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1. INTRODUCTION

This paper is concerned with model specification testing based on the generalized

method of moments (GMM). Most econometric models imply moment conditions, that is,

zero-expectation restrictions on certain functions of data and a vector of unknown parameters.

Researchers can estimate the parameter vector by exploiting information about it contained in

the sample analogue of the moment conditions. A GMM estimator is obtained by minimizing

a quadratic function of sample moments. The class of GMM estimators is wide enough to

include conventional estimators, such as maximum likelihood (ML), generalized least squares

and instrumental-variables estimators. The consistency of an estimator crucially depends on

the legitimacy of the moment conditions involved, so it is important to test them. In the

GMM framework, violation of moment conditions can be detected by examining how far

sample moments evaluated at an estimator diverge from zero.

The purpose of this paper is to develop statistics whose asymptotic distributions are

asymptotically independent of those of the estimators used to compute them. In general, the

distribution of a GMM statistic depends on what estimator is used. The distribution of the

estimator should be considered in order to formulate a statistic which is asymptotically chi-

squared under the null hypothesis that the moment conditions to be tested are legitimate.

Newey (1985a, 1985b) provides a general approach to be used to derive relevant statistics

when the distributions of the estimators are known. Computation of statistics following his

approach is however complicated if the estimator is inefficient under the null hypothesis.

This paper provides a unified approach by which tests robust to the distribution of the

estimators used can be constructed. All that is required for the tests is√T-consistency of the
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estimators. The distribution of the estimators need not be known. Wooldridge (1990, 1991)

has previously considered such tests in the context of conditional-moment (CM) testing. The

link between his method and that developed in this paper is also considered.

Popular GMM tests, such as the overidentifying-restriction tests of Hansen (1982), CM

tests of Newey (1985b) and Tauchen (1985), and the subsets-of-moment-conditions tests of

Eichenbaum, Hansen and Singleton (1988), typically require estimators which are efficient

under the null hypothesis. These statistics are easy to compute once the efficient estimators

become available. The approach developed in this paper provides convenient alternative tests.

That is, researchers can test for model specification using any initial consistent estimators.

There is no need to compute efficient estimators before models are tested. Further, the

alternative tests preserve the same asymptotic power properties as those based on efficient

estimators. The tests would be particularly useful for cases in which efficient estimators are

hard to compute, e.g., nonlinear simultaneous-equations models with different instruments for

different equations [see Amemiya (1977)], or the asset pricing model recently considered by

Heaton (1995).

This paper is organized as follows. Sections 2 and 3 set out the basic approach. In

section 2, we consider a class of tests which are asymptotically identical to the Hansen (1982)

test under local alternatives. An important characteristic of the tests in this class is that the

statistics share the same functional form even if they are computed with different√T-

consistent estimators. Section 3 studies a similar type of tests in cases in which only a subset

of moment conditions is to be tested. For such cases, Eichenbaum, Hansen and Singleton

(1988) -- hereafter denoted by EHS -- proposed a statistic which is an analogue of the
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likelihood ratio (LR) for ML models. Section 3 derives a class of tests which are

asymptotically identical to the EHS test. It is also shown that the Wald-type tests of Newey

(1985a) for testing subsets of moment conditions belong to the same class.

Sections 4 and 5 discuss several applications. Section 4 develops the regression-based

CM tests which can apply to a broader setting than those of Newey (1985b), Tauchen (1985)

and Wooldridge (1990, 1991). The link between their tests and the new tests is also

discussed in their setting. Section 5 considers structural stability testing developed by

Andrews and Fair (1988), Hoffman and Pagan (1989), Ghysels and Hall (1990a, 1990b).

Alternative tests based on√T-consistent estimators are discussed. Some concluding remarks

follow in section 6.

2. TESTING MOMENT CONDITIONS

Suppose that an econometric model implies the null hypothesis,

here zt is a vector of random variables,θo is a p × 1vector of unknown parameters, and

(2.1)

g(zt,θ) is a q × 1 (q≥ p) vector of functions of zt andθ. We assume thatθo is an interior

point of a compact set,Θ ⊂ Rp, and that g(zt,θ) is differentiable and bounded almost

everywhere onΘ. The stochastic process, {zt: t = ... , -1, 0, 1, ...}, is stationary. The

function g(zt,θ) may include the score vector of a log-likelihood function. In typical cases,

g(zt,θ) denotes the product of instrumental variables and the error term in a model, and Ho

implies the orthogonality between them. Such cases are discussed extensively in section 4.

We define the sample average of g(zt,θ) by:
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whereZT = {z1, ... , zT} denotes a data set. When Ho is correct, a consistent GMM estimator

(2.2)

of θo can be obtained by minimizing TgT(θ)′ΞgT(θ) with respect toθ, whereΞ is a q × q

positive semi-definite nonstochastic weighting matrix. Let V denote the asymptotic

covariance matrix of√TgT(θo); and letθ̃ be the GMM estimator obtained by using V-1 as a

weighting matrix. Hansen (1982) shows thatθ̃ is the optimal estimator which has the

smallest asymptotic covariance matrix among GMM estimators based on Ho. In practice, a

consistent estimator of V, say VT, should be used to computeθ̃. For the consistent estimators

of V, see Newey and West (1987b) or Andrews and Monahan (1992). We hereafter do not

distinguish between V and VT for notational convenience. It is also important to note that

throughout this paper, all the tests are assumed to use the same estimator VT. When different

estimators are used for individual tests, the numerical equivalence results for some tests

discussed below may not hold, even though their asymptotic equivalence remains unaffected.

