2. REVIEW of PROBABILITY AND STATISTICS (CHAP 2-3)

[1] Important Concepts and Formulas

(1) Population: The group of interest.

EX: The heights of Phoenix residents, Household incomes of Phoenix residents, US GNP.
(2) Probability (or frequency):

- A small island with 12 households

Income (per day)	$\#$ of households	Probability
$\$ 100$	2	$2 / 12=1 / 6$
$\$ 200$	2	$2 / 12=1 / 6$
$\$ 300$	4	$4 / 12=1 / 3$
$\$ 400$	4	$4 / 12=1 / 3$

	12	1

- Let $\mathrm{X}=$ a household's income (X: random variable)
- Describe the probability that X takes a specific value by:

$$
f(x)=1 / 6, \text { if } x=100 \text { or } 200 ; f(x)=1 / 3 \text { if } x=300 \text { or } 400 . \text { (probability density function.) }
$$

(3) Expected value (Population mean) of \mathbf{X} :

- In the above example, the population mean is

$$
(100 \times 2+200 \times 2+300 \times 4+400 \times 4) / 12=283.3
$$

- Expected value of $\mathrm{X}: \mathrm{E}(\mathrm{x}) \equiv \mu_{\mathrm{x}} \equiv \Sigma_{\mathrm{x}} \mathrm{xf}(\mathrm{x})$:

$$
\mathrm{E}(\mathrm{x})=100 \times(1 / 6)+200 \times(1 / 6)+300 \times(1 / 3)+400 \times(1 / 3)=283.3 .
$$

- Lesson: If you know possible values of x and $f(x)$, can compute the population mean.

(4) Population Variance of \mathbf{X}

- Wish to know the dispersion of a population of size B:

Let $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{B}}$ be the members of population. Then, use $\operatorname{var}(x)=\frac{1}{B} \sum_{i=1}^{B}\left(x_{i}-\mu_{x}\right)^{2}$.

- Alternatively, you compute: $\operatorname{var}(x) \equiv \sigma_{x}^{2}=\Sigma_{x}\left(x-\mu_{x}\right)^{2} f(x)=\Sigma_{x} x^{2} f(x)-\mu_{x}^{2}$.
- In the above example,

$$
\begin{aligned}
\operatorname{var}(x)= & \Sigma_{i=1}^{12}\left(x_{i}-\mu_{x}\right)^{2} / 12 \\
= & \left\{(100-283.3)^{2}+(100-283.3)^{2}+(200-283.3)^{2}+(200-283.3)^{2}\right. \\
& +(300-283.3)^{2}+(300-283.3)^{2}+(300-283.3)^{2}+(300-283.3)^{2} \\
& \left.+(400-283.3)^{2}+(400-283.3)^{2}+(400-283.3)^{2}+(400-283.3)^{2}\right\} / 12=11388.889 \\
\operatorname{var}(\mathrm{x})= & \Sigma_{\mathrm{x}}\left(\mathrm{x}-\mu_{\mathrm{x}}\right)^{2} \mathrm{f}(\mathrm{x}) \\
= & (100-283.3)^{2} *(1 / 6)+(200-283.3)^{2} *(1 / 6)+(300-283.3)^{2} *(1 / 3)+(400-283.3)^{2} *(1 / 3) \\
= & 11388.889 .
\end{aligned}
$$

(5) Case of Two Random Variables

EX: Income (X) and consumption (Y) of the 12 households.

1. Joint Probability Density Function

2. Marginal PDFs of X and Y :

Marginal pdf of $\mathrm{X}=\mathrm{f}_{\mathrm{x}}(\mathrm{x})=\Sigma_{\mathrm{y}} \mathrm{f}(\mathrm{x}, \mathrm{y})=\operatorname{Pr}(\mathrm{X}=\mathrm{x})$ regardless of Y .
Marginal pdf of $Y=f_{y}(y)=\Sigma_{x} f(x, y)=\operatorname{Pr}(Y=y)$ regardless of X.

$\mathrm{Y} \backslash \mathrm{X}$	100	200	300	400	$\mathrm{f}_{\mathrm{y}}(\mathrm{y})$
30	1/12	1/12	2/12	1/12 :	5/12
40	1/12	0	1/12	1/12 :	3/12
50	0	1/12	1/12	2/12	4/12
$\mathrm{f}_{\mathrm{x}}(\mathrm{x})$	2/12	2/12	4/12	4/12	1

3. Conditional pdf:

$\mathrm{f}(\mathrm{y} \mid \mathrm{x})=\operatorname{Pr}(\mathrm{Y}=\mathrm{y}$, given $\mathrm{X}=\mathrm{x})=\frac{f(x, y)}{f_{x}(x)} ; \mathrm{f}(\mathrm{x} \mid \mathrm{y})=\operatorname{Pr}(\mathrm{X}=\mathrm{x}$, given $\mathrm{Y}=\mathrm{y})=\frac{f(x, y)}{f_{y}(y)}$.

