CSE 494/598
Lecture-7:
Information Retrieval

LYDIA MANIKONDA
HTTP://WWW.PUBLIC.ASU.EDU/~LMANIKON/

Content adapted from last year’s slides
Announcements

• Project part-2 released. Due on **March 18th 2016**

• Midterm-1: March 4th next
 • Syllabus: Topics that were covered from Lecture-1 till Lecture-6
 • Duration: 1 hr 30 mins
 • Sample mid-term questions will be released soon
Today

- Information Retrieval for Web Pages
- HITS algorithm (Authorities/Hubs)
- PageRank algorithm
Search Engine

A search engine is essentially a text retrieval system for web pages plus a web interface

So what’s new???
Characteristics of Web – Few of them

- Web pages are
 - Very voluminous and diversified
 - Widely distributed on many servers
 - Extremely dynamic or volatile

- Web pages have
 - More structure (extensively tagged)
 - Are extensively linked
 - May often have other associated metadata

- Web search is
 - Noisy
 - Uncurated; adversarial

- Web users are
 - Ordinary people without special training
 - Large user community

- Need to crawl and maintain index
- Use the links, tags and meta data
- Use the social structure of web
- Easily impressed
Okay--except when the student is desperately trying to use the web to cheat on his/her homework 😊
Use of Tag information

• Web pages are mostly HTML documents (for now)
• HTML tags allow the author of a web page to
 • Control the display of page contents on the web
 • Express their emphases on different parts of the page
• HTML tags provide additional information about the contents of a web page
• Can we make use of the tag information to improve the effectiveness of a search engine?
Use of Tag information

Two main ideas of using tags:

1. Associate different values to term occurrences in different tags
2. Use anchor text to index referenced documents (what should be its importance?)

Document is indexed not just with *its contents*; But with the contents of *others descriptions of it*
Use of Tag Information

• Associating different importance to term occurrences.
 • Eg: Consider occurrences in six classes title, header, list, strong, anchor, plain
 • Think of term frequency vector rather than just term frequency
 • Consider a 6-ary weight vector \(<w_1\ldots w_6>\) for relative weights
 • To get the effective term weight, consider the dot product of term frequency vector and the weight vector
 • Weights can be either pre-set or “learned”
The other side of Anchor Text

- You can “tar” someone’s page just by linking to them with some damning anchor text
 - If the anchor text is unique enough, then even a few pages linking with that keyword will make sure the page comes up high
 - E.g. link your page with
 - “Shmoopie” unfortunately is already taken by Seinfeld
 - For more common-place keywords (such as “unelectable” or “my sweet heart”) you need a lot more links 😊
 - Which, in the case of the later, may defeat the purpose

Anchor text is a way of “changing” a page!
(and it is given higher importance than the page contents)
Handling Uncurated/Adversarial nature of web

- Pure query similarity will be unable to pinpoint right pages because of the sheer volume of pages
 - There may be too many pages that have same keyword similarity with the query
 - The “even if you are one in a million, there are still 300 more like you” phenomenon
 - Web content creators are autonomous/uncontrolled
 - No one stops me from making a page and writing on it “this is the homepage of President Bush”
 - and... adversarial
 - I may intentionally create pages with keywords just to drive traffic to my page
 - I might even use spoofing techniques to show one face to the search engine and another to the user

- So we need some metrics about the trustworthiness/importance of the page
 - These topics have been investigated in the context of human social networks
 - Who should I ask for advice on Grad School? Marriage?
 - The hyper-link structure of pages defines an implicit social network..
 - Can we exploit that?
Important points on Trust vs Relevance

• Relevance vs. Trustworthiness
 • User will know whether something is relevant when shown
 • Woody Allen “I finally had an orgasm and my doctor says it is the wrong kind”
 • Won’t know whether it is trustworthy/popular etc

• Relevance can be learned from user models

• Trust can’t be learned from the user—but the quality of the data.

• Relevance has the notion of “marginal relevance” – No notion of Marginal trustworthiness.

• Pagerank is best seen as a trust measure.
Connection to Citation Analysis

• Mirror mirror on the wall, who is the biggest Computer Scientist of them all?
 • The guy who wrote the most papers
 • That are considered important by most people
 • By citing them in their own papers
 • “Science Citation Index”

• Should I write survey papers or original papers?
Desiderata for Defining Page Importance Measures..

Page importance is hard to define unilaterally such that it satisfies everyone. There are however some desiderata:

- It should be sensitive to
 - The link structure of the web
 - Who points to it; who does it point to (~ Authorities/Hubs computation)
 - How likely are people going to spend time on this page (~ Page Rank computation)
 - E.g. Casa Grande is an ideal advertisement place..
 - The amount of accesses the page gets
 - Third-party sites have to maintain these statistics which tend to charge for the data.. (see nielson-netratings.com)
 - To the extent most accesses to a site are through a search engine—such as google—the stats kept by the search engine should do fine
 - The query
 - Or at least the topic of the query..
 - The user
 - Or at least the user population

- It should be stable w.r.t. small random changes in the network link structure
- It shouldn’t be easy to subvert with intentional changes to link structure

How about:
- “Eloquence”
- “Informativeness”
- “Trust-worthiness”
- “Novelty”
Dependencies between different importance measures..

• The “number of page accesses” measure is not fully subsumed by link-based importance
 ◦ Mostly because some page accesses may be due to topical news
 ◦ (e.g. aliens landing in the Kalahari Desert would suddenly make a page about Kalahari Bushmen more important than White House for the query “Bush”)
 ◦ But, notice that if the topicality continues for a long period, then the link-structure of the web might wind up reflecting it (so topicality will thus be a “leading” measure)

• Generally, eloquence/informativeness etc of a page gets reflected indirectly in the link-based importance measures
Dependencies between different importance measures..