Ho should be tested in order to check the consistency of GMM estimators. Before

discussing the tests, we consider the alternatives to Ho under which the distributions of the

relevant statistics can be analyzed. We define a sequence of local alternative hypotheses by

H = {H T}
∞
T=1 where,

(2.3)
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Newey (1985a) provides sufficient conditions under which (2.3) holds.1

Define GT(θ) = ∂gT(θ)/∂θ′, and let Go = plim GT(θo). We also define a matrix

operator:

whereΞ andΓ are conformable matrices andΞ is invertible. With these notations and

(2.4)

definitions, it can be shown that under plausible regularity conditions,

where "→" means "converges in distribution,"θ̂ is any√T-consistent estimator ofθo,
2 and g̃T

(2.5)

(2.6)

(2.7)

= gT(θ̃). The proof and the detailed conditions required for (2.5)-(2.7) can be found in

1 Suppose that the dataZT has a well-defined density functionp(ZT,ηT), whereηT is a

vector of parameters depending on the sample size T. Let E(•η) be the expectation operator

whenηT = η ≠ ηo; and let E(•) be the expectation operator whenηT = ηo. We assume that

Ho holds if ηT = ηo; that is, E[gT(θo)] ≡ ∫gT(ZT,θo)p(ZT,ηo)dZT = 0. If we specifyηT = ηo +

ρ/√T, Taylor’s approximation of E[gT(θo) ηT] aroundηo yields (2.3) withω = Kρ, where K =

E[gT(θo)∂ln{ p(ZT,ηo)}/ ∂η′].

2 That is,√T(θ̂ - θo) = Op(1). Note that any GMM estimator based on all or some of

the moment conditions in (2.1) is√T-consistent under H .
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Newey (1985a).3

Onceθ̃ is computed, Ho can be easily tested by the Hansen (1982) statistic, JT = Tg̃TV
-

1g̃T. The conditions (2.5) and (2.7) imply that under H , JT has a noncentral chi-square

distribution with (q - p) degrees of freedom and noncentrality parameterλ = ω′Q(V,Go)ω.

There are numerous GMM tests which are asymptotically identical to JT. In particular,

Newey (1985a) shows that all the GMM tests with (q - p) degrees of freedom are equivalent

to the Hansen test whatever GMM estimators based on the moment conditions in (2.1) are

used. However, each of the statistics with (q - p) degrees of freedom should be constructed

with knowledge of the distribution of the estimator used. We below derive a class of

statistics alternative to JT which are robust to the distributions of estimators.

PROPOSITION 1. Define a modified version of the Hansen statistic by:

where ĝT = gT(θ̂) and ĜT = GT(θ̂). Then, MJT(θ̂) = JT + op(1), for any√T-consistent

(2.8)

estimator,θ̂.

PROOF. Taylor’s expansion of gˆT aroundθo yields:

whereθL is a vector betweenθ̂ andθo. Since plimθL = plim θ̂ = θo, (2.6) should imply that

(2.9)

3 For the proof of (2.5), Newey assumes that {zt: t = ... , -1, 0, 1, ...} is strictly

stationary. However, we may relax this assumption, following Gallant and White (1988).
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plim GT(θL) = Go. Then, premultiplying both sides of (2.9) by VQ(V,Gˆ
T), and using the fact

that Q(V,ĜT)GT(θL) = Q(V,Go)Go + op(1) = op(1), we obtain:

Hence, (2.7), (2.10) and the fact that Q(V,Gˆ
T)VQ(V,ĜT) = Q(V,ĜT) imply the result.

(2.10)

There exist numerous different MJT statistics depending on the choice ofθ̂. While

each of the statistics may have different finite-sample properties, any of them should be at

least asymptotically as powerful as JT. It is also important to note thatθ̂ need not be a GMM

estimator based on the moment conditions in (2.1). All that is required is its√T- consistency,

and furthermore, its asymptotic distribution does not affect that of the corresponding MJT.

This result might be used when a researcher wants to compare his/her estimates to those of

other studies for the same model. A statistic of the form of MJT can be constructed with the

estimates from other studies.

When a subset of parameters inθ appears in only a subset of moment functions, the JT

and MJT statistics have some interesting properties. For example, assume that g(zt,θo) takes

the form:

whereθo = [θo,1′,θo,2′]′. Here b(zt,θ) and c(zt,θ) are qb × 1 and qc × 1 vectors, respectively,

(2.11)

and qb + qc = q. The p1 × 1 parameter vectorθ1 includes a subset of parameters inθ, while

the p2 × 1 (p2 = p - p1) vectorθ2 includes the parameters which appear only in c(zt,θ). Note

that θ1 = θ if p2 = 0. We assume that qb ≥ p1, so thatθ1 is identified with the moment
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conditions on b(zt,θ1) only. Some examples under which g(zt,θ) may take the form of (2.11)

are found in EHS, Ahn and Schmidt (1995) and Heaton (1995).

Define bT(θ1) and cT(θ) similarly to gT(θ), and partition GT(θ) such that:

where BT,2(θ1) = 0. Corresponding to bT(θ1) and cT(θ), we also divide V into [Vij], where i, j

(2.12)

= b, c. Then, we obtain the following result.

PROPOSITION 2. Let θ̃ = [θ̃1′,θ̃2′]′ and g̃T = [b̃T′,c̃T′]′. Let θ̌1 be the GMM estimator

which minimizes TbT(θ1)′(Vbb)
-1bT(θ1). Let θ̂ = [θ̂1′,θ̂2′]′. If p2 = qc, the following numerical

equalities hold:

where b̌T = bT(θ̌1), b̂T = bT(θ̂1) and B̂T,1 = BT,1(θ̂1).

(2.13)

The proof is omitted because the first and second equalities are the "separability"

result of Ahn and Schmidt (1995), and the last equality can be also shown by tedious but

straightforward algebra. The novel finding here is that the "separability" result also applies to

MJT statistics. If p2 = qc, both JT and MJT depend on neither the moment function cT(θ) nor

the estimators ofθo,2. This implies that cT(θ) can be used to identifyθo,2, but it does not

contain any useful information about the possible violation of moment conditions on c(zt,θo).

An important example for which Proposition 2 is particularly relevant is the nonlinear
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simultaneous-equations models. In linear models, the three-stage least squares estimates

remain unaffected whether the exactly identified equations are removed or not. Proposition 2

implies that the same result applies to nonlinear models. Furthermore, JT or MJT computed

for the entire system of a model (numerically) equal JT or MJT for the sub-system with

overidentified equations only. Therefore, some caution is required when JT or MJT statistics

are used for the specification of simultaneous-equations models. They have no power to

detect any possible misspecification of exactly identified equations.

3. TESTING SUBSETS OF MOMENT CONDITIONS

In some cases, researchers may have prior information about the directions of

misspecification which restrict violation of Ho to a certain subset of moment conditions. In

such cases, statistics designed to focus their power on the moment conditions to be tested

may have better power properties than the Hansen statistic for testing the entire set of

conditions under Ho. Such statistics have been considered by EHS and Newey (1985a). In

this section, we derive a class of tests which share the same asymptotic local power with

theirs.

