ROBUST GMM TESTS FOR MODEL SPECIFICATION, WITH APPLICATIONS TO

CONDITIONAL MOMENTS TESTING AND STRUCTURAL INSTABILITY TESTING

Seung Chan Ahn

Department of Economics
Arizona State University
Tempe, AZ 85287-3806

November 1994
Revised, February 1995

Revised, September 1995

| gratefully acknowledge the financial support of the College of Business and Dean’s
Council of 100 at Arizona State University, the Economic Club of Phoenix, and the alumni of
the College of Business. | also would like to thank seminar participants at Texas A&M
University, Rice University and Econometric Society 7th World Congress, for their helpful
comments. The title of earlier versions of this paper was "Model Specification Testing Based
on Root-T Consistent Estimators.” All errors contained in this paper are my own.



ROBUST GMM TESTS FOR MODEL SPECIFICATION, WITH APPLICATION TO
CONDITIONAL MOMENTS TESTING AND STRUCTURAL INSTABILITY TESTING

Seung Chan AHN
Arizona State University
ABSTRACT

Tests for model specification based on the generalized method of moments have been
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1. INTRODUCTION

This paper is concerned with model specification testing based on the generalized
method of moments (GMM). Most econometric models imply moment conditions, that is,
zero-expectation restrictions on certain functions of data and a vector of unknown parameters.
Researchers can estimate the parameter vector by exploiting information about it contained in
the sample analogue of the moment conditions. A GMM estimator is obtained by minimizing
a quadratic function of sample moments. The class of GMM estimators is wide enough to
include conventional estimators, such as maximum likelihood (ML), generalized least squares
and instrumental-variables estimators. The consistency of an estimator crucially depends on
the legitimacy of the moment conditions involved, so it is important to test them. In the
GMM framework, violation of moment conditions can be detected by examining how far
sample moments evaluated at an estimator diverge from zero.

The purpose of this paper is to develop statistics whose asymptotic distributions are
asymptotically independent of those of the estimators used to compute them. In general, the
distribution of a GMM statistic depends on what estimator is used. The distribution of the
estimator should be considered in order to formulate a statistic which is asymptotically chi-
squared under the null hypothesis that the moment conditions to be tested are legitimate.
Newey (1985a, 1985b) provides a general approach to be used to derive relevant statistics
when the distributions of the estimators are known. Computation of statistics following his
approach is however complicated if the estimator is inefficient under the null hypothesis.

This paper provides a unified approach by which tests robust to the distribution of the

estimators used can be constructed. All that is required for the teg€isdensistency of the
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estimators. The distribution of the estimators need not be known. Wooldridge (1990, 1991)
has previously considered such tests in the context of conditional-moment (CM) testing. The
link between his method and that developed in this paper is also considered.

Popular GMM tests, such as the overidentifying-restriction tests of Hansen (1982), CM
tests of Newey (1985b) and Tauchen (1985), and the subsets-of-moment-conditions tests of
Eichenbaum, Hansen and Singleton (1988), typically require estimators which are efficient
under the null hypothesis. These statistics are easy to compute once the efficient estimators
become available. The approach developed in this paper provides convenient alternative tests.
That is, researchers can test for model specification using any initial consistent estimators.
There is no need to compute efficient estimators before models are tested. Further, the
alternative tests preserve the same asymptotic power properties as those based on efficient
estimators. The tests would be particularly useful for cases in which efficient estimators are
hard to compute, e.g., nonlinear simultaneous-equations models with different instruments for
different equations [see Amemiya (1977)], or the asset pricing model recently considered by
Heaton (1995).

This paper is organized as follows. Sections 2 and 3 set out the basic approach. In
section 2, we consider a class of tests which are asymptotically identical to the Hansen (1982)
test under local alternatives. An important characteristic of the tests in this class is that the
statistics share the same functional form even if they are computed with différent
consistent estimators. Section 3 studies a similar type of tests in cases in which only a subset
of moment conditions is to be tested. For such cases, Eichenbaum, Hansen and Singleton

(1988) -- hereafter denoted by EHS -- proposed a statistic which is an analogue of the



likelihood ratio (LR) for ML models. Section 3 derives a class of tests which are
asymptotically identical to the EHS test. It is also shown that the Wald-type tests of Newey
(1985a) for testing subsets of moment conditions belong to the same class.

Sections 4 and 5 discuss several applications. Section 4 develops the regression-based
CM tests which can apply to a broader setting than those of Newey (1985b), Tauchen (1985)
and Wooldridge (1990, 1991). The link between their tests and the new tests is also
discussed in their setting. Section 5 considers structural stability testing developed by
Andrews and Fair (1988), Hoffman and Pagan (1989), Ghysels and Hall (1990a, 1990b).
Alternative tests based off-consistent estimators are discussed. Some concluding remarks

follow in section 6.

2. TESTING MOMENT CONDITIONS

Suppose that an econometric model implies the null hypothesis,

(2.1) H,: E[g(z,,0,)] = 0,

here zis a vector of random variable8, is a p x lvector of unknown parameters, and

0(z,0) is a g x 1 (g= p) vector of functions of zandB. We assume thd, is an interior

point of a compact sef® [J R°, and that g(z0) is differentiable and bounded almost
everywhere or®. The stochastic process,{z = ..., -1, 0, 1, ...}, is stationary. The

function g(z,6) may include the score vector of a log-likelihood function. In typical cases,
0(z,0) denotes the product of instrumental variables and the error term in a model,,and H
implies the orthogonality between them. Such cases are discussed extensively in section 4.

We define the sample average of gy by:
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(2:2) 81(0) = 8Z;,0) = - 3°2(,.6) -
t=1
whereZ; = {z,, ..., z} denotes a data set. When, i$ correct, a consistent GMM estimator

of 6, can be obtained by minimizing T()'=g.(8) with respect td, where=is a q x q
positive semi-definite nonstochastic weighting matrix. Let V denote the asymptotic
covariance matrix of/Tg;(6,); and letd be the GMM estimator obtained by using*\ds a
weighting matrix. Hansen (1982) shows tifais the optimal estimator which has the
smallest asymptotic covariance matrix among GMM estimators based,.omnHpractice, a
consistent estimator of V, say;Vshould be used to compuée For the consistent estimators
of V, see Newey and West (1987b) or Andrews and Monahan (1992). We hereafter do not
distinguish between V and-Mor notational convenience. It is also important to note that
throughout this paper, all the tests are assumed to use the same estimatdthgn different
estimators are used for individual tests, the numerical equivalence results for some tests
discussed below may not hold, even though their asymptotic equivalence remains unaffected.
H, should be tested in order to check the consistency of GMM estimators. Before
discussing the tests, we consider the alternatives tantider which the distributions of the
relevant statistics can be analyzed. We define a sequence of local alternative hypotheses by

H, = {H{}37-; where,

(2.3) H,: JTE[g/8)] = ® + o(1) .