- You would think that trust-worthiness will be related to link-based importance anyway (since after all, who will link to untrustworthy sites)?
 - But the fact that web is decentralized and often adversarial means that trustworthiness is not directly subsumed by link structure (think “page farms” where a bunch of untrustworthy pages point to each other increasing their link-based importance)

- Novelty wouldn’t be much of an issue if web is not evolving; but since it is, an important page will not be discovered by purely link-based criteria
 - # of page accesses might sometimes catch novel pages (if they become topically sensitive). Otherwise, you may want to add an “exploration” factor to the link-based ranking (i.e., with some small probability p also show low page-rank pages of high query similarity)
Two (very similar) ideas for assessing page importance

AUTHORITIES/HUBS (HITS)

View hyper-linked pages as authorities and hubs.
- Authorities are pointed to by Hubs (and derive their importance from who are pointing to them)
- Hubs point to authorities (and derive their importance from who they point to)

Return good Hub and Authority pages...

PAGERANK

View hyper-linked pages as a markov chain
- A page is important if the probability of a random surfer landing on that page is high

Return pages with “high probability of landing”
Moral: Publish or Perish!

A/H algorithm was published in SODA as well as JACM
- Kleinberg got tenure at Cornell; became famous
- ..and rich...Got a McArthur Genius award (250K) & ACM Infosys Award (150K) & and several Google grants

Pagerank algorithm was rejected from SIGIR and was never officially published
- Page & Brin never even got a PhD (let alone any cash awards)
- and had to be content with starting some sort of a company..
Two (very similar) ideas for assessing page importance

AUTHORITIES/HUBS (HITS)

View hyper-linked pages as authorities and hubs.

- Authorities are pointed to by Hubs (and derive their importance from who are pointing to them)
- Hubs point to authorities (and derive their importance from who they point to)

Return good Hub and Authority pages...

PAGERANK

View hyper-linked pages as a markov chain

- A page is important if the probability of a random surfer landing on that page is high

Return pages with “high probability of landing”
Link-Based Importance using “who cites and who is citing” idea

• A page that is referenced by lot of important pages (has more back links) is more important (Authority)
 • Example: Publicity agent, Celebrity

• A page that references a lot of important pages is also important (Hub)
 • Example: Text book, Original paper

• “Importance” can be propagated
 • Your importance is the weighted sum of the importance conferred on you by the pages that refer to you
 • The importance you confer on a page may be proportional to how many other pages you refer to (cite)
 • Also what you say about them when you cite them!

Question: Can we assign consistent authority/hub values to pages?
Authorities and Hubs as Mutually Reinforcing Properties

• Authorities and hubs related to the same query tend to form a bipartite subgraph of the web graph

• Suppose each page has an authority score $a(p)$ and a hub score $h(p)$
I: Authority Computation: for each page p:

$$a(p) = \sum_{q: (q, p) \in E} h(q)$$

O: Hub Computation: for each page p:

$$h(p) = \sum_{q: (p, q) \in E} a(q)$$

A set of simultaneous equations... Can we solve these?
Authority and Hub Pages

- Matrix representation of operations I and O
- Let A be the adjacency matrix of SG:
 - entry (p, q)
 - $= 1$, if p has a link to q
 - $= 0$, else
- Let A^T be the transpose of A
- Let h_i be vector of hub scores after i iterations
- Let a_i be the vector of authority scores after i iterations

Operation I: $a_i = A^T h_{i-1}$

Operation O: $h_i = A A^T h_{i-1}$

Normalize after every multiplication

$$a_i = (A^T A)^i a_0$$
$$h_i = (AA^T)^i h_0$$
Authority and Hub Pages

Example: Initialize all scores to 1.

1st Iteration:

• I operation:
 \[a(q_1) = 1, \ a(q_2) = a(q_3) = 0,\]
 \[a(p_1) = 3, \ a(p_2) = 2\]

• O operation: \[h(q_1) = 5,\]
 \[h(q_2) = 3, \ h(q_3) = 5, \ h(p_1) = 1, \ h(p_2) = 0\]

• Normalization: \[a(q_1) = 0.267, \ a(q_2) = a(q_3) = 0,\]
 \[a(p_1) = 0.802, \ a(p_2) = 0.535, \ h(q_1) = 0.645,\]
 \[h(q_2) = 0.387, \ h(q_3) = 0.645, \ h(p_1) = 0.129, \ h(p_2) = 0\]
Authority and Hub Pages

After 2 iterations

\[a(q_1) = 0.061, \ a(q_2) = a(q_3) = 0, \ a(p_1) = 0.791, \]
\[a(p_2) = 0.609, \ h(q_1) = 0.656, \ h(q_2) = 0.371, \]
\[h(q_3) = 0.656, \ h(p_1) = 0.029, \ h(p_2) = 0 \]

After 5 iterations

\[a(q_1) = a(q_2) = a(q_3) = 0, \]
\[a(p_1) = 0.788, \ a(p_2) = 0.615, \]
\[h(q_1) = 0.657, \ h(q_2) = 0.369, \]
\[h(q_3) = 0.657, \ h(p_1) = h(p_2) = 0 \]
\[v = \]

\[
\begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.4384 & 0 & 0 & 0 \\
0 & 0 & 0 & 1.0000 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 4.5616 \\
\end{pmatrix}
\]

\[q_1 \]

\[q_2 \]

\[q_3 \]

\[p_1 \]

\[p_2 \]
What happens if you multiply a vector by a matrix?