We consider cases in which the moment function g(zt,θ) is of the form (2.11).

Suppose that a researcher wishes to test Ho against,

By the nature of the model, the parameter vectorθo,2 is identified only under Ho while θo,1 is

(3.1)

under both Ho and H*
A. Note thatθ̌1 is the optimal GMM estimator ofθo,1 under H*

A. When

p2 = 0, θ̌1 denotes the optimal GMM estimator ofθo under H*
A.
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The EHS statistic is given by:

which is asymptotically chi-squared with (qc - p2) degrees of freedom under Ho. Newey and

(3.2)

West (1987a) [also Gallant and Jorgenson (1979)] have considered a similar type of GMM

statistics in the context of parametric-restriction testing. In fact, we may also regard DT as a

statistic for testing the parametric restrictions imposed by the model underlying Ho. To see

why, consider cases in which p2 = 0. Define an auxiliary parameter vectorδo = E[c(zt,θo)];

and letγo = [θo′,δo′]′. Let hT(zt,γ) = [bT(θ)′,(cT(θ) - δ)′]′. Note that under both Ho and H*
A,

E[hT(zt,γo)] = 0. Define the restricted GMM estimator byγ̃, which solves the problem: minγ

hT(γ)′V-1hT(γ) subject toδ = 0. Corresponding toγ̃, we define the unrestricted estimator of

γo by γ̇. Then, the LR-type statistic of Newey and West (1987a) for testing the hypothesisδo

= 0 is given by:

Obviously, hT(γ̃)V-1hT(γ̃) = g̃TV
-1g̃T becauseγ̃ = [θ̃′,0]′. Furthermore, we can show that

(3.3)

hT(γ̇)′V-1hT(γ̇) = b̌T(Vbb)
-1b̌T, since hT(γ) satisfies the conditions for Proposition 2 to hold.

Substituting these results into (3.3) yields DT.

The EHS test may have poor power properties against certain alternatives if p2 ≠ 0.

For this case, let cT(θ) = [c1,T(θ)′,c2,T(θ)′]′ where dim[c1,T(θ)] = p2. Define bm(θ) =

[bT(θ1)′,c1,T(θ1,θ2)′]′ and cm(θ) = c2,T(θ), suppressing subscript "T" for notational convenience.

The partition of cT(θ) is arbitrary, except that it is chosen such that Rank[∂bm(θ)/∂θ′] = p

uniformly for θ ∈ Θ. According to bm(θ) and cm(θ), we partition V as [Vij
m ], where i, j =
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b, c. Let θ̌m be the GMM estimator which is the solution of the problem: minθ Tbm(θ)′(Vbb
m)-

1bm(θ). Since bm(θ) and θ̌m satisfy all the conditions of Proposition 2, we have Tbˇ
T′(Vbb)

-1b̌T

= Tb̌m′(Vbb
m)-1b̌m, where b̌m = bm(θ̌m). Therefore, we obtain the equality:

Note that DT takes the form of DT for testing the null hypothesis E[c2,T(θo)] = 0 against the

(3.4)

alternative hypothesis E[c2,T(θo)] ≠ 0 while the condition E[c1,T(θo)] = 0 is falsely assumed to

be legitimate under both Ho and H*
A. This implies that the test may not have power against

E[c1,T(θo)] ≠ 0 when p2 ≠ 0.

A practical disadvantage of DT is that it requires computation of bothθ̃ and θ̌1.

However, similarly to the MJT statistics, we can derive a class of statistics, each of which is

asymptotically equivalent to DT and requires one estimator only.

PROPOSITION 3. Let θ̂ = [θ̂1′,θ̂2′]′ be any√T-consistent estimator ofθo. Define a

modified version of DT by:

where b̂T = bT(θ̂1) and B̂T,1 = BT,1(θ̂1). Then, MDT(θ̂) = DT + op(1) under H . Further,

(3.5)

MDT(θ̂) ≥ 0.

PROOF. See the Appendix.

Proposition 3 indicates that for any√T-consistentθ̂, MDT(θ̂) has the same local power
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as DT. This result is not affected even if the two terms in MDT are computed using different

√T-consistent estimators. However, it is desirable to use the same estimator, because

otherwise the modified statistics may have negative values.

Incorporating H*
A, we may specify H as H* = {H *

T}
∞
T=1 where,

Newey (1985a) derives the Wald-type GMM statistics which are designed to have maximum

(3.6)

power against H* when p2 = 0. We here introduce his tests allowing p2 > 0. Let BT(θ) =

[BT,1(θ1),0] and CT(θ) = [CT,1(θ1),CT,2(θ)]. Define:

Then, one of Newey’s statistics is obtained by:

where r̃T = rT(θ̃), Ψ̃T = ΨT(θ̃) and (•)+ is the Moore-Penrose g-inverse. Following the proof of

(3.7)

Proposition 3 of Newey (1985a), we can show that under H*, NT has a noncentral chi-square

distribution with (qc - p2) degrees of freedom and noncentrality parameterλ = ωc′Ω-1ΨoΩ-1ωc,

whereΨo = plim ΨT(θo).

When p2 = 0, the Moore-Penrose g-inverse in NT can be replaced by the usual inverse.
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Furthermore, for the same case, Newey (1985a) derives an alternative statistic which is

constructed withθ̌1 but asymptotically identical to NT:

where řT = rT(θ̌1), ŘT = RT(θ̌1), B̌T = BT(θ̌1) andΨ̌T = ΨT(θ̌1). Ahn and Schmidt (1995) show

(3.8)

that ANT equals the Wald statistic for testing the hypothesisδo = E[c(zt,θo)] = 0 which is

constructed with the unrestricted GMM estimatorγ̇ defined above. Therefore, in cases where

p2 = 0, the asymptotic equivalence between DT and ANT (and NT) follows from Theorem 2 of

Newey and West (1987a).

When p2 ≠ 0, it can be shown that similarly to DT, NT takes the form of NT for testing

E[c2,T(θo)] = 0. [See Lemma 1 of Appendix.] This remarkable similarity between DT and NT

suggests that both statistics should be related for any p2. In fact, we obtain the following

result.