Newey (1985a) provides sufficient conditions under which (2.3) hblds.
Define G(0) = dg,(8)/00', and let G = plim G,(8,). We also define a matrix

operator:
(24) Q(E,F) — E—l _ E'1F(I"E‘.'1I')‘1F’E‘1 ,

where= andl" are conformable matrices aidis invertible. With these notations and

definitions, it can be shown that under plausible regularity conditions,

(2.5) VTg6) -~ N,V),
(2.6) plim G0 = G,
(2.7) VTgr = VQWV,G ){Tg[8,) + o,(1) ,

where "-" means "converges in distributiond'is anyVT-consistent estimator &.,> and g

= g,(8). The proof and the detailed conditions required for (2.5)-(2.7) can be found in

1

Suppose that the dai has a well-defined density functige(Z;,n,), wheren; is a
vector of parameters depending on the sample size T. LefEfe the expectation operator
whenn; =n #n, and let E(*) be the expectation operator whigr=n,. We assume that
H, holds if ny = n,; that is, E[g(8,)] = [gr(Z;,8,)p(Zrno)dZ; = 0. If we specifyn; = n, +
pINT, Taylor's approximation of E[g6.)|n;] aroundn, yields (2.3) withw = Kp, where K =

E[9:(8,)0In{ p(Z1.n )} on'].
2 That is,VT(6 - 8,) = O,(1). Note that any GMM estimator based on all or some of

the moment conditions in (2.1) iéT-consistent under H .



Newey (1985af.

Once® is computed, Hcan be easily tested by the Hansen (1982) statistis, Tg,V-
'§,. The conditions (2.5) and (2.7) imply that undey H has a noncentral chi-square
distribution with (q - p) degrees of freedom and noncentrality parametew Q(V,G,)w.
There are numerous GMM tests which are asymptotically identica). tdrJ particular,
Newey (1985a) shows that all the GMM tests with (q - p) degrees of freedom are equivalent
to the Hansen test whatever GMM estimators based on the moment conditions in (2.1) are
used. However, each of the statistics with (q - p) degrees of freedom should be constructed
with knowledge of the distribution of the estimator used. We below derive a class of

statistics alternative to,vhich are robust to the distributions of estimators.

PropPosITION 1. Define a modified version of the Hansen statistic by:
(28)  MI®) = T87Q(V,C 8y = TérV '8y — 8V 'GAGYV GGV %y,
where g = g(8) and G = G(8). Then, M}(8) = J; + o,(1), for anyvT-consistent

estimator 0.

PROOF Taylor's expansion of garound8, yields:

(2.9) VT2, = VT8, + GB8)VT(®-6) ,

where6, is a vector betweef and8,. Since plim6, = plim 8 = 8,, (2.6) should imply that

% For the proof of (2.5), Newey assumes that {z= ... , -1, 0, 1, ...} is strictly

stationary. However, we may relax this assumption, following Gallant and White (1988).



7
plim G(6,) = G,. Then, premultiplying both sides of (2.9) by VQ(V,zand using the fact

that Q(V,G)GT(GL) = Q(V,G,)G, + 0,(1) = g,1), we obtain:

(2.10) VOV,G)\Té, = VQIV,G,)TgL8,) + o, (1) .

Hence, (2.7), (2.10) and the fact that Q(\)@Q(V,G;) = Q(V,G;) imply the resuilt. |

There exist numerous different M3tatistics depending on the choiceff While
each of the statistics may have different finite-sample properties, any of them should be at
least asymptotically as powerful as Jit is also important to note th& need not be a GMM
estimator based on the moment conditions in (2.1). All that is required i§ itgsonsistency,
and furthermore, its asymptotic distribution does not affect that of the corresponding MJ
This result might be used when a researcher wants to compare his/her estimates to those of
other studies for the same model. A statistic of the form of ®&n be constructed with the
estimates from other studies.

When a subset of parameters@rappears in only a subset of moment functions, the J
and MJ statistics have some interesting properties. For example, assume itth) tikes
the form:

b(z,,6, )

C(Zt, 6o,l ’ 60.2)

(2.11)

8(z,,0,) =

2

b(z,,6,)
c(z,,0,)

whereB, = [6,,,6,,]. Here b(z6) and c(z06) are ¢ x 1 and g x 1 vectors, respectively,
and ¢ + g. = q. The p x 1 parameter vectd, includes a subset of parametersdinwhile
thep x 1 (p, = p - p) vector, includes the parameters which appear only in,@\z Note

thatB, = 6 if p, = 0. We assume that,@ p,, so thatf, is identified with the moment
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conditions on b(z0,) only. Some examples under which gy may take the form of (2.11)
are found in EHS, Ahn and Schmidt (1995) and Heaton (1995).
Define B(8,) and G(8) similarly to g:(8), and partition G(8) such that:

BT, 16) BT’2(61)
Cp.(8) Cpy(®)

b8, ()
0(01,05)

(2.12) G[0) =

]

where B ,(6,) = 0. Corresponding to.¥0,) and g(6), we also divide V into [\], where i, ]

= b, c. Then, we obtain the following result.

PRoPOSITION 2. Let® = [8,,8,] andg = [b,',&']". Let®, be the GMM estimator
which minimizes Th(©,)'(V,,)*b:(6,). Let® =[B,.8,]". If p, = q, the following numerical

equalities hold:
(2.13) 6, =6, ;J, = Thy(V,) b, ; MI(B) = E;Q(Vbb,éZl)BT,

Wherevb = by(8)), E)T = by(8,) and Br,l = BT,l(él)'

The proof is omitted because the first and second equalities are the "separability"
result of Ahn and Schmidt (1995), and the last equality can be also shown by tedious but
straightforward algebra. The novel finding here is that the "separability” result also applies to
MJ; statistics. If p = ., both J and MJ depend on neither the moment functioffé} nor
the estimators 06,,. This implies that ¢g(8) can be used to identifg, ,, but it does not
contain any useful information about the possible violation of moment conditions g8, )c(z

An important example for which Proposition 2 is particularly relevant is the nonlinear
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simultaneous-equations models. In linear models, the three-stage least squares estimates
remain unaffected whether the exactly identified equations are removed or not. Proposition 2
implies that the same result applies to nonlinear models. Furthermooe MJ; computed

for the entire system of a model (numerically) equabd MJ; for the sub-system with
overidentified equations only. Therefore, some caution is required whenMJ, statistics

are used for the specification of simultaneous-equations models. They have no power to

detect any possible misspecification of exactly identified equations.