- In general, when you multiply a vector by a matrix, the vector gets scaled as well as rotated
 - .. Except when the vector happens to be in the direction of one of the eigen vectors of the matrix
 - .. In which case it only gets scaled (stretched)

- A (symmetric square) matrix has all real eigen values, and the values give an indication of the amount of stretching that is done for vectors in that direction
What happens if you multiple a vector by a matrix

• The eigen vectors of the matrix define a new ortho-normal space
 • You can model the multiplication of a general vector by the matrix in terms of
 • First decompose the general vector into its projections in the eigen vector directions
 • .. Which means just take the dot product of the vector with the (unit) eigen vector
 • Then multiply the projections by the corresponding eigen values – to get the new vector
 • This explains why power method converges to principal eigen vector
 • .. Since if a vector has a non-zero projection in the principal eigen vector direction, then repeated multiplication will keep stretching the vector in that direction, so that eventually all other directions vanish by comparison..
Does the procedure converge?

\[x_1 \leftarrow Mx_0 (M = AA^T) \]
\[x_2 \leftarrow Mx_1 \leftarrow M^2x_0 \]
\[x_k \leftarrow M^kx_0 \]

\[M = E \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_n)E^{-1} \]
\[M^2 = E\Lambda E^{-1}E\Lambda E^{-1} = E\Lambda^2 E^{-1} \]
\[M^k = E\Lambda^k E^{-1} = \lambda_1^k E \left(\frac{\Lambda}{\lambda_1} \right)^k E^{-1} \]

\[x_0 = c_1 \hat{e}_1 + c_2 \hat{e}_2 + \ldots + c_n \hat{e}_n \]

unit vector in \(M^kx_0 \) direction \(\approx \hat{e}_1 \)

The rate of convergence depends on the “eigen gap” \(|\lambda_1 - \lambda_2|\)

As we multiply repeatedly with \(M \), the component of \(x \) in the direction of principal eigenvector gets stretched wrt to other directions. So we converge finally to the direction of principal eigenvector.

Necessary condition: \(x \) must have a component in the direction of principal eigenvector (\(c_1 \) must be non-zero)
Can we power iterate to get other (secondary) eigen vectors?

• Yes – just find a matrix M_2 such that M_2 has the same eigen vectors as M, but the eigen value corresponding to the first eigen vector e_1 is zeroed out.

$$M_2 = M - \lambda e_1 e_1'$$

Why?
1. $M_2e_1 = 0$
2. If e_2 is the second eigen vector of M, then it is also an eigen vector of M_2

• Now perform power iteration on M_2

• Alternatively, start with a random vector v, and find a new vector $v' = v - (v.e_1)e_1$ and do power iteration on M with v'
Two (very similar) ideas for assessing page importance

AUTHORITIES/HUBS (HITS)

View hyper-linked pages as authorities and hubs.
- Authorities are pointed to by Hubs (and derive their importance from who are pointing to them)
- Hubs point to authorities (and derive their importance from who they point to)

Return good Hub and Authority pages...

PAGERANK

View hyper-linked pages as a markov chain
- A page is important if the probability of a random surfer landing on that page is high

Return pages with “high probability of landing”
PageRank (Importance as Stationary Visit Probability on a Markov Chain)

Basic Idea:

- Think of web as a big graph.
- A random surfer keeps randomly clicking on the links.
- The importance of a page is the probability that the surfer finds herself on that page.
- Talk of transition matrix instead of adjacency matrix.
PageRank (Importance as Stationary Visit Probability on a Markov Chain)

Transition matrix M derived from adjacency matrix A

- If there are $F(u)$ forward links from a page u, then the probability that the surfer clicks on any of those is $1/F(u)$
 - Columns sum to 1. Stochastic matrix

Even a dumb user may once in a while do something other than follow URLs on the current page

- Put a small probability that the user goes off to a page not pointed to by the current page
- Question – When you are bored, *where* do you go?
- Reset distribution – can be different for different people
Example: Suppose the Web Graph is:

\[
A = \begin{pmatrix}
A & B & C & D \\
A & 0 & 0 & 1 & 0 \\
B & 0 & 0 & 1 & 0 \\
C & 0 & 0 & 0 & 1 \\
D & 1 & 1 & 0 & 0 \\
\end{pmatrix}
\]

\[
M = \begin{pmatrix}
A & B & C & D \\
A & 0 & 0 & 0 & \frac{1}{2} \\
B & 0 & 0 & 0 & \frac{1}{2} \\
C & 1 & 1 & 0 & 0 \\
D & 0 & 0 & 1 & 0 \\
\end{pmatrix}
\]
• Let R be the vector of occupation probabilities of the pages at the steady state
• By definition of steady state, $R = M \times R$,
• Suppose we start with the initial vector R_0 and “power iterate” $R_{i+1} \leftarrow M \times R_i$
• If this procedure converges, then we get R
• (So R is the eigenvector of matrix M with eigenvalue being 1).

But are we sure this will always happen? Do all markov chains have a unique steady state occupation probability distribution?