PROPOSITION 4. (i) MDT(θ̃) = NT. (ii) When p2 = 0, MDT(θ̌1) = ANT.

PROOF. See the Appendix.

Proposition 4 implies that both NT and ANT belong to the class of MDT statistics.

Therefore, Propositions 3 and 4 formally establish the asymptotic equivalence between DT and

NT (and ANT when p2 = 0). Whenever NT and ANT have desirable power properties (e.g.,

under H* with p2 = 0), so do DT and any MDT statistic.

4. CONDITIONAL MOMENT TESTS
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Econometric models with exogenous variables usually imply conditional moment (CM)

restrictions. The specification of the models can be tested by checking the legitimacy of such

restrictions. Regression-based CM tests have been popular in the literature. For example,

Newey (1985b) and Tauchen (1985) examine CM tests of ML models with independently

distributed data. Wooldridge (1990, 1991) considers CM tests of conditional mean or

variance specifications.4 In particular, his CM statistics are computed with any√T-consistent

estimator, similarly to the tests considered in previous sections. In this section, extending the

approach developed in previous sections, we derive alternative regression-based CM tests,

which may apply to a broader setting than those of previous studies.

Suppose that an economic model implies the CM hypothesis:

where ujt is a scalar function of zt andθo, and xjt is a vector of variables exogenous or

(4.1)

predetermined with respect to ujt. Each of the xjt (j = 1, 2, ... , k) includes a subset of

variables in zt. In multivariate time-series settings, some or all of the past values of zt could

be included in the xjt. Define the vector of all the distinct variables in at least one of the xjt

by x*
t; and let ut(θo) = [u1t(θo), ... , ukt(θo)]′. As in the previous studies mentioned above, we

also assume "No-Autocorrelation" among the ut(θo):

(NA) E[ut(θo)ut+i(θo)′ x*
t, x*

t+i] = 0.

Assumption NA is appropriate for models with cross-sectional data. It may be also valid for

time-series dynamic models which impose martingale-difference restrictions on both first and

4 An excellent survey on CM tests can be found in White (1994, Ch. 9 - 10).
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second order moments. [For such cases, see Wooldridge (1991).]

Each of the xjt may be or may not be the same for j = 1, 2, ... , k. Inorder to

distinguish these two possible cases, we can make two alternative assumptions about

exogeneity, which we refer to as "Strong Exogeneity" (SE) and "Weak Exogeneity" (WE)

assumptions, respectively. Stated formally:

(SE) For any j = 1, 2, ... , k, xjt = x*
t.

(WE) For some j, xjt ≠ x*
t.

Assumption SE, which has been adopted in previous studies on CM tests, implies that if a

variable is exogenous to one of the ujt(θo), it is also exogenous to the others. There are many

models which may imply Hco with SE. Examples include nonlinear regression models and

quasi-ML models using densities in the linear exponential family. [See White (1980) and

Gourieroux, Monfort and Trognon (1984).] For these models, the ujt(θo) denote (generalized)

residuals, each of which has zero expectation conditional on a common set of exogenous

variables, x*t.

Assumption WE means that there exist some variables which are exogenous to some

but not all of the ujt(θo). One leading example of the models that imply Hc
o with WE is the

nonlinear (or linear) simultaneous-equations model with a different set of instrumental

variables for each equation. [See Amemiya (1977) and Schmidt (1990).] For this model, ujt

denotes the residual of the j’th equation, and xjt the vector of predetermined variables in the

same equation. Another example for WE is the panel data model with sequential moment

restrictions, which is considered by Chamberlain (1992). For his model, the subscripts "t"

and "j" denote cross-sectional unit and time, respectively, and xjt ⊂ xj+1,t. Allowing WE, the
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analysis adopted in this section is general enough to encompass those of previous studies.

If H c
o is correct, functions of xjt should be uncorrelated with ujt(θo) for any j. Any

evidence against these orthogonality conditions implies violation of Hc
o. Based on this

observation, we can derive appropriate tests of Hc
o. For each j = 1, 2, ... , k, letλjt = λ(xjt) be

an arbitrary 1 × qj vector of functions of xjt, whereΣk
j=1qj = q > p; and letΛt = Λ(x*

t) =

diag(λ1t, ... , λkt). When assumption SE holds,Λ need not be a block-diagonal. Specification

of the model underlying Hco can be checked by testing the orthogonality betweenΛt and

ut(θo):

Here, the "criterion" matrixΛt may be chosen such that it also depends onθo or (possibly) a

(4.2)

vector of nuisance parameters (say,πo). Such a case may arise ifλjt is a function of

E[∂ujt(θo)/∂θ′ xjt] and/or E[ujt(θo)ujt(θo)′ xjt], as we discuss below. In this case, a GMM

statistic for testing (4.2) can be obtained with consistent estimates of theΛt [e.g., Λt evaluated

at √T-consistent estimates ofθo andπo]. Of course, tests with the estimatedΛt are

asymptotically equivalent to those with the "true"Λt.

Hansen methods can be used to test the orthogonality condition of form (4.2). In

particular, we can compute a Hansen statistic via an auxiliary regression. Using the same

notation as we defined above, let gT(θ) = T-1ΣT
t=1Λt′ut(θ) and GT(θ) = T-1ΣT

t=1Λt′Ut(θ), where

Ut(θ) = ∂ut(θ)/∂θ′. We assume that theΛt are chosen such that Rank[GT(θ)] = p uniformly

for θ ∈ Θ. This assumption ensures that none of the orthogonality conditions in (4.2) are

redundant. Letθ̃ be the optimal GMM estimator based on (4.2). Define:

Since we assume NA, VT(θ̂) is a consistent estimator of the asymptotic covariance matrix of
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√TgT(θo), for any √T-consistentθ̂. When VT(θ̃) is chosen, it can be easily shown that a

(4.3)

Hansen statistic is obtained by T times the uncentered R2 (R2
u) from the regression of one on

ut(θ̃)′Λt.

Alternatively, we can use modified Hansen statistics which are computed with anyθ̂.