3. TESTING SUBSETS OF MOMENT CONDITIONS

In some cases, researchers may have prior information about the directions of
misspecification which restrict violation of Ho a certain subset of moment conditions. In
such cases, statistics designed to focus their power on the moment conditions to be tested
may have better power properties than the Hansen statistic for testing the entire set of
conditions under H Such statistics have been considered by EHS and Newey (1985a). In
this section, we derive a class of tests which share the same asymptotic local power with
theirs.

We consider cases in which the moment function,@)s of the form (2.11).

Suppose that a researcher wishes to tesagdinst,
(3.1) H,: E[b(z,,0,)] = 0 and E[c(z,,0,,,6,,)] # O .

By the nature of the model, the parameter ve@gyis identified only under Kwhile 6, is
under both Hand H,. Note thatb, is the optimal GMM estimator od,, under H. When

p, = 0, 8, denotes the optimal GMM estimator 8f under H..
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The EHS statistic is given by:

(32) D, = T@T/'V_lgT - Bll'(Vbb)_IBT] >
which is asymptotically chi-squared with (g p,) degrees of freedom under,HNewey and
West (1987a) [also Gallant and Jorgenson (1979)] have considered a similar type of GMM
statistics in the context of parametric-restriction testing. In fact, we may also regaad &
statistic for testing the parametric restrictions imposed by the model underlyin@ ¢isee
why, consider cases in which, p 0. Define an auxiliary parameter vecidy = E[c(z,0,)];
and lety, = [6,,3,]. Let hy(z.y) = [b:(8)',(c;(B) - 3)']'. Note that under both Hand H;,
E[h(z.Y,)] = 0. Define the restricted GMM estimator l§y which solves the problem: mjn
h:(y)'Vh,(y) subject tod = 0. Corresponding t§, we define the unrestricted estimator of

Y, by y. Then, the LR-type statistic of Newey and West (1987a) for testing the hypothesis

= 0 is given by:
(33) T[h 7YV 1) - 1 0)'V Ry

Obviously, K(§)V*h.(}) = &,V 5, becausd/ = [',0]. Furthermore, we can show that
h(y)'Vh(y) = BT(Vbb)'lf)T, since Q(y) satisfies the conditions for Proposition 2 to hold.
Substituting these results into (3.3) yields.D

The EHS test may have poor power properties against certain alternatives @.p
For this case, let¢6) = [c,(0)',c,(6)']' where dim[¢(6)] = p,. Define R(6) =
[b+(8y)',c,+(6,,8,)']" and ¢,(6) = c,(8), suppressing subscript "T" for notational convenience.
The partition of ¢(B) is arbitrary, except that it is chosen such that Rank(0)/00'] = p

uniformly for 6 0 ©. According to k(6) and ¢,(8), we partition V as [\' ], where i, j =
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b, c. Let8,, be the GMM estimator which is the solution of the problem: giib, () (V5

n,(6). Since Q(B) and_ satisfy all the conditions of Proposition 2, we have, T¥,.) b,
= Tb, (V) 'b,, where b, = b(8,). Therefore, we obtain the equality:

(3.4) D, = TigV 7%, - b/(Vi)'b,1 .
Note that [} takes the form of D for testing the null hypothesis E[¢6,)] = 0 against the
alternative hypothesis EJ¢6,)] # O while the condition E[c(6,)] = O is falsely assumed to
be legitimate under both Hand H,. This implies that the test may not have power against
Elc,+(6,)] # 0 when g # 0.

A practical disadvantage of,Os that it requires computation of bofhand®,.

However, similarly to the MJstatistics, we can derive a class of statistics, each of which is

asymptotically equivalent to Pand requires one estimator only.

PROPOSITION 3. Let® =[6,',8,]' be anyvT-consistent estimator df,. Define a

modified version of ) by:

(3.5) MD(®) = Tg;QV,Gpg; - 6,0V, B, )b, ,
where = b;(8,) and B., = B;,(8,). Then, MD.(8) = D; + o,(1) under H. Further,
MD-(6) = 0.

PROOF. See the Appendix. O

Proposition 3 indicates that for an§f-consisten®, MD-(8) has the same local power
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as D.. This result is not affected even if the two terms in M&re computed using different
VT-consistent estimators. However, it is desirable to use the same estimator, because
otherwise the modified statistics may have negative values.

Incorporating H, we may specify I as H= {H:}7., where,

(3.6) Hy: JTE[b,(8, )] = 0 and yTE[c;(8))] = w, + o(l) .

Newey (1985a) derives the Wald-type GMM statistics which are designed to have maximum

power against Hwhen g = 0. We here introduce his tests allowing>p0. Let B(0) =

[B+(6,).0] and G(8) = [C,(6,).C: ,(B)]. Define:

ri8) = c0) - V,,(V,)'b(0) ,
RA8) = C8) - V,,(V,) 'BLO) ,

Q =V, - Vcb(Vbb)_lVbc

cc

P.(0) = Q - R(OIBLO)(V,,) 'B6) + RLO)Q'R(0)] 'R,0) .
Then, one of Newey'’s statistics is obtained by:
3.7) N, = THQ Q' QY Q'F,,

wheret = r,(8), ¥; = W(0) and (s} is the Moore-Penrose g-inverse. Following the proof of
Proposition 3 of Newey (1985a), we can show that undgrN{ has a noncentral chi-square
distribution with (q - p,) degrees of freedom and noncentrality paramaterw, QW Q'w,
whereW, = plim W;(6,).

When g = 0, the Moore-Penrose g-inverse in Ban be replaced by the usual inverse.
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Furthermore, for the same case, Newey (1985a) derives an alternative statistic which is

constructed withB, but asymptotically identical to N
(3.8) AN, = Ti{Q + RIB(V,) B 'R} ¥, = TH,Q ' P, Q 7Y,

wherer = 1,(8,), R; = Ri(8,), B; = B{(6,) and¥; = W.(8,). Ahn and Schmidt (1995) show
that AN, equals the Wald statistic for testing the hypothégis E[c(z,0,)] = O which is
constructed with the unrestricted GMM estimayodefined above. Therefore, in cases where
p, = 0, the asymptotic equivalence betweepdhd AN; (and N,) follows from Theorem 2 of
Newey and West (1987a).