Principal eigen value for A stochastic matrix is 1
Markov Chains

- Markov Chains & Stationary distribution
 - Necessary conditions for existence of unique steady state distribution
 - Aperiodicity
 - Irreducibility
 - Aperiodicity: It is not a big cycle
 - Irreducibility: Each node can be reached from every other node with non-zero probability
 - Must not have sink nodes – which have no out links
 - Must not have disconnected components

Why no sink nodes?
- Because we can have several different steady state distributions based on which sink we get stuck in
- If there are sink nodes, change them so that you can transition from them to every other node with low probability

Why no disconnected components?
- Because we can have several different steady state distributions depending on which disconnected component we get stuck in
- Sufficient to put a low probability link from every node to every other node (in addition to the normal weight links corresponding to actual hyperlinks)
- This can be used as the “reset” distribution – the probability that the surfer gives up navigation and jumps to a new page

\[M^* = c(M+Z) + (1-c)K \]
Random Surfer Model

Main parameters:

- **c** – the probability that surfer follows a link on the page
 - The larger it is, the more the surfer sticks to this page

- **M** – the way link matrix is converted to markov chain
 - Can make the links have differing transition probability
 - E.g. Query specific links have higher probability; Links in bold have higher probability; etc.

- **Z** – sink node elimination matrix
 - If M has all zero columns, put an all 1/n column in Z

- **K** – reset distribution of the surfer
 - It is quite feasible to have m different reset distributions corresponding to m different populations of users (or m possible topic-oriented searches)
 - It is also possible to make the reset distribution depend on other things such as:
 - Trust of the page (TrustRank)
 - Recency of the page (Recency-Sensitive rank)
Computing PageRank

\[M^* = c (M + Z) + (1 - c) \times K \]

\(M^* \) is irreducible.

\(M^* \) is stochastic, the sum of all entries of each column is 1 and there are no negative entries.

Therefore, if \(M \) is replaced by \(M^* \) as in

\[R_i = M^* \times R_{i-1} \]

then the convergence is guaranteed.
Reset Distribution Matrix

- An $n \times n$ matrix, where the i^{th} column gives the probability that the user will go off to a random page when he wants to “get-out”
 - All we need thus is – all columns add up to 1
 - No requirement that the columns define a uniform distribution
 - They can capture the user’s special interests (e.g., more probability mass concentrated on CS pages, and less on news sites)
 - No requirement that the columns must all be the same distribution
 - They can capture the fact that the users might want to visit pages that are very different
 - E.g., A user who wants to get out of a CS page may decide to go to a non-CS (e.g., news) page with higher probability; while the same user who has done enough news surfing for the day might want to get out with higher preference to CS pages
Computing PageRank – Example

Suppose the Web graph is:
Suppose $c = 0.8$. All entries in Z are 0 and all entries in K are $\frac{1}{4}$.

\[
M^* = 0.8 \cdot (M + Z) + 0.2 \cdot K = \begin{pmatrix}
0.05 & 0.05 & 0.05 & 0.45 \\
0.05 & 0.05 & 0.05 & 0.45 \\
0.85 & 0.85 & 0.05 & 0.05 \\
0.05 & 0.05 & 0.85 & 0.05
\end{pmatrix}
\]

Compute rank by iterating

\[R := M^* x R \]

MATLAB says:

- $R(A) = 0.338 (0.176)$
- $R(B) = 0.338 (0.176)$
- $R(C) = 0.6367 (0.332)$
- $R(D) = 0.6052 (0.315)$

Eigen decomposition gives the *unit* vector. To get the “probabilites” just normalize by dividing every number by the sum of the entries.
Comparing PR & A/H on the same graph

Actually, this one has eigen gap zero
Which means both the right most and
The one next to it can be seen as primary
Eigen vectors—both of them provide
Stable A/H scores..

Eigen values =

<table>
<thead>
<tr>
<th></th>
<th>1.0000</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>-0.4000 + 0.6928i</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>-0.4000 - 0.6928i</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0000</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Eigen vectors =

-0.3380 -0.1581 + 0.2739i -0.1581 - 0.2739i 0.7071
-0.3380 -0.1581 + 0.2739i -0.1581 - 0.2739i -0.7071
-0.6366 0.6325 0.6325 0.0000
-0.6052 -0.3162 -0.3162 + 0.5477i -0.0000

Eigenvalues=

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

auth =

-0.7071 0 0 0.7071
0.7071 0 0 0.7071
0 0 1.0000 0 |
0 1.0000 0 0 |

Hub=

-0.7071 0 0.7071 0 |
0.7071 0 0.7071 0 |
0 1.0000 0 0 |
0 0 0 1.0000 |

A
B
C
D

pagerank

A/H?
\(\text{auth} = \)

<table>
<thead>
<tr>
<th></th>
<th>q1</th>
<th>q2</th>
<th>q3</th>
<th>p1</th>
<th>p2</th>
</tr>
</thead>
<tbody>
<tr>
<td>q1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.0000</td>
<td>0</td>
</tr>
<tr>
<td>q2</td>
<td>1.0000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>q3</td>
<td>0</td>
<td>0</td>
<td>1.0000</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\(v = \)

<table>
<thead>
<tr>
<th></th>
<th>q1</th>
<th>q2</th>
<th>q3</th>
<th>p1</th>
<th>p2</th>
</tr>
</thead>
<tbody>
<tr>
<td>q1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>q2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>q3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>p1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>p2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\(\text{hub} = \)