Let OMJT(θ̂) denote MJT(θ̂) for testing the orthogonality conditions in (4.2) computed with

VT(θ̂). Interestingly, this statistic can be also obtained via regression-based procedures, which

are quite similar to Wooldridge (1990). To show how, we partitionΛt into [Λb,t,Λc,t] such that

the number of columns ofΛb,t equals p, the number of parameters inθ. Define ût = ut(θ̂) and

Ût = Ut(θ̂). Let Λr
c,t be the t’th residual matrix [or row vector if ut(θ) is scalar] from the two-

stage least squares (2SLS) matrix regression ofΛc,t on Λb,t with the instrument Uˆ t :

Then, we obtain the following result.

(4.4)

PROPOSITION 5. For anyθ̂, OMJT(θ̂) is computed by TR2u from the regression of

PROOF. See the Appendix.

(4.5)

Since OMJT statistics do not requireθ̃, they are easier to compute than the Hansen

statistic in many cases. For example, consider the specification test of the nonlinear (or
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linear) simultaneous-equations model:

whereαj is a pj × 1 vector of parameters in the j’th equation, and ujt is the residual of the j’th

(4.6)

equation. Letλjt (j = 1, 2, ... , k) be the row vector of instruments for the j’th equation; and

partition it into [λb,jt,λc,jt] such thatλb,jt includes only pj variables. For each equation, the

parameter vector (αj) can be consistently estimated by the nonlinear two-stage least squares

method of Amemiya (1974). For example, letα̂j be the nonlinear 2SLS estimator with

instrumentλb,jt. Let λr
c,jt be the residual vectors from the 2SLS regression ofλc,jt on λb,jt with

instruments∂fj(zt,α̂j)/∂αj′. Then, the specification of the model given in (4.6) can be tested by

TR2
u from the regression of one on [f1(zt,α̂1)λr

c,1t, ... ,fk(zt,α̂k)λr
c,kt].

5

We now examine the relationship of OMJT tests with the CM tests of previous studies,

mainly under Wooldridge’s (1990, 1991) framework. When assumption SE holds, we may

define∆t(θ) = E[Ut(θ) x*
t]. Let Wt(θ,πo), t = 1, 2, ... , T, be a k × kpositive definite matrix

which may be a function of x*t, θ and a nuisance parameter vectorπo. For analytical

convenience, we assume thatπo is known.6 Let θ* be the GMM estimator which satisfies:

When data are independently distributed,θ* is efficient if Hc
o holds and Wo

t ≡ Wt(θo,πo) =

(4.7)

5 This simplification is possible becauseΛb,t, Λc,t, Ût andΛr
c,t are all block-diagonal.

6 Whenπo is unknown, we may replace it by a√T-consistent estimator, without

changing the result obtained below.
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E[ut(θo)ut(θo)′ x*
t]. [See Chamberlain (1987).] For ML models,ΣT

t=1∆t(θ)[Wt(θ,π)]-1ut(θ) may

represent the score vector while the ut(θ) are generalized residuals. In this case,θ* is the ML

estimator ofθo.

Let Φt be a k × s"indicator" matrix of functions of x*t (and possiblyθo or πo).
7

Define:

where Wt(θ) = Wt(θ,πo). Note that if Hc
o is correct,ζT(θ̂) must be close to zero for any√T-

(4.8)

consistentθ̂. Therefore, Wald-type tests of Hc
o can be constructed based onζT(θ̂). In cases

whereθ* is the ML estimator, Newey (1985b) and Tauchen (1985) show that a Wald statistic

based onζT(θ*) is obtained by TR2u from the regression of one on ut(θ*)′[Wt(θ*)]-1∆t(θ*) and

ut(θ*)′[Ŵt(θ*)]-1Φt.

For the cases whereθ* is not the ML estimator, we may construct alternative Wald

statistics, following Wooldridge’s (1990) approach. Let∆o
t = ∆t(θo), and define:

Consider the statistic:

7 WhenΦt depends onθo andπo, we replaceΦt by its consistent estimator.
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where M̂1 and M̂2 are consistent estimators of M1 and M2, respectively. ExpandingζT(θ̂) and

(4.9)

ξT(θ̂,M̂1,M̂2) aroundθo, we can show that:

for any √T-consistentθ̂. Therefore, a Wald test based onζT(θ̂) is asymptotically equivalent

(4.10)

to that based onξT(θ̂,M̂1,M̂2). Define:

and D = plim D(θo). Corresponding toΦt and∆o
t, we partition D into [Dij], where i, j = 1, 2.

Then, it is straightforward to show that the asymptotic covariance matrix of√TξT(θo) is given

by:

Letting D̂ = [D̂ij] be a consistent estimator of D, define a consistent estimator ofΠ by:

Then, we can define a Wald statistic by8:

Depending on the choices ofθ̂, M̂1, M̂2 and D̂, we can have many different Wald test

(4.11)

statistics. An interesting point here is that all the Wald statistics of form (4.11) are

8 See Corollary 9.10 of White (1994).
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asymptotically identical because of (4.10).

Suppose that Wot = E[ut(θo)ut(θo)′ x*
t]. Then, M1 = D11 and M2 = D21, so that we have

Π = D22 - D21(D11)
-1D12. Based on this observation, we define Dˆ * = [(D̂*)ij] = D(θ*), M̂*

1 =

(D̂*)11 and M̂*
2 =(D̂*)21. Then, we can show that WT(θ*,M̂*

1, M̂*
2,D̂

*) is obtained by the

procedure proposed by Newey (1985a) and Tauchen (1985). This result implies that their

method can be used even ifθ* is not the ML estimator. It requires only that Wot =

E[ut(θo)ut(θo)′ x*
t].

When Wo
t ≠ E[ut(θo)ut(θo)′ x*

t], the regression-based tests of Newey and Tauchen may

have the wrong size under Hc
o. In order to obtain the robust statistic of Wooldridge, define

M̂W,1 = T−1ΣT
t=1∆̂t′(Ŵt)

-1∆̂t, M̂W,2 = T-1ΣT
t=1Φt′(Ŵt)

-1∆̂t and D̂= D(θ̂), where∆̂t = ∆t(θ̂), Ŵt =

Wt(θ̂). The Wooldridge statistic is given by WT(θ̂,M̂W,1,M̂W,2,D̂), which can be obtained by an

auxiliary regression. LetΦ̃r
t (t = 1, 2, ... , T) be the residual matrix from the regression ofΦ̃t

= (Ŵt)
-½Φt on ∆̃t = (Ŵt)

-½∆̂t ; that is,

where "Σt" means "ΣT
t=1." Then, WT(θ̂,M̂W,1,M̂W,2,D̂) is computed by TR2u from a regression of:

(4.12)

where ũt(θ̂) = (Ŵt)
-½ut(θ̂). This statistic is asymptotically equivalent to that of Newey and

(4.13)

Tauchen if Wo
t = E[ut(θo)ut(θo)′ x*

t].