When g # 0, it can be shown that similarly to-DN; takes the form of N for testing
Elc,+(6,)] = 0. [See Lemma 1 of Appendix.] This remarkable similarity betwegrabd N;

suggests that both statistics should be related for anyipfact, we obtain the following

result.

PROPOSITION 4. (i) MD(8) = N;. (ii) When p, = 0, MD;(8,) = AN-.

PROOF See the Appendix. |

Proposition 4 implies that both,Nand AN; belong to the class of MPstatistics.
Therefore, Propositions 3 and 4 formally establish the asymptotic equivalence betwaed D
N; (and AN; when g = 0). Whenever Nand AN; have desirable power properties (e.qg.,

under H with p, = 0), so do 3 and any MI} statistic.

4. CONDITIONAL MOMENT TESTS
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Econometric models with exogenous variables usually imply conditional moment (CM)
restrictions. The specification of the models can be tested by checking the legitimacy of such
restrictions. Regression-based CM tests have been popular in the literature. For example,
Newey (1985b) and Tauchen (1985) examine CM tests of ML models with independently
distributed data. Wooldridge (1990, 1991) considers CM tests of conditional mean or
variance specificatiors.In particular, his CM statistics are computed with aflyconsistent
estimator, similarly to the tests considered in previous sections. In this section, extending the
approach developed in previous sections, we derive alternative regression-based CM tests,
which may apply to a broader setting than those of previous studies.

Suppose that an economic model implies the CM hypothesis:
(4.1) H,: Elu(z,,6,) |x,] = E[w,®)|x] =0;j =12 ..,k,

where y is a scalar function of,zand6,, and X is a vector of variables exogenous or
predetermined with respect tq.uEach of the x(j = 1, 2, ..., K) includes a subset of
variables in z In multivariate time-series settings, some or all of the past valuescafutd

be included in the x Define the vector of all the distinct variables in at least one of the x
by x;; and let W®,) = [u,(6,), ... , U(B,)]'. As in the previous studies mentioned above, we
also assume "No-Autocorrelation” among théy):

(NA) E[u(85)ue.i(8,)' [ X, Xiu] = 0.

Assumption NA is appropriate for models with cross-sectional data. It may be also valid for

time-series dynamic models which impose martingale-difference restrictions on both first and

4 An excellent survey on CM tests can be found in White (1994, £h10).
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second order moments. [For such cases, see Wooldridge (1991).]

Each of the x may be or may not be the same fo= 1, 2, ... , k. Inorder to
distinguish these two possible cases, we can make two alternative assumptions about
exogeneity, which we refer to as "Strong Exogeneity" (SE) and "Weak Exogeneity" (WE)
assumptions, respectively. Stated formally:
(SE) Foranyj=1,2, ..,k x=x.
(WE) For some j, X # X;.
Assumption SE, which has been adopted in previous studies on CM tests, implies that if a
variable is exogenous to one of thg@y), it is also exogenous to the others. There are many
models which may imply Hwith SE. Examples include nonlinear regression models and
quasi-ML models using densities in the linear exponential family. [See White (1980) and
Gourieroux, Monfort and Trognon (1984).] For these models, {{i@,udenote (generalized)
residuals, each of which has zero expectation conditional on a common set of exogenous
variables, x

Assumption WE means that there exist some variables which are exogenous to some
but not all of the 1(6,). One leading example of the models that implywith WE is the
nonlinear (or linear) simultaneous-equations model with a different set of instrumental
variables for each equation. [See Amemiya (1977) and Schmidt (1990).] For this model, u
denotes the residual of the j'th equation, andhe vector of predetermined variables in the
same equation. Another example for WE is the panel data model with sequential moment
restrictions, which is considered by Chamberlain (1992). For his model, the subscripts "t"

and "J" denote cross-sectional unit and time, respectively, arid x,,,. Allowing WE, the
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analysis adopted in this section is general enough to encompass those of previous studies.
If Hg is correct, functions of xshould be uncorrelated with,@®,) for any j. Any

evidence against these orthogonality conditions implies violationjof Based on this

observation, we can derive appropriate tests pf Hor each j =1, 2, ..., k, le, = A(x;) be

an arbitray 1 x q vector of functions of x whereZ,q = q > p; and letA, = A(x,) =

diag\;, -.- , A). When assumption SE hold4, need not be a block-diagonal. Specification

of the model underlying Hcan be checked by testing the orthogonality betwagand
ut(eo):
(4.2) E[Au®)] = 0 .

Here, the "criterion" matrix\, may be chosen such that it also depend®gar (possibly) a
vector of nuisance parameters (say). Such a case may ariseAf is a function of
E[0u,(6,)/00' |x,] and/or E[y(8,)u,(8,)" |x,], as we discuss below. In this case, a GMM
statistic for testing (4.2) can be obtained with consistent estimates &, ffgeg., /\, evaluated
at vVT-consistent estimates 6f andt]. Of course, tests with the estimatéd are
asymptotically equivalent to those with the "tru;:

Hansen methods can be used to test the orthogonality condition of form (4.2). In
particular, we can compute a Hansen statistic via an auxiliary regression. Using the same
notation as we defined above, lef(@) = T'Z{_,A/u(6) and G(6) = T*'=_,A,U«(B), where
U,(6) = du,(8)/00'. We assume that th&, are chosen such that Rank|[8)] = p uniformly
for 6 0 ©. This assumption ensures that none of the orthogonality conditions in (4.2) are
redundant. Le® be the optimal GMM estimator based on (4.2). Define:

Since we assume NA, ¥0) is a consistent estimator of the asymptotic covariance matrix of
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(4.3) LORESY Au O 0)A, .
t=1

VTg.(0,), for anyVT-consisten. When V,(8) is chosen, it can be easily shown that a
Hansen statistic is obtained by T times the uncentere(RR from the regression of one on
u(0)'A..
Alternatively, we can use modified Hansen statistics which are computed with.any
Let OMJ.(8) denote MJ(B) for testing the orthogonality conditions in (4.2) computed with
V.(8). Interestingly, this statistic can be also obtained via regression-based procedures, which
are quite similar to Wooldridge (1990). To show how, we partitfnnto [A, A ] such that
the number of columns o, equals p, the number of parametersin Define i = u(®) and
U, = U®). Let N be the t'th residual matrix [or row vector if(8) is scalar] from the two-

stage least squares (2SLS) matrix regression @bn A, with the instrumentAltJ:
d A/ d A/
(4.4) A=A, - AN UANI'YUA,,, t=1,..,T.
=1 =1

Then, we obtain the following result.