<table>
<thead>
<tr>
<th></th>
<th>q1</th>
<th>q2</th>
<th>q3</th>
<th>p1</th>
<th>p2</th>
</tr>
</thead>
<tbody>
<tr>
<td>q1</td>
<td>0.7071</td>
<td>0.2610</td>
<td>0.6572</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q2</td>
<td>0.0000</td>
<td>-0.9294</td>
<td>0.3690</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q3</td>
<td>0.7071</td>
<td>0.2610</td>
<td>0.6572</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(A \)

\[A = \begin{bmatrix}
-0.6245 & 0.7347 & 0.6768 & 0.6768 & -0.7071 \\
-0.1539 & -0.0984 & -0.2822 + 0.0766i & -0.2822 - 0.0766i & -0.0000 \\
-0.1539 & -0.0984 & -0.2822 + 0.0766i & -0.2822 - 0.0766i & 0.7071 \\
-0.5883 & 0.5253 & 0.0389 + 0.3325i & 0.0389 - 0.3325i & -0.0000 \\
-0.4652 & 0.4061 & -0.1513 - 0.4858i & -0.1513 + 0.4858i & 0.0000 \\
\end{bmatrix} \]

\(M^* \)

\[M^* = \begin{bmatrix}
0.0400 & 0.0400 & 0.0400 & 0.8400 & 0.2000 \\
0.0400 & 0.0400 & 0.0400 & 0.0400 & 0.2000 \\
0.0400 & 0.0400 & 0.0400 & 0.0400 & 0.2000 \\
0.4400 & 0.8400 & 0.4400 & 0.0400 & 0.2000 \\
0.4400 & 0.0400 & 0.4400 & 0.0400 & 0.2000 \\
\end{bmatrix} \]
When to do Importance Computation?

GLOBAL

Do A/H (or PageRank) computation once for the whole corpus

Advantage: Importance computation done before the query time

Disadvantage: Importance is not sensitive to the individual queries

QUERY-SPECIFIC

Do A/H (or PageRank) computation w.r.t the query results (and their backward/forward neighbors)

Advantage: Importance computation sensitive to queries

Disadvantage: Importance computation is done at query time! (Slows down querying)

Compromise:

Do Importance computation w.r.t. topics
At query time, map query to topics and use the appropriate importance values
How to combine Importance and Relevance (Similarity) metrics?

- If you do query-specific importance computation, then you first do similarity and then importance.
- If you do global importance computation, then you need to combine apples and oranges.
Authority and Hub Pages – Algorithm

1 submit q to a search engine to obtain the root set S;
2 expand S into the base set T;
3 obtain the induced subgraph SG(V, E) using T;
4 initialize a(p) = h(p) = 1 for all p in V;
5 for each p in V until the scores converge
 { apply Operation I;
 apply Operation O;
 normalize a(p) and h(p);
 }
6 return pages with top authority & hub scores;
Query-dependent ranking: the neighborhood graph

1. Subgraph associated to each query

Back Set

\[b_1 \]
\[b_2 \]
\[\ldots \]
\[b_m \]

Query Results = Start Set

\[\text{Result}_1 \]
\[\text{Result}_2 \]
\[\ldots \]
\[\text{Result}_n \]

Forward Set

\[f_1 \]
\[f_2 \]
\[\ldots \]
\[f_s \]

An edge for each hyperlink, but no edges within the same host
Combining PageRank & Content Similarity

Incorporate the ranks of pages into the ranking function of a search engine

• The ranking score of a web page can be a weighted sum of its regular similarity with a query and its importance

• $\text{ranking_score}(q, d)$

 $= w \times \text{sim}(q, d) + (1-w) \times R(d)$, if $\text{sim}(q, d) > 0$
 $= 0$, otherwise

 where $0 < w < 1$

 Who sets w?

• Both $\text{sim}(q, d)$ and $R(d)$ need to be normalized to between $[0, 1]$
We can pick and choose

TWO ALTERNATE WAYS OF COMPUTING PAGE IMPORTANCE

I1: As authorities/hubs

I2: As stationary distribution over the underlying Markov chain

TWO ALTERNATE WAYS OF COMBINING IMPORTANCE WITH SIMILARITY

C1: Compute importance over a set derived from top-100 similar pages

C2: Combine apples and oranges
 - $a \cdot \text{importance} + b \cdot \text{similarity}$

We can pick any pair of alternatives
 (even though I1 was originally proposed with C1 and I2 with C2)
Making Link Analysis even more query specific..

Should all links be equally treated?

Two considerations:

1. Some links may be more meaningful or important than other links
2. Website creators may trick the system to make their pages more authoritative by adding dummy pages pointing to their cover pages (spamming)
Handling spam links

Transverse links: Links between pages with different domain names

Intrinsic links: Links between pages with the same domain name

-- **Domain name**: the first level of the URL of a page.

Transverse links are more important than intrinsic links.

Two ways to incorporate this:

1. Use only transverse links and discard intrinsic links
2. Give lower weights to intrinsic links
Handling spam links

How to give lower weights to intrinsic links?

In adjacency matrix A, entry (p, q) should be assigned as follows:

- If p has a **transverse link** to q, the entry is 1
- If p has an **intrinsic link** to q, the entry is c, where $0 < c < 1$
- If p has **no link** to q, the entry is 0
Considering link “context”

For a given link \((p, q)\), let \(V(p, q)\) be the vicinity (e.g., \(\pm 50\) characters) of the link

- If \(V(p, q)\) contains terms in the user query (topic), then the link should be more useful for identifying authoritative pages

- To incorporate this: In adjacency matrix \(A\), make the weight associated with link \((p, q)\) to be \(1 + n(p, q)\)
 - Where \(n(p, q)\) is the number of terms in \(V(p, q)\) that appear in the query
 - Alternatively, consider the “vector similarity” between \(V(p, q)\) and the query \(Q\)
Topic Specific PageRank

For each page compute k different page ranks
- $K =$ number of top level hierarchies in the Open Directory Project
- When computing PageRank w.r.t. to a topic, say that with ε probability we transition to one of the pages of the topic k
 - Could also consider link relevance to the topic

When a query q is issued,
- Compute similarity between q (+ its context) to each of the topics
- Take the weighted combination of the topic specific page ranks of q, weighted by the similarity to different topics
PageRank Variants that play with Reset distribution..

