
Example problems integrating thermodynamics and kinetics.   
 
1) In one type of photosynthetic organism, the following series of reactions occur in the 
reaction center (an integral membrane protein complex): 
 

−+−+−+ ⎯→⎯⎯→⎯⎯→⎯ QPHPBPP kkk 321*  
 

a) First let’s consider these reactions to be irreversible (no back reactions).  In this 
reaction, k1=1/(3.0 x 10-12) seconds, k2=1/(0.9x10-12) seconds and k2 = 1/(200 x 
10-12) seconds.  After 100x10-12 seconds, what fraction of the initial excited state 
P* will have converted to P+Q-? 

 
We can see that k3<<k1, k2.  Therefore k3 is rate limiting.  In other words, P* essentially 
instantly converts to P+H-.  Therefore we can really look at this as P*  P+Q- with a rate 
constant of k3.  These reactions are all first order.  Therefore the integrated rate law for 
P* decay is P*(t) = P*(0) exp (-k3 t).  For t = 100 x 10-12 we have P*(t) = P*(0) exp(-0.5).  
Thus P*(t)/P*(0) = 0.61.  We can see that at 100 x 10-12 seconds, 39% of the initial 
excited state P* will have converted to P+Q-. 

 
b) Consider the following half reactions and electronic transitions: 
       P  P*  energy between the ground and excited state is 134 kJ/mole 
  PP

+ + e-  P E0 = 0.505 V 
  Q + e-  Q- E0 =  0.0 V 

At equilibrium and 25 C, what fraction of the reaction centers are still in the excited state, 
P*? 
 
 
We need to come up with an equilibrium constant for the reaction P*  P+Q-.  So let’s 
add up energies: 
  P*  P -134 kJ/mole 
  P  P+ + e- E0 = -0.505 V; ΔG0 = 48.7 kJ/mole 
  Q + e-  Q- E0 =  0.0 V;ΔG0 = 0 kJ/mole 
_________________________________________________________________ 
  P*  P+Q- ΔG = -85.3 kJ/mole 
 
So Keq = exp(-ΔG0/RT) = 8.9 x 1014.  Thus, only one reaction center in every 1015 or so is 
in the excited state.  Interestingly, this small number of molecules can be detected by 
fluorescence from P* and this has been used to measure the equilibrium constant.  It 
compares very well with the values calculated above. 
 

2) Consider a transcription system in which gene A makes a protein that shuts down 
the production of gene B and gene B makes a protein that allows the production 
of gene A.  Assume that we start with a little bit of A and B in the cell to begin 
with and that the protein made by A and the protein made by B are both degraded 
with a first order rate kd.  Also assume that transcription from A only occurs 
when B is bound to it and then has a zero order rate constant kt.  Transcription 



from B only occurs when A is NOT bound to it and also has a zero order rate 
constant kt.  The dissociation constants for both the B protein to the A gene and 
for the A protein to the B gene are both KS.  The question is, once the system has 
reached a steady state in the concentration of the A and B proteins, what will that 
concentration of each be? 

 
So the rate at which A is made will depend on the fraction of the A gene that is on times 
the zero order rate constant that determines the rate of transcription.  A zero order rate 
constant just means that the rate constant is independent of concentrations.  In the case of 
a gene, if all the components are around to do the transcription, the polymerase just keeps 
making transcript at a constant rate.  So, this is: 
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The fraction active we have calculated before.  Since it is only active when B is bound, 
that is just 
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Here O stands for the operator (the part of the gene that B binds to).  As we have seen in 
the past, when we substitute for [OB] by using the dissociation equilibrium equation with 
KS as the dissociation constant, we get 
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So 
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Similarly 
 

[ ]
[ ] [ ] [ ] [ ] [ ] dt

S

S
dt kBk

AK
KkBk

OAO
O

dt
dB

−
+

=−
+

=  

 
Remember that the B gene is only working when A is NOT bound.  That is why the 
equation lacks the term in the numerator. 
 
Now, once the system hits steady state (A and B both), the rates of A and B change will 
be zero. 
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You now have two equations and two variables.  You can solve for [A] and [B].  This just 
involves algebra and solving a quadratic, but it is not hard.  Doing it for [A] I get (I am 
going to drop the brackets to make it easier to type): 
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Now I just divide by kd (which under the square root means dividing by kd
2) and I get: 
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The point is that you can do this for large numbers of systems that control each other 
(control networks) and simply end up with a bunch of equations to solve in parallel and 
then get the computer to solve them (either analytically or numerically) for you.  This is a 
very important concept in biology these days and is at the heart of systems biology and 
biological networks.  You should be able to take a simple system like this and write down 
the equations for the rates and the set of equations that would have to be solved to give 
the concentrations when the system hits steady state (which is what living things exist in 
when they are stable). 
 