PROPOSITION 5. For any®, OMJ(8) is computed by TRfrom the regression of
(4.5) 1 = 4/A,, ¢ + error .

PROOF See the Appendix. |

Since OMJ statistics do not requir, they are easier to compute than the Hansen

statistic in many cases. For example, consider the specification test of the nonlinear (or
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linear) simultaneous-equations model:
(46) .f}(zt’aj) = Uy

whereaq; is a p x 1 vector of parameters in the j'th equation, andsuthe residual of the j'th
equation. Le®, (j =1, 2, ..., k) be the row vector of instruments for the j'th equation; and
partition it into [\, A ;] such that\,; includes only pvariables. For each equation, the
parameter vectoro() can be consistently estimated by the nonlinear two-stage least squares
method of Amemiya (1974). For example, figtbe the nonlinear 2SLS estimator with
instrumentA, .. LetA;; be the residual vectors from the 2SLS regressioni gfon A, with
instrumentsdf(z,G))/0a;'. Then, the specification of the model given in (4.6) can be tested by
TR from the regression of one on,(E,G A 1, - f(Z OIAL .

We now examine the relationship of OMtests with the CM tests of previous studies,
mainly under Wooldridge’s (1990, 1991) framework. When assumption SE holds, we may

defineA(8) = E[U(®)

x;]. LetW(O,I),t=1, 2, ..., T, be ak x kositive definite matrix
which may be a function of x6 and a nuisance parameter vecigr For analytical

convenience, we assume timatis known? Let 6" be the GMM estimator which satisfies:
T
(4.7) Y ALOY WO, )] 0 = 0.
t=1

When data are independently distribut@djs efficient if HS holds and V§ = W,(6,,10) =

® This simplification is possible becaugg, A., U, and /¢, are all block-diagonal.

® WhenT, is unknown, we may replace it by~ -consistent estimator, without

changing the result obtained below.
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E[u(6,)u(8,)' |x;]. [See Chamberlain (1987).] For ML models;,A(6)[W,(8,1)]*u,(6) may

represent the score vector while thédyare generalized residuals. In this caBeis the ML
estimator off,.
Let @, be a k x s"indicator" matrix of functions of x(and possiblyd, or 1.).’

Define:

T
(4.8) = 1Tz B W(O)] u0) ,
t=1

where W(B) = W,(8,1,). Note that if H is correct,Z;(8) must be close to zero for anf-
consisten®. Therefore, Wald-type tests ofSldan be constructed based &#(8). In cases
where@' is the ML estimator, Newey (1985b) and Tauchen (1985) show that a Wald statistic
based orZ(0) is obtained by TRfrom the regression of one on(@)'[W,(6)]'A(8") and
u(0") [W(8")] ',
For the cases whef@ is not the ML estimator, we may construct alternative Wald

statistics, following Wooldridge’s (1990) approach. 1€t= A(6,), and define:

1= po/rigron 1w g /ruroy

M, = Y AJIWTIAY 5 M, = =Y O [W/1'A7 .
T T3

Consider the statistic:

" When®, depends o, andt,, we replaced, by its consistent estimator.
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o 1T o 1T
(4.9) £.(0,M,,M,) = ;E ®,[W(0)] 'u (6) - Mz(Ml)'l;z A (O)TW0)]'u(0) ,
=1 t=1

where M and M, are consistent estimators of,Mnd M, respectively. Expanding;(8) and

£.(6,M,,M,) around8,, we can show that:

(4.10) VTL8) = VTELD, M, M,) + 0 (1) = JTELD,, M, M) + o(1),

for any VT-consisten®. Therefore, a Wald test based &f(8) is asymptotically equivalent

to that based 04.(8,M,,M,). Define:

T
D(0) = %,E [A(6), @) [W,0)] 'u0)u0)[W(0)]'[A6),2] ,
t=1

and D = plim D@,). Corresponding tab, and A, we partition D into [Q)], where i j = 1, 2.
Then, it is straightforward to show that the asymptotic covariance matri &f(6,) is given

by:
I =D, - Mz(M1)_1D12 - D21(M1)_1M2/ + 2(M1)_1D11(M1)_1M2/ .
Letting D = [If)ij] be a consistent estimator of D, define a consistent estimatbr loy:
I, = ﬁzz - Mz(M1)_1ﬁ12 - ﬁZI(Ml)_lMZ * M2(M1)_1ﬁ11(M1)_1M2 .
Then, we can define a Wald statistic®by
(4.11) W.6,M,,M,,D) = TE(6,M,,M )W) £ (6,M,M,) .

Depending on the choices 8f M,, M, and D, we can have many different Wald test

statistics. An interesting point here is that all the Wald statistics of form (4.11) are

8 See Corollary 9.10 of White (1994).
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asymptotically identical because of (4.10).
Suppose that W= E[u(8,)u(6,)' |x]]. Then, M, = D,; and M, = D,,, so that we have
M = D,, - D,y(D,)"'Dy,. Based on this observation, we definé H[(D");] = D(6'), M; =
(D), and M, =(D’),,. Then, we can show that M#",M;, M},D") is obtained by the
procedure proposed by Newey (1985a) and Tauchen (1985). This result implies that their
method can be used even@f is not the ML estimator. It requires only that )W
E[u(8,)u(8,)' [ x].

When W # E[u(6,)u(6,)' |xi], the regression-based tests of Newey and Tauchen may

have the wrong size under;HIn order to obtain the robust statistic of Wooldridge, define
My = TIELA(WYA, My, = TIEL,®/ (W) A, and D= D(8), whereA, = A(8), W, =

W,(8). The Wooldridge statistic is given by M8,M,,,,M,, ,,D), which can be obtained by an
auxiliary regression. Le®; (t = 1, 2, ..., T) be the residual matrix from the regressiorpf

= (W)™d, on A, = (W)™ A, ; that is,

(4.12) & - &, - A2

where ;" means ZL,." Then, W(8,M,,,,M,, D) is computed by TRfrom a regression of:

(4.13) 1 = a@(8)® ¢y + error ,

wherey®) = (Wt)'l/zut(é). This statistic is asymptotically equivalent to that of Newey and
Tauchen if W = E[u(6,)u(8,) X].