Since the asymptotic distribution of WT(θ̂,M̂1,M̂2,D̂) is robust to its components, we

may use different Mˆ 1 and M̂2. Let us alternatively choose Mˆ
O,1 = T−1ΣT

t=1∆̂t′(Ŵt)
-1Ut(θ̂) and

M̂O,2 = T-1ΣT
t=1Φt′(Ŵt)

-1Ut(θ̂). Then, it can be shown that the Wald statistic WT(θ̂,M̂O,1,M̂O,2,D̂)
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numerically equals OMJT(θ̂) with Λb,t = (Ŵt)
-1∆̂t andΛc,t = (Ŵt)

-1Φt. That is, OMJT statistics

(and also the Hansen statistic) for testing the hypothesis, E{[∆o
t,Φt]′(Wo

t)
-1ut(θo)} = 0, are

asymptotically identical to those of Wooldridge’s. This remarkable equivalence indicates that

OMJT statistics are a generalization of the CM statistics of Newey, Tauchen and Wooldridge.

One important advantage of OMJT statistics over Wooldridge’s and others is that they

can be computed with anyΛb,t. As Wooldridge (1990) noted, extensions of his approach to

nonlinear simultaneous-equations models or rational expectation models might be limited,

because for such models analytical computation of∆t(θ) is complicated.9 Furthermore, the

Wald-type statistics of form (4.11) do not have particular power properties superior to OMJT

statistics. Newey (1985a, 1985b) shows that an optimal CM test whose power dominates that

of any other tests can be derived if information about the density function under alternative

specifications is available. Otherwise, any two CM tests with the same degrees of freedom

may dominate each other depending on the direction of local alternatives.

5. TESTING STRUCTURAL CHANGES

GMM tests of structural change in nonlinear models have been studied by Andrews

and Fair (1988), Hoffman and Pagan (1989), and Ghysels and Hall (1990a, 1990b). These

studies assume that a structural breakpoint is known where the sample is split into two

9 Nonparametric estimates of∆t(θo) may be used when assumption SE holds. However,

Wooldridge’s method may be inappropriate for the cases where only assumption WE holds.
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subsamples, and that both sizes of subsamples grow with that of the entire sample.10

Andrews and Fair (1988) -- hereafter denoted by AF -- consider Wald, LR and Lagrangean

multiplier (LM) tests for parameter stability over the entire sample. Hoffman and Pagan

(1989) and Ghysels and Hall (1990a) -- hereafter HP and GH (1990a), respectively --

independently propose post-sample predictive tests which are based on out-of-sample

moments evaluated at in-sample GMM estimates. Ghysels and Hall (1990b) -- hereafter GH

(1990b) -- examine a LR-type statistic which is constructed similarly to DT considered in

section 3. This section provides a unified approach to these tests of structural stability, based

on the results in sections 2 and 3.

Following the studies mentioned above, we assume that the sample is split into two

subperiods:

Let T2 = T - T1. Both T1 and T2 grow with T; that is, lettingτ1 = T1/T andτ2 = T2/T, we

(5.1)

assume that n1 = lim τ1 ≠ 0, n2 = lim τ2 ≠ 0 and n1 + n2 = 1. Let gj(zt,θ) be the qj × 1

moment functions for t∈ ϒj, where j = 1, 2. While q1 and q2 are equal in usual cases, we

may allow them to be different. Consider the three individual hypotheses:

10 See Andrews (1993) and Dufour, Ghysels and Hall (1994), for tests in cases where the

breakpoint is unknown.
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We define the "Stability" hypothesis by:

We assume that q1 ≥ p so thatθo can be consistently estimated with the first subsample only.

(5.2)

The asymptotic power of GMM tests may depend on the directions of possible

violation of Hs
o. We may consider three types of alternative hypothesis:

Which of these three is the appropriate one to be tested against Hs
o should be determined on

the basis of prior information about possible misspecifications. The alternative hypothesis HC
A

implies that the structural break has changed the true values of the parameters inθ. On the

contrary, HA
A or HB

A may be appropriate in cases where possible sources of model

misspecification other than parameter instability are also suspected. For example, consider a

dynamic regression model with moving-average errors, which can be estimated by GMM

using lagged dependent variables and other exogenous regressors as instrumental variables.

Suppose thatθ is the vector of coefficients of regressors, and that the gj(zt,θ) are the products

of instrumental variables and residuals. There are several cases in which GMM estimators

may appear to be unstable across two subsample periods. The first possible case is when

misspecifications of the order of moving average lead to the use of contaminated instrumental
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variables for both subsamples. For this case, HA
A would be the one that researchers should

consider. The second case is when a structural break increases the order of moving average

in the second period. Fewer instrumental variables remain legitimate for the second

subsample-period, because some lagged dependent variables that are predetermined in the first

subsample may become contaminated in the second period. Therefore, the GMM estimate of

θo with the second subsample could be biased if the same instruments are used for both

periods. That is, even ifθo may remain constant over time, estimates ofθo may vary

significantly over subsamples. If this possibility is of concern, researchers may have to

consider HB
A.

Incorporating the three possible alternative hypotheses, we may consider three types of

local alternatives under which asymptotic distributions of GMM statistics can be analyzed:

where g1(θ) and g2(θ) are subsample means of g1(zt,θ) and g2(zt,θ), respectively. We here

drop the subscript "T" for notational convenience. Define HA = {(H 1
T,H

2
T)}

∞
T=1, HB =

{(H 1
o,H

2
T)}

∞
T=1 and HC = {(H 1

o,H
3
T)}

∞
T=1. Note that HA encompasses HB while the latter

subsumes HC.

