at every node. The CHILD model is
relatively robust to the parameters chosen for the stream
power incision rule (Table 1). As discussed above and
expanded upon below, the only limitation of modeling the
stream power incision model in CHILD is that numerical
diffusion rapidly attenuates the sharp breaks in channel
gradient that should persist during the transient response
(Figures 4e–4h).
[38] For conditions where n = 1 and absent any numerical

diffusion, the transient response following instantaneous
base level fall should resemble a shock wave where the
imposed step in the channel profile retreats upstream with
out changing form or magnitude. For values greater than or
less than one, the form of the step is modified as it retreats
upstream [Weissel and Seidl, 1998; Tucker and Whipple,
2002]. In the CHILD model, the step propagates upstream
(Figure 4e) at a rate that is a power law function of drainage
area [Rosenbloom and Anderson, 1994], and slows stepwise
at tributary junctions but never creates permanent or tempo-
rary hanging valleys (Figure 6c) [see also Niemann et al.,
2001]. In the stream power model, the transient signal
propagates throughout the entire extent of the channel, reach-
ing the headwaters without ever forming a hanging valley.
[39] During progressive base level fall (Figures 4f, 4h,

and 6d), near the outlet, the channel steepens to a higher
gradient appropriate to the temporarily higher base level fall
rate. Once the period of rapid base level fall ends, the
oversteepened reach propagates upstream in the same man-
ner as the discrete step did in the instantaneous base level
fall scenario. The oversteepened reach maintains the form of
a steady state channel segment adjusted to the higher rate
of base level fall as it migrates upstream, so long as n = 1.
Just as with the instantaneous base level fall, in the numerical
simulations the oversteepened reach is modified during its
upstream migration as a consequence of numerical diffusion.
For tributaries, the differences between the instantaneous
and prolonged base level fall responses are insignificant
(Figures 6c and 6d).

5.3. Saltation-Abrasion Incision Rule

[40] Both the steady state form and transient response of
CHILD landscapes governed by the saltation-abrasion
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Figure 5. (a–h) Numerical simulations of main stem profile evolution and normalized incision rates are
observed following base level fall. Plots illustrate the initial transient response following disturbance, not the
full reestablishment of steady state channel form. Note that in each plot, the times between curves are not
necessarily equal. In the plots illustrating profile and incision rate response to an instantaneous base level fall
(Figures 5a, 5c, 5e, and 5g), the gray lines indicate the profile immediately after the base level fall; the dotted
lines indicate the first time step illustrated after the base level fall, and the dash-dotted lines indicate the last
time step illustrated. In the plots illustrating the profile and incision rate response to progressive base level
fall (Figures 5b, 5d, 5f, and 5h), the gray lines show the evolving profile during progressive base level fall;
the dotted lines indicate the first time step after the progressive base level fall; and the dash-dotted lines
indicate the final time step illustrated. Figures 5a–5d reflect simulations governed by the simplified
saltation-abrasion (S-A) incision rule, while Figures 5e–5h reflect simulations governed by a generalized
abrasion (G-A) incision rule. In Figures 5a and 5c, instantaneous base level fall creates high-outlet gradients
(between Speak and Shang) in the S-A model and initially retards the upstream transmission of the full incision
signal. In Figures 5b and 5d, progressive base level fall in the S-A model creates an oversteepened channel
(with gradients between Sss and Speak) that rapidly readjusts toward its predisturbance form. Figures 5e and
5g demonstrate the rapid decay (at Imax) of the step created by instantaneous base level fall in the G-A model.
In Figures 5f and 5h, the response following the disturbance is fast, but maximum incision rates are limited
by the maximum channel gradients created by the progressive base level fall.
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