Since the asymptotic distribution of M®,M,,M,,D) is robust to its components, we
may use different Mand M, Let us alternatively choose M = TZL,A/(W,)'U,8) and

Mo, = TIZL,®/(W)™U,(8). Then, it can be shown that the Wald statistig(&M, ,,M, ,D)
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numerically equals OMJ8) with A,, = (W)'A, andA,, = (W)'®. That is, OMJ statistics

(and also the Hansen statistic) for testing the hypothesig\mEg[]'(W?)*u,(6,)} = 0, are
asymptotically identical to those of Wooldridge’s. This remarkable equivalence indicates that
OMJ; statistics are a generalization of the CM statistics of Newey, Tauchen and Wooldridge.
One important advantage of OM3tatistics over Wooldridge’s and others is that they
can be computed with anf,,. As Wooldridge (1990) noted, extensions of his approach to
nonlinear simultaneous-equations models or rational expectation models might be limited,
because for such models analytical computatioa () is complicated. Furthermore, the
Wald-type statistics of form (4.11) do not have particular power properties superior to¢ OMJ
statistics. Newey (1985a, 1985b) shows that an optimal CM test whose power dominates that
of any other tests can be derived if information about the density function under alternative
specifications is available. Otherwise, any two CM tests with the same degrees of freedom

may dominate each other depending on the direction of local alternatives.

5. TESTING STRUCTURAL CHANGES
GMM tests of structural change in nonlinear models have been studied by Andrews
and Fair (1988), Hoffman and Pagan (1989), and Ghysels and Hall (1990a, 1990b). These

studies assume that a structural breakpoint is known where the sample is split into two

® Nonparametric estimates af(6,) may be used when assumption SE holds. However,

Wooldridge’s method may be inappropriate for the cases where only assumption WE holds.
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subsamples, and that both sizes of subsamples grow with that of the entire fample.
Andrews and Fair (1988) -- hereafter denoted by AF -- consider Wald, LR and Lagrangean
multiplier (LM) tests for parameter stability over the entire sample. Hoffman and Pagan
(1989) and Ghysels and Hall (1990a) -- hereafter HP and GH (1990a), respectively --
independently propose post-sample predictive tests which are based on out-of-sample
moments evaluated at in-sample GMM estimates. Ghysels and Hall (1990b) -- hereafter GH
(1990b) -- examine a LR-type statistic which is constructed similarly tadnsidered in
section 3. This section provides a unified approach to these tests of structural stability, based
on the results in sections 2 and 3.

Following the studies mentioned above, we assume that the sample is split into two

subperiods:

(5.1) T ={=1.,T};LL,==T+1..,T}.
Let T,=T - T,. Both T, and T, grow with T; that is, lettingt, = T,/T andt, = T,/T, we
assume thaty= lim 1, #0, n,=limt,Z0and n + n, = 1. Let g(z,0) be the ¢gx 1

moment functions for t1 Y;, whee j = 1, 2. While g, and g are equal in usual cases, we

may allow them to be different. Consider the three individual hypotheses:

H,: Elg,z,0)] =0, foranyte Y, .

H02: E[g2(zt,60)] =0, foranyte€7T,.

10 See Andrews (1993) and Dufour, Ghysels and Hall (1994), for tests in cases where the

breakpoint is unknown.
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We define the "Stability" hypothesis by:
(5.2) H': All of H,, H: and H, hold .

We assume that,@ p so thatd, can be consistently estimated with the first subsample only.
The asymptotic power of GMM tests may depend on the directions of possible

violation of H. We may consider three types of alternative hypothesis:

H/‘f: At least one of H,,l, Hf and Hj does not hold .
H AB: HO1 holds, but at least one of HZ and Hs does not .

HAC: Ho1 and HZ hold, but Hj does not hold .

Which of these three is the appropriate one to be tested aggjrsstadid be determined on

the basis of prior information about possible misspecifications. The alternative hypottiesis H
implies that the structural break has changed the true values of the paramdier®mthe
contrary, K or H may be appropriate in cases where possible sources of model
misspecification other than parameter instability are also suspected. For example, consider a
dynamic regression model with moving-average errors, which can be estimated by GMM
using lagged dependent variables and other exogenous regressors as instrumental variables.
Suppose thab is the vector of coefficients of regressors, and that t(&,@ are the products

of instrumental variables and residuals. There are several cases in which GMM estimators
may appear to be unstable across two subsample periods. The first possible case is when

misspecifications of the order of moving average lead to the use of contaminated instrumental
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variables for both subsamples. For this casgwéuld be the one that researchers should
consider. The second case is when a structural break increases the order of moving average
in the second period. Fewer instrumental variables remain legitimate for the second
subsample-period, because some lagged dependent variables that are predetermined in the first
subsample may become contaminated in the second period. Therefore, the GMM estimate of
6, with the second subsample could be biased if the same instruments are used for both
periods. That is, even #, may remain constant over time, estimatefpmay vary
significantly over subsamples. If this possibility is of concern, researchers may have to
consider H.

Incorporating the three possible alternative hypotheses, we may consider three types of

local alternatives under which asymptotic distributions of GMM statistics can be analyzed:

Hp: ([T E[g,®)] = o, + o(l) ;
Hyp: \[T,E[g,6)] = w, + o(1) ;

Hy: Elgy(6)] = 0 and \[Ty(6,-6)) = p, ,
where g(0) and g(8) are subsample means of(x,0) and g(z,6), respectively. We here
drop the subscript "T" for notational convenience. Defirfp=H{(H1,H3)}5_,, H} =
{HLH3}7, and H = {(HLH3)}%.,. Note that ¥ encompassesHwhile the latter
subsumes M
We first consider the tests ofStagainst K. The usual Hansen statistics)(®r its
modified versions (Mg may be used to testH However, as GH (1990b) have shown, J

has only a low power to detect violation of M/hen local alternatives are of the fornfHA
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standard response to this problem is to use the Hansen statistic constructed to test two sets of
subsample orthogonality conditions jointfy.Define a dummy variable,duch that d= 1 if t
0 Y, and d = 0 otherwise. Let,0) = [dg,(z.0)", (1-d)g,(z,0)']' and,

7,8,0)
7,8,(0)

53 ORES WO
=1

Denote the asymptotic covariance matricesfiqf;,(6,) and~T,g,(6,) by V, and V,,
respectively. Note thail,g,(6,) and~T,g,(6,) are uncorrelated becausgldd) = 0.
Therefore, the asymptotic covariance\dff(6,) equals V = diag(nV,,n,V,). Both V, and V,
can be separately estimated within subsamples. Then, a consistent estimat@aofbé
computed based on the estimators gfavid V,. For notational convenience, we denote the
consistent estimator of \by V; = diag@,V,,T,V,).