We first consider the tests of Hso against HA
A. The usual Hansen statistics (JT) or its

modified versions (MJT) may be used to test Hso. However, as GH (1990b) have shown, JT

has only a low power to detect violation of Hs
o when local alternatives are of the form HC. A
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standard response to this problem is to use the Hansen statistic constructed to test two sets of

subsample orthogonality conditions jointly.11 Define a dummy variable dt such that dt = 1 if t

∈ ϒ1 and dt = 0 otherwise. Let ft(θ) = [dtg1(zt,θ)′, (1-dt)g2(zt,θ)′]′ and,

Denote the asymptotic covariance matrices of√T1g1(θo) and√T2g2(θo) by V1 and V2,

(5.3)

respectively. Note that√T1g1(θo) and√T2g2(θo) are uncorrelated because dt(1-dt) = 0.

Therefore, the asymptotic covariance of√Tf(θo) equals Vf = diag(n1V1,n2V2). Both V1 and V2

can be separately estimated within subsamples. Then, a consistent estimator of Vf can be

computed based on the estimators of V1 and V2. For notational convenience, we denote the

consistent estimator of Vf by V̂f = diag(τ1V1,τ2V2).

Let θ̃f be the estimator which solves the problem: minθ Tf(θ)′(V̂f)
-1f(θ). Then, a

Hansen statistic for testing Hso is obtained by:

where the second equality results from the fact that Vˆ
f is block-diagonal. In order to find the

(5.4)

asymptotic distribution of SJT under HA, we assume that each subsample satisfies the

regularity conditions required for (2.5). Defineωf = [√n1ω2′,√n2ω2′]′. Then, it can be shown

that:

Therefore, all the results obtained in sections 2 and 3 can apply to the tests of Hs
o. Define

(5.5)

11 See Hamilton (1994) or GH (1990a).
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F(θ) and Fo similarly to GT(θ) and Go, respectively. With these notations and (5.5), we can

show that SJT has a noncentral chi-square distribution with (qa + qb - p) degrees of freedom

and noncentrality parameterλ = ωf′Q(Vf,Fo)ωf.

The modified Hansen statistic for testing Hs
o, which we denote by MSJT, is readily

available. For j = 1, 2, define ĝj = gj(θ̂) and Ĝj = Gj(θ̂) = ∂gj(θ)/∂θ′ whereθ̂ is any√T-

consistent estimator. Let fˆ = f(θ̂) = [τ1ĝ1′,τ2ĝ2′]′ and F̂= F(θ̂) = [τ1Ĝ1′,τ2Ĝ2′]′. For

notational convenience, define:

where "Σj" means "Σ2
j=1." Then, a little algebra shows that:

(5.6)

Under HA, any MSJT is asymptotically identical to SJT whateverθ̂ is used.

(5.7)

When prior information about the first subsample period indicates that the moment

condition for the first subsample period is legitimate, a test statistic of form DT can be used,

which we refer to as SDT. Let θ̌1 be the optimal GMM estimator ofθo under HB
A. Then, we

obtain:

which is proposed by GH (1990b). Alternatively, we may use the modified versions, MSDT,

(5.8)

of SDT constructed similarly to MDT statistics:

When we useθ̌1 and θ̃f to compute MSDT statistics, we can obtain the statistics ANT

(5.9)
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or NT. MSDT(θ̌1) is an analogue of ANT. Using the fact that G1(θ̌1)′(V1)
-1g1(θ̌1) = 0, we can

show that:

where ǧ2 = g2(θ̌1), Ǧ1 = G1(θ̌1) and Ǧ2 = G2(θ̌1). This statistic is exactly the post-sample

(5.10)

prediction statistic proposed by GH (1990a) and HA. This result implies that all the tests

proposed by GH (1990a, 1990b) and HA are asymptotically identical.

Since MSDT(θ̃f) is an analogue of NT, Proposition 3 of Newey (1985a) immediately

applies. That is, MSDT(θ̃f) is an optimal GMM test which has maximum power toward HB.

Therefore, SDT and any MSDT statistic should be also optimal. Both SDT and MSDT statistics

have the same noncentral chi-square distribution with q2 degrees of freedom and the

noncentrality parameter,λMSD, equal to,

where Gj,o = plim Gj(θo), for j = 1, 2.

(5.11)

As a final step, we consider the tests of Hs
o against HC

A. Assuming p≤ q2, let θ̌2 denote

the estimator which solves: minθ T2g2(θ)′(V2)
-1g2(θ). The LR-type statistic of AF is given

by:

which is asymptotically chi-squared with p degrees of freedom under Hs
o. Applying

(5.12)

Proposition 1, we can obtain the modified LR statistics of the form:

(5.13)
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Under HC, it can be shown that (5.5) holds withω1 = 0 andω2 = G2,oρ2. [See GH (1990b).]

Therefore, Proposition 1 implies that for any√T-consistentθ̂, MLRT(θ̂) is asymptotically

identical to LRT.

An interesting feature of the class of MLRT statistics is that it subsumes all the other

tests considered by AF. Note that MLRT(θ̃f) equals their LM statistic.12 We can also

establish the equivalence between their Wald statistic and MLRT(θ̌1). After a little algebra,

we can show that:

We now define the one-step linearized GMM estimator:

(5.14)

Lemma 4 of Newey (1985a) implies that

(5.15)

Using the fact that G2(θ̌1)′(V2)
-1G2(θ̌1) = G2(θ̌2)′(V2)

-1G2(θ̌2) + op(1), and substituting (5.15)

(5.16)

and (5.16) into (5.14), we obtain:

where the first term on the right-hand side is exactly the Wald statistic of AF.

(5.17)

Following Proposition 3 of Newey (1985a), it can be shown that MLRT(θ̃f) is an

12 Observe thatκ(θ̃f) = 0.
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optimal GMM statistic which has maximum power toward HC. This result and the

equivalence between LRT and any MLRT statistic imply that all of the Wald, LR and LM tests

of AF are optimal under HC. All of the MLRT statistics have the same noncentral chi-square

distribution with p degrees of freedom and the noncentrality parameter,λMLR, equal to,

whereω*
2 = G2,0ρ2. If q2 = p, both MSDT and MLRT statistics are asymptotically identical

(5.18)

because SDT = LRT.
13 On the contrary, if q2 > p, MSDT statistics have more degrees of

freedom than MLRT statistics even if both statistics have the same noncentrality parameter

under HC. These results imply that when q2 > p, MLRT (or LRT) statistics have a better

power against HC than MSDT (or SDT) statistics. However, it is also important to note that

MSDT statistics can have a better power to detect misspecifications other than parameter

instability.