• **Topic-specific page rank**
 - User goes to topic-relevant pages with higher probability
 - Think of this as a middle-ground between one-size-fits-all page rank and query-specific page rank

• **Trust rank**
 - User goes to more trustworthy pages with higher probability
 - Think of this as a middle-ground between one-size-fits-all page rank and user-specific page rank

• **Recency rank**
 - User goes to more recently created pages with higher probability
 - Allow recently generated (but probably high-quality) pages to break-through..

• **User-specific page rank**
 - User goes to pages in his social circle with higher probability
Stability w.r.t distributions and attacks

• Is the importance measure robust w.r.t small random changes?
• Is the importance measure robust w.r.t directed changes (“attacks”)?
 • Specifically, how easy is it to game the ranking?
Tyranny of Majority

Which do you think are Authoritative pages?
Which are good hubs?

-intuitively, we would say that 4, 8, 5 will be authoritative pages and 1, 2, 3, 6, 7 will be hub pages.

BUT The power iteration will show that

Only 4 and 5 have non-zero authorities
[.923 .382]
And only 1, 2 and 3 have non-zero hubs
[.5 .7 .5]

The authority and hub mass Will concentrate completely Among the first component, as The iterations increase. (See next slide)
Tyranny of Majority

Suppose h_0 and a_0 are all initialized to 1

$a_1(p) = m$

$a_1(q) = n$

normalized

$a_1(p) = \frac{m}{\sqrt{m^2 + n^2}}$

$h_1(p_i) = \frac{m}{\sqrt{m^2 + n^2}}$

$h_1(q_i) = \frac{n}{\sqrt{m^2 + n^2}}$

$a_2(p) = \frac{m^2}{\sqrt{m^4 + n^4}}$

$a_2(q) = \frac{n^2}{\sqrt{m^4 + n^4}}$

$a_2(q) = \left(\frac{n}{m}\right)^2$

$\frac{a_k(q)}{a_k(p)} = \left(\frac{n}{m}\right)^k \to 0$
Impact of Bridges..

When the graph is disconnected, only 4 and 5 have non-zero authorities
[.923 .382]
And only 1, 2 and 3 have non-zero hubs
[.5 .7 .5]CV

When the components are bridged by adding one page (9)
the authorities change
only 4, 5 and 8 have non-zero authorities
[.853 .224 .47]
And 01, 2, 3, 6,7 and 9 will have non-zero hubs
[.39 .49 .39 .21 .21 .6]

Bad news from stability point of view
→ Can be fixed by putting a weak link between any two pages.. (saying in essence that you expect every page to be reached from every other page)
(analogy to “vaccination”)
<table>
<thead>
<tr>
<th>Rank</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>“Genetic algorithms in search, optimization...”, Goldberg</td>
<td>Goldberg</td>
</tr>
<tr>
<td>2</td>
<td>“Adaptation in natural and artificial systems”, Holland</td>
<td>Holland</td>
</tr>
<tr>
<td>3</td>
<td>“Genetic programming: On the programming of...”, Koza</td>
<td>Koza</td>
</tr>
<tr>
<td>4</td>
<td>“Analysis of the behavior of a class of genetic...”, De Jong</td>
<td>De Jong</td>
</tr>
<tr>
<td>5</td>
<td>“Uniform crossover in genetic algorithms”, Syswerda</td>
<td>Syswerda</td>
</tr>
<tr>
<td>6</td>
<td>“Artificial intelligence through simulated...”, Fogel</td>
<td>Fogel</td>
</tr>
<tr>
<td>7</td>
<td>“A survey of evolution strategies”, Back+al</td>
<td>Back+al</td>
</tr>
<tr>
<td>8</td>
<td>“Optimization of control parameters for genetic...”, Grefenstette</td>
<td>Grefenstette</td>
</tr>
<tr>
<td>9</td>
<td>“The GENITOR algorithm and selection pressure”, Whitley</td>
<td>Whitley</td>
</tr>
<tr>
<td>10</td>
<td>“Genetic algorithms + Data Structures = ...”, Michalewicz</td>
<td>Michalewicz</td>
</tr>
<tr>
<td>11</td>
<td>“Genetic programming II: Automatic discovery...”, Koza</td>
<td>Koza</td>
</tr>
<tr>
<td>12</td>
<td>2060 “Learning internal representations by error...”, Rumelhart+al</td>
<td>Rumelhart+al</td>
</tr>
</tbody>
</table>

The left most column shows the original rank calculation. The columns on the right are the result of rank calculations when 30% of pages are randomly removed.

Although it might be thought that this variability is intrinsic to the problem, this is not the case, as shown by the results from the PageRank algorithm, which were much more stable:

<table>
<thead>
<tr>
<th>Rank</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>“Genetic Algorithms in Search, Optimization and...”, Goldberg</td>
<td>Goldberg</td>
</tr>
<tr>
<td>2</td>
<td>“Learning internal representations by error...”, Rumelhart+al</td>
<td>Rumelhart+al</td>
</tr>
<tr>
<td>3</td>
<td>“Adaptation in Natural and Artificial Systems”, Holland</td>
<td>Holland</td>
</tr>
<tr>
<td>4</td>
<td>“Classification and Regression Trees”, Breiman+al</td>
<td>Breiman+al</td>
</tr>
<tr>
<td>5</td>
<td>“Probabilistic Reasoning in Intelligent Systems”, Pearl</td>
<td>Pearl</td>
</tr>
<tr>
<td>6</td>
<td>“Genetic Programming: On the Programming of ...”, Koza</td>
<td>Koza</td>
</tr>
<tr>
<td>7</td>
<td>“Learning to Predict by the Methods of Temporal ...”, Sutton</td>
<td>Sutton</td>
</tr>
<tr>
<td>8</td>
<td>“Pattern classification and scene analysis”, Duda+Hart</td>
<td>Duda+Hart</td>
</tr>
<tr>
<td>9</td>
<td>“Maximum likelihood from incomplete data via...”, Dempster+al</td>
<td>Dempster+al</td>
</tr>
<tr>
<td>10</td>
<td>“UCI repository of machine learning databases”, Murphy+Aha</td>
<td>Murphy+Aha</td>
</tr>
<tr>
<td>11</td>
<td>“Parallel Distributed Processing”, Rumelhart+McClelland</td>
<td>Rumelhart+McClelland</td>
</tr>
<tr>
<td>12</td>
<td>“Introduction to the Theory of Neural Computation”, Hertz+al</td>
<td>Hertz+al</td>
</tr>
</tbody>
</table>

The details are discussed in more detail in Section 6.
To improve stability, focus on the plane defined by the primary and secondary eigen vectors (e.g. take the cross product of the two...)

Two ways you can make A/H just as stable
1. Put weak links for the adjacency matrix too
2. Consider the cross-product of primary & secondary eigen vectors

Figure 1: Jittered scatterplot of hyperlink graph.

Figure 2: Contours of two matrices with different eigengaps.
Finding communities using link analysis

How to retrieve pages from smaller communities?

A method for finding pages in nth largest community:

1. Identify the next largest community using the existing algorithm
2. Destroy this community by removing links associated with pages having large authorities
3. Reset all authority and hub values back to 1 and calculate all authority and hub values again
4. Repeat the above n-1 times and the next largest community will be the nth largest community
Multiple Clusters on “House”

Query: House (first community)

<table>
<thead>
<tr>
<th>No</th>
<th>hub</th>
<th>Authority</th>
<th>URL</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0833</td>
<td>0.711035</td>
<td>http://thomas.loc.gov/</td>
<td>Thomas – u.s. congress on the internet</td>
</tr>
<tr>
<td>2</td>
<td>0.1245</td>
<td>0.602032</td>
<td>http://www.house.gov/</td>
<td>United states house of representatives – 106 congress</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0.143384</td>
<td>http://www.loc.gov/</td>
<td>Library of congress homepage</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0.142734</td>
<td>http://law.house.gov/usel.htm</td>
<td>u.s. house of representatives – internet law library</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0.122806</td>
<td>http://thomas.loc.gov/home/htcomso.html</td>
<td>House committee hearing schedules and oversight plans</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0.109974</td>
<td>http://www.whitehouse.gov/WH/Welcome.html</td>
<td>Welcome to white house</td>
</tr>
</tbody>
</table>
Authority and Hub pages

Query: House (second community)

<table>
<thead>
<tr>
<th>No</th>
<th>hub</th>
<th>Authority</th>
<th>URL</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0.780042</td>
<td>http://www.homepath.com/hpc2.html</td>
<td>How much house can you afford?</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.625727</td>
<td>http://www.homepath.com/hpc4.html</td>
<td>How much house can you afford with a specific monthly payment?</td>
</tr>
</tbody>
</table>
Robustness against adversarial attacks..

• Stability talks about “random” addition of links
 • Stability can be improved by introducing weak links

• Robustness talks about the extent to which the importance measures can be co-opted by the adversaries..

• Robustness is a bigger problem for “global” importance measures (as against query-dependent ones)
 • Search King
 • JC Penney / Overstock in Spring 2011
 • Mails asking you to put ads on your page..
Effect of collusion on PageRank

Assuming $\alpha=0.8$ and $K=[1/3]$

$M^* = \begin{bmatrix} 0.066 & 0.066 & 0.866 \\ 0.866 & 0.066 & 0.066 \\ 0.066 & 0.866 & 0.066 \end{bmatrix}$

$M^* = \begin{bmatrix} 0.066 & 0.066 & 0.466 \\ 0.866 & 0.066 & 0.466 \\ 0.066 & 0.866 & 0.066 \end{bmatrix}$

$\text{Rank}(A) = 0.37$

$\text{Rank}(B) = 0.6672$

$\text{Rank}(C) = 0.6461$

Moral: By referring to each other, a cluster of pages can artificially boost their rank (although the cluster has to be big enough to make an appreciable difference).

Solution: Put a threshold on the number of intra-domain links that will count

Counter: Buy two domains, and generate a cluster among those.

Solution: Google dance \rightarrow manually change the page rank once in a while...

Counter: Sue Google!
Google wins over SearchKing in PageRank case

(June 2 2003) Last year Searchking sued Google for reducing the PageRank of may of its member sites. Now the court has dismissed the case.

As reported by Pandia last fall Google reduced the PageRank of the SearchKing home page. The SearchKing owned PR Ad Network had started selling text ads on the Searchking network of sites based on Google PageRank. The home page of the PR Ad Network dropped to zero after the move.

Later Google restored SearchKing's ranking in search engine results. However, the PageRank remained low.

SearchKing was not amused, and refused to withdraw its lawsuit against Google. "This suit has never been about the priority we were given in a search or even our PageRank," said Bob Massa, president of SearchKing, Inc. and PR Ad Network.