Let 8, be the estimator which solves the problem: gnTrf(e)'(Vf)'lf(e). Then, a

Hansen statistic for testing:Hs obtained by:
(54) 87, = TABY'(V)f6) = T,8,8) (V) '8,(8) + T,8,8)(V,) g, 6,

where the second equality results from the fact tﬁails\block-diagonal. In order to find the
asymptotic distribution of Sdunder H, we assume that each subsample satisfies the
regularity conditions required for (2.5). Defing = [vh,w,’ ,Vh,w,']'. Then, it can be shown

that:

(®-5) VIfy®) ~ NwpV) .

Therefore, all the results obtained in sections 2 and 3 can apply to the tes}s bfeffine

1 See Hamilton (1994) or GH (1990a).
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F(©) and F, similarly to G,(B) and G, respectively. With these notations and (5.5), we can
show that Sghas a noncentral chi-square distribution with tqq, - p) degrees of freedom
and noncentrality parametar= w/'Q(V;,F,)w.

The modified Hansen statistic for testing, lvhich we denote by MS,Jis readily
available. Foj=1, 2, define §= g(b) and G = G,B) = 9g,(6)/08' whered is anyvT-
consistent estimator. Let# f(8) = [1,8,,1,8,] and F= F®) = [1,G6,,1,G,]'. For

notational convenience, define:

(5.6) x®) = [Z,T4/(V) " GIZ, T6/() " GI'IE,T6/v) 41

where 2" means Z_,." Then, a little algebra shows that:

(5.7) MSI0) = f'QWL.Bf = T 2/(V) '8, + T8V g, - x(®) .
Under H, any MSJ is asymptotically identical to Sdvhateverd is used.
When prior information about the first subsample period indicates that the moment
condition for the first subsample period is legitimate, a test statistic of fofroad be used,

which we refer to as SD Let 6, be the optimal GMM estimator d, under H. Then, we

obtain:
(58) 8D, = T,,8) (V) '8,8) + T,,8)(V)'g,®) - T,5,8) (V) 'g,(6) ,

which is proposed by GH (1990b). Alternatively, we may use the modified versions;MSD

of SD; constructed similarly to MP statistics:
(59)  MSD,8) = T,8,(V)™'g, + T,[(V)"G,IG,(V) G176 (V) "¢, — () .

When we usé, and 8, to compute MSD statistics, we can obtain the statistics AN
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or N;. MSD,(8,) is an analogue of AN Using the fact that @6,)'(V,)g,(6,) = 0, we can

show that:

where'g = g,(8,), G, = G,(8,) and G = G,(B,). This statistic is exactly the post-sample
prediction statistic proposed by GH (1990a) and HA. This result implies that all the tests
proposed by GH (1990a, 1990b) and HA are asymptotically identical.

Since MSD(H)) is an analogue of N Proposition 3 of Newey (1985a) immediately
applies. That is, MSH®,) is an optimal GMM test which has maximum power towarfl H
Therefore, SP and any MSD statistic should be also optimal. Both $Bnd MSD statistics
have the same noncentral chi-square distribution wjtdegrees of freedom and the
noncentrality parameteh,,s,, equal to,

(5.11) wy (V) 'V, - 1,6, {Z,n,G/

J 7710

V)G, 116y (V) M,

where G, = plim G(8,), forj =1, 2.
As a final step, we consider the tests gfagjainst H{. Assuming p< q,, let 8, denote

the estimator which solves: mjiT,g,(0)'(V,)'g,(8). The LR-type statistic of AF is given
by:

(5.12) LR, = 3,T,g,6) (V) 'g,6) - =,T,5,8)(V)'5,®) ,
which is asymptotically chi-squared with p degrees of freedom un@erApplying

Proposition 1, we can obtain the modified LR statistics of the form:

(5.13) MLR,(®) = £,T.4(7)"'GIGM) G167 "¢ - x(®) .
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Under H;, it can be shown that (5.5) holds with, = 0 andw, = G, p,. [See GH (1990b).]

Therefore, Proposition 1 implies that for af§-consisten®, MLR.() is asymptotically
identical to LR.

An interesting feature of the class of MLRtatistics is that it subsumes all the other
tests considered by AF. Note that ML®,) equals their LM statisti& We can also
establish the equivalence between their Wald statistic and Jf,R After a little algebra,

we can show that:
MLR,(8,) = T,g,0,)(V,)'G,(0)[G,6) (V) G,®)1"
(5.14) x {[G,(8) (V) G817 + (T, TDIG,B,)Y (V) "G, (01}

x [G,(8,)(V)'G,(0)D1'G,(6,) (V) "g,(8,) .

We now define the one-step linearized GMM estimator:

(5.15) 0; = 8, - [G,(0) (V) G017 G,8) (V) g,8)) -
Lemma 4 of Newey (1985a) implies that

(5.16) @e; - 6) = 0,1) .

Using the fact that &8,)'(V,)'G,(8)) = G,(6,)'(V,)'G,(8,) + 0,(1), and substituting (5.15)

and (5.16) into (5.14), we obtain:
G17) MLR®) = 6,-0)ZAT,GO)()'GE)}T'6,-6) + 0, ,

where the first term on the right-hand side is exactly the Wald statistic of AF.

Following Proposition 3 of Newey (1985a), it can be shown that MBR is an

2 Observe thak(f,) = 0.
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optimal GMM statistic which has maximum power toward. HThis result and the
equivalence between LLRand any MLR statistic imply that all of the Wald, LR and LM tests
of AF are optimal under H All of the MLR; statistics have the same noncentral chi-square

distribution with p degrees of freedom and the noncentrality paramejgs, equal to,

(5.18) 03 (V) 'V, ~1,G, ,{E,n.G (V) 'G, )} Gy J(Vy) 03
wherew, = G, p,. If g, = p, both MSDQy and MLR; statistics are asymptotically identical
because SP= LR;."® On the contrary, if g> p, MSD; statistics have more degrees of
freedom than MLR statistics even if both statistics have the same noncentrality parameter
under H. These results imply that when g p, MLR; (or LR;) statistics have a better
power against HMthan MSD (or SD,) statistics. However, it is also important to note that
MSD; statistics can have a better power to detect misspecifications other than parameter

instability.