6. CONCLUDING REMARKS

This paper has developed alternative GMM tests which can be obtained using any√T-

consistent estimator. The tests are robust to the distributions of the estimators used, and share

the same asymptotic power properties with the tests based on efficient estimators. The

alternative tests are also easy to perform. In particular, the statistics for testing orthogonality

conditions can be computed by auxiliary regressions when the sample moments involved are

serially uncorrelated. In the context of CM testing, the approach of this paper can be

13 Observe that G2(θ̌2)′(V2)
-1g2(θ̌2) = 0 if q2 = p.



31

regarded as a generalization of Wooldridge’s (1990, 1991). However, the former can apply to

a wider range of econometric models than the latter.

This paper has focused on two types of tests: one class is for the tests asymptotically

equivalent to the Hansen test, and the other for the tests equivalent to the EHS test. These

two types of testing procedures have been extended to the contexts of CM testing and

structural stability testing. It has been shown that many existing tests are members of the two

classes computed with particular estimators. Therefore, the approach of this paper is general

enough to encompass those of many previous studies.

The test procedures developed in this paper could be extended to many other cases.

For example, they may apply to tests of structural change in cases where the structural

breakpoint is unknown. Recently, Andrews (1993) developed a test which applies to such

cases. Using his approach, researchers should first determine all the possible breakpoints and

compute the statistics (LR, Wald or LM) of AF corresponding to each point. Then, the

maximum value of these statistics serves as the statistic for testing the unknown structural

break. Unfortunately, the Andrews method is computationally expensive, because each

statistic for possible breakpoints requires a different estimator. The procedures developed in

this paper might be used to simplify the Andrews method, because with them all of the

statistics required for his method can be computed with the same√T-consistent estimator.

Further study on this line would be worth pursuing.
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APPENDIX

PROOF OFPROPOSITION3. Similarly to the proof of Proposition 1, we can easily establish

the asymptotic equivalence between Tbˇ
T′(Vbb)

-1 b̌T and Tb̂T′Q(Vbb,B̂T,1) b̂T. Therefore, the

equivalence between DT and MDT(θ̂) immediately follows. We now determine the sign of

MDT(θ̂). Define Bm(θ) = ∂bm(θ)/∂θ′ and Cm(θ) = ∂cm(θ)/∂θ′; and let B̂m = Bm(θ̂). Then,

Proposition 2 implies that bˆ
T′Q(Vbb,B̂T) b̂T = b̂m′Q(Vbb

m,B̂m)b̂m. That is,

Let Ωm = Vcc
m - Vcb

m(Vbb
m)-1Vbc

m. Define rm(θ) = cm(θ) - Vcb
m(Vbb

m)-1bm(θ) and Rm(θ) = Cm(θ) -

(A.1)

Vcb
m(Vbb

m)-1Bm(θ); and let r̂m = rm(θ̂) and R̂m = Rm(θ̂). Let SSF1 be the sum of squared fitted

values (SSF) from a regression of [bˆ
m′(Vbb

m)-½,r̂m′(Ωm)-½]′ on S1 = diag[(Vbb
m)-½B̂m,(Ωm)-½], and let

SSF2 be SSF from a regression of [bˆ
m′(Vbb

m)-½,r̂m′(Ωm)-½]′ on S2 = [B̂m′(Vbb
m)-½,R̂m′(Ωm)-½]′. After

some algebra, we can show that MDT(θ̂)/T equals:

Since all the columns of S2 lie in the column space of S1, SSF1 ≥ SSF2.

(A.2)

The following lemma is useful to prove Proposition 3.

LEMMA 1. We assume that p2 ≠ 0. Let Ψm(θ) = Ωm - Rm(θ)[GT(θ)′V-1GT(θ)]-1Rm(θ)′;

and define:
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where r̃m = rm(θ̃) andΨ̃m = Ψm(θ̃). Then, Nm
T = NT.

(A.3)

PROOF. Let L1 = [0(qc,qb),I(qc,qc)], where 0(qc,qb) is the qc × qb zero matrix and I(qc,qc)

is the qc × qc identity matrix; and let L2 = [0(qc-p2,qb+p2), I(qc-p2,qc-p2)]. Let P(M) =

M(M ′M)+M′ denote the projection onto the column space of an arbitrary matrix M. Then,

using the fact that g˜T = VQ(V,G̃T)g̃T, we can show:

where U1 = V½Q(V,G̃T)L1′ and U2 = V½Q(V,G̃T)L2′. Since the columns of G˜
T form a base for

(A.4)

the null space of Q(V,G˜
T), Lemma A.5 of Newey (1985a) implies that Rank(U1) =

Rank(G̃T,L1′) - p = qc - p2. Similarly, we can show that Rank(U2) = qc - p2. Therefore, both

matrices U1 and U2 have the same rank. Then since all the columns of U2 are in U1, we must

have P(U2) = P(U1).

PROOF OFPROPOSITION4. The first-order condition forθ̃ and a little algebra show that:

Substituting (A.5) into (A.2) yields:

(A.5)

Applying the usual matrix inversion rule, we obtain:

(A.6)
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Substituting (A.7) into (A.6) and applying Lemma 1 yield part (i). Similarly, we can show

(A.7)

part (ii).

PROOF OFPROPOSITION5. Define F = [Fb′, Fc′]′, where Fb = [Ip×p, 0p×(q-p)] and Fc = [-

(ΣT
t=1Λc,t′Ût)(ΣT

t=1Λb,t′Ût)
-1,I(q-p)×(q-p)]. Let gF = FĝT, GF = FĜT and VF = FV̂TF′, where ĝT = gT(θ̂),

ĜT = GT(θ̂) and V̂T = VT(θ̂). Since F is a nonsingular square matrix, we should have:

Note that

(A.8)

Substituting (A.9) into (A.8), and using the fact that FbĜT is invertible, we can show that

(A.9)

Then since FcĝT = T-1ΣT
t=1Λr

b,t′ût and FcVTFc′ = T-1ΣT
t=1Λr

c,t′ûtût′Λr
c,t, the conclusion of Proposition

(A.10)

5 results.
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