"The case is about Google's attempt to squelch competition by targeting businesses and arbitrarily reducing their PageRank or search status. So they've restored it for now. Next month, what is to stop them from reducing my ranking again?"

PageRank is a measure of Web page popularity and will to a certain extent influence the rankings of a Web page in Google search results.
Content Farms

eHow, Associated content etc

• Track what people are searching for
• Make up pages with those words, and have freelancers write shoddy articles
• Demand Media – which owned eHow – went public in Spring 2011 and became worth 1.6 billion dollars

http://www.wired.com/magazine/2010/02/ff_google_algorithm/
Why pay when you can induce people to put links freely?

But how?

➔ Be a good business (nyah—takes too long)
➔ Be a bad Business and people will put links to your page with their complaints
Being bad to your customers is bad for business
12/01/2010 12:06:00 PM
A recent article by the New York Times related a disturbing story. By treating your customers badly, one merchant told the paper, you can generate complaints and negative reviews that translate to more links to your site, which, in turn, make it more prominent in search engines. The main premise of the article was that being bad on the web can be good for business.

We were horrified to read about Ms. Rodriguez’s dreadful experience. Even though our initial analysis pointed to this being an edge case and not a widespread problem in our search results, we immediately convened a team that looked carefully at the issue. That team developed an initial algorithmic solution, implemented it, and the solution is already live. I am here to tell you that being bad is, and hopefully will always be, bad for business in Google’s search results.

As always, we learned a lot from this experience, and we wanted to share some of that with you. Consider the obvious responses we could have tried to fix the problem:

- Block the particular offender. That would be easy and might solve the immediate problem for that specific business, but it wouldn’t solve the larger issue in a general way. Our first reaction in search quality is to look for ways to solve problems algorithmically.

- Use sentiment analysis to identify negative remarks and turn negative comments into negative votes. While this proposal initially sounds promising, it turns out to be based on a misconception. First off, the terrible merchant in the story wasn’t really ranking because of links from customer complaint websites. In fact, many consumer community sites such as Get Satisfaction added a simple attribute called “referred from” to their links. The referred from attribute is a general mechanism that allows websites to tell search engines not to give weight to specific links, and it’s perfect for the situation when you want to link to a site without endorsing it. Ironically, some of the most reputable links to Decor My Eyes came from mainstream news websites such as the New York Times and Bloomberg. The Bloomberg article was about someone suing the company behind Decor My Eyes, but despite the language of the article was neutral, sentiment analysis wouldn’t have helped here either.

As it turns out, Google has a world-class sentiment analysis system (Large-Scale Sentiment Analysis for News and Blogs). But if we banned web pages that have negative comments against them, you might not be able to find information about many elected officials, not to mention a lot of important but controversial concepts. So far we have not found an effective way to significantly improve search using sentiment analysis. Of course, we will continue trying.

- Yet another option is to expose user reviews and ratings for various merchants alongside their results. Though still on the table, this would not denote poor quality merchants in our results and could still lead users to their websites.

Instead, in the last few days we developed an algorithmic solution which detects the merchant from the Times article along with hundreds of other merchants that, in our opinion, provide an extremely poor user experience. The algorithm we incorporated into our search rankings represents an initial solution to this issue, and Google users are now getting a better experience as a result.
And another honest merchant who understood pagerank/link analysis is put behind bars 😞

pressures explained his behavior.

"I was answering personally about 100 e-mails a day and lost control of what I was saying at times," he said, reading a prepared statement before Judge Richard J. Sullivan in Federal District Court in Manhattan. He closed by saying, "I want to apologize to everyone I hurt in connection with my actions, especially those people I threatened."

Mr. Borker achieved something close to instant notoriety in late November after The New York Times published an article in which he discussed his habit of menacing customers who had complained to him about products bought through DecorMyEyes. Using several aliases, he threatened to kill sexually assaulted customers, voice obscenities that he mailed in images of the product is used to become a more personal service.
Stability (random change) and Robustness (adversarial change) of Link Importance measures

FOR RANDOM CHANGES

E.g., A randomly added link

we know that stability depends on ensuring that there are no disconnected components in the graph to begin with

- e.g. the “standard” A/H computation is unstable w.r.t. bridges if there are disconnected components—but become more stable if we add low-weight links from every page to every other page

We can always make up a story about these capturing transitions by impatient user 😊

FOR ADVERSARIAL CHANGES

(where someone with an adversarial intent makes changes to link structure of the web, to artificially boost the importance of certain pages),

- It is clear that query specific importance measures (e.g. computed w.r.t. a base set) will be harder to sabotage.
- In contrast query (and user-) independent similarity measures are easier (since they provide a more stationary target).
Project Part 2

LinkAnalysis.java

- depends on two files IntCitations.txt and IntLinks.txt
- To get every document that points to document number 1234, call
 - link_analysis.getCitations(1234)
- To get every document that document 1234 points to, call
 - link_analysis.getLinks(1234)
- Using this, you can create the adjacency graph
Project 2: Authorities/Hubs

- Use your phase 1 code
- TF-IDF

Lucene Index

Root Set
- Use LinkAnalysis to grow
- Links, citations

Base Set
- Perform Auth/Hub computation
- Rank

Final Results
Project 2: PageRank

\[R_i = M^* \times R_{i-1} \]
\[M^* = c(M + Z) + (1-c) K \]

- \(R_i \): The current PageRank of the pages.
- \(M^* \): The adjusted link matrix
- \(M \): The original adjacency matrix
- \(Z \): Adjustment for sink pages (1/N for sink pages, 0 otherwise)
- \(K \): Reset Matrix (1/N for all entries)
- \(c \): A parameter that you control