6. CONCLUDING REMARKS
This paper has developed alternative GMM tests which can be obtained usingd-any
consistent estimator. The tests are robust to the distributions of the estimators used, and share
the same asymptotic power properties with the tests based on efficient estimators. The
alternative tests are also easy to perform. In particular, the statistics for testing orthogonality
conditions can be computed by auxiliary regressions when the sample moments involved are

serially uncorrelated. In the context of CM testing, the approach of this paper can be

3 Observe that &8,)'(V,)'g,(8,) = 0 if g, = p.
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regarded as a generalization of Wooldridge’s (1990, 1991). However, the former can apply to
a wider range of econometric models than the latter.

This paper has focused on two types of tests: one class is for the tests asymptotically
equivalent to the Hansen test, and the other for the tests equivalent to the EHS test. These
two types of testing procedures have been extended to the contexts of CM testing and
structural stability testing. It has been shown that many existing tests are members of the two
classes computed with particular estimators. Therefore, the approach of this paper is general
enough to encompass those of many previous studies.

The test procedures developed in this paper could be extended to many other cases.
For example, they may apply to tests of structural change in cases where the structural
breakpoint is unknown. Recently, Andrews (1993) developed a test which applies to such
cases. Using his approach, researchers should first determine all the possible breakpoints and
compute the statistics (LR, Wald or LM) of AF corresponding to each point. Then, the
maximum value of these statistics serves as the statistic for testing the unknown structural
break. Unfortunately, the Andrews method is computationally expensive, because each
statistic for possible breakpoints requires a different estimator. The procedures developed in
this paper might be used to simplify the Andrews method, because with them all of the
statistics required for his method can be computed with the sArmmnsistent estimator.

Further study on this line would be worth pursuing.
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APPENDIX

PROOF OFPROPOSITION3. Similarly to the proof of Proposition 1, we can easily establish
the asymptotic equivalence between, %,,)* b; and Th'Q(V,,B;,) b;. Therefore, the
equivalence between,and MD;(6) immediately follows. We now determine the sign of
MD-(8). Define B,(8) = ab,_(6)/d8' and C,(8) = ac,(0)/d9'; and let B, = B,(8). Then,

Proposition 2 implies thattQ(V,,,B;) by = b,/Q(V"B,)b,. That is,

(A1) MD, = T[:QV,Gpé, - b.Q(V,s,B )b, ] .
Let Q.= VI -VIVVE Define r(6) = c,(6) - VIV 'b,(6) and R (8) = C,(6) -
VIVIIB,(6); and let, = r,(8) and R, = R (8). Let SSE be the sum of squared fitted
values (SSF) from a regression of [B/\")* 1 "(Q,)*]' on § = diag[(V})*B,.,(Q,)*], and let
SSF, be SSF from a regression of BV ™t '(Q,)*]' on S = [B,' (VI R.(Q,)"]'. After

some algebra, we can show that MB)/T equals:

FuQn Fy + B,(Vi) B, 1B, (Vi) 'B,) "B, (V) b,

m-—"m m

(AZ) _ [E,;(Vb,Z)_lém+f,ilg,;lll’ém][B,;(Vb’Z)_lém-'-RrﬁlQ;llRm]_l[érﬁ'(Vbb)_lb’\m-'-R;Q;llfm]
= SSF, - SSF, .
Since all the columns of Sie in the column space of,SSSFE, = SSE. |

The following lemma is useful to prove Proposition 3.

LEMMA 1. We assume that, 0. LetW (6) = Q. - R(0)[G.(6)'V'G.(8)]'R,(6)’;

and define:
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(A3) Ny = F(®)F

where T, =r (8) and®, = W _(8). Then, Nl = N;.

PrOOF Let L; = [0(0,0y),1(04)], where 0(Q,q,) is the @ % g, zero matrix and 1(gd.)
is the @ x q, identity matrix; and let L = [0(Q.-P» G, +P>), 1(0.-P-:0:-P,)]- Let P(M) =
M(M'M)*M' denote the projection onto the column space of an arbitrary matrix M. Then,

using the fact that.g= VQ(V,GT)QT, we can show:
(A.4) N, = Tg,V "P(U)V "5, ; Ny* = Tg,V *"PUYV "%, ,

where U = V*Q(V,G,)L," and U, = V*Q(V,G,)L,. Since the columns of Gform a base for
the null space of Q(V,Q, Lemma A.5 of Newey (1985a) implies that Rank(¢
Rank(G,L,) - p = q - p,. Similarly, we can show that Rank{U= q, - p,. Therefore, both
matrices U and U, have the same rank. Then since all the columns péng in U, we must

have P(U) = P(U,). |

PROOF OFPROPOSITION4. The first-order condition fof and a little algebra show that:

(A.5) GlV'g, =B Wb +RQF =0.

m-m- m

Substituting (A.5) into (A.2) yields:

iMDT(é)

FoQ P+ b (Vi) B [B (Vi) B 17'B. (Vi b

(A6)
= 700,10, + R,[B, (Vi) B,I"R,1Q,7, .

Applying the usual matrix inversion rule, we obtain:
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(A7) Q,%,9, =[Q, + R[B,Vy BI'R1".

Substituting (A.7) into (A.6) and applying Lemma 1 yield part (i). Similarly, we can show
part (ii). [

PROOF OFPROPOSITIONS. Define F = [R/, F/]’, where = [l ] and F = [-

pxp? OPX(Q'P
CN U)EENe U)ol LEL G = FO, Ge = FG; and V; = FV;F, whereg = g;(8),

GT = G,(6) and VT = V,(8). Since F is a nonsingular square matrix, we should have:

(A.8) OMI(0) = Tgr (V) ' - (Vo) 'GUGHV) G "GV gy -
Note that
A A A~ / ~
. gF = F n ; F = 0 ; - - / ~ /
ch q-p)xp FcVTFb FcVTFc

Substituting (A.9) into (A.8), and using the fact thq,f% is invertible, we can show that
(A.10) OMJI®) = T(F,8)(FV,F)\(F &, .

Then since [y = T'ZL A G, and RV.F = T'ZL AL G0/, the conclusion of Proposition

5 results. [
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