- $\mathrm{f}(\mathrm{y}=30 \mid \mathrm{x}=100)=\frac{f(100,30)}{f_{x}(100)}=\frac{1 / 12}{2 / 12}=\frac{1}{2} ; \mathrm{f}(\mathrm{y}=40 \mid \mathrm{x}=300)=\frac{f(300,40)}{f_{x}(300)}=\frac{1 / 12}{4 / 12}=\frac{1}{4}$.

4. Population means and variances of X and Y

$$
\begin{aligned}
& \mathrm{E}(\mathrm{x})=\Sigma_{\mathrm{x}} \mathrm{xf} \\
& \operatorname{var}(\mathrm{x}) ; \mathrm{E}(\mathrm{y})=\Sigma_{\mathrm{x}}\left(\mathrm{x}-\mu_{\mathrm{x}}\right)^{2} \mathrm{y}_{\mathrm{x}}\left(\mathrm{x}(\mathrm{x}) ; \operatorname{var}(\mathrm{y})=\Sigma_{\mathrm{y}}\left(\mathrm{y}-\mu_{\mathrm{y}}\right)^{2} \mathrm{f}_{\mathrm{y}}(\mathrm{y})\right.
\end{aligned}
$$

5. Conditional means and conditional variances

$$
\begin{aligned}
& \mathrm{E}(\mathrm{x} \mid \mathrm{y})=\Sigma_{\mathrm{x}} \mathrm{xf}(\mathrm{x} \mid \mathrm{y}) ; \mathrm{E}(\mathrm{y} \mid \mathrm{x})=\Sigma_{\mathrm{y}} \mathrm{yf}(\mathrm{y} \mid \mathrm{x}) ; \\
& \operatorname{var}(\mathrm{x} \mid \mathrm{y})=\Sigma_{\mathrm{x}}[\mathrm{x}-\mathrm{E}(\mathrm{x} \mid \mathrm{y})]^{2} \mathrm{f}(\mathrm{x} \mid \mathrm{y}) ; \operatorname{var}(\mathrm{y} \mid \mathrm{x})=\Sigma_{\mathrm{y}}[\mathrm{y}-\mathrm{E}(\mathrm{y} \mid \mathrm{x})]^{2} \mathrm{f}(\mathrm{y} \mid \mathrm{x})
\end{aligned}
$$

EX:

$$
\left.\begin{array}{rl}
E(y \mid x=200) & =\Sigma_{y} y f(y \mid x=200) \\
= & 30 \times \frac{f(200,30)}{f_{x}(200)}+40 \times \frac{f(200,40)}{f_{x}(200)}+50 \times \frac{f(200,50)}{f_{x}(200)} \\
= & 30 \times \frac{1 / 12}{2 / 12}+40 \times \frac{0}{2 / 12}+50 \times \frac{1 / 12}{2 / 12}=40
\end{array}\right] \begin{aligned}
\operatorname{var}(y \mid x= & 200)=\Sigma_{y}(y-E(y \mid x=200))^{2} f(y \mid x=200) \\
= & (30-40)^{2} \times \frac{1 / 12}{2 / 12}+(40-40)^{2} \times \frac{0}{2 / 12}+(50-40)^{2} \times \frac{1 / 12}{2 / 12}=100
\end{aligned}
$$

6. Stochastic Independence:

X and Y are stochastically independent iff (if and only if) $f(x, y)=f_{x}(x) f_{y}(y)$, for all x and y.

- In the above example,

$$
\begin{aligned}
& \mathrm{f}(300,30)=\frac{2}{12}=\frac{24}{144} \\
& \mathrm{f}_{\mathrm{x}}(300)=\frac{4}{12} ; \mathrm{f}_{\mathrm{y}}(30)=\frac{5}{12} \rightarrow \mathrm{f}_{\mathrm{x}}(300) \mathrm{f}_{\mathrm{y}}(30)=\frac{20}{144}
\end{aligned}
$$

- If X and Y are stoch. independent, $E(x y)=E(x) E(y)$.

If X and Y are stoch. dependent, $\mathrm{E}(\mathrm{xy}) \neq \mathrm{E}(\mathrm{x}) \mathrm{E}(\mathrm{y})$, generally.

7. Covariance:

$$
\operatorname{cov}(\mathrm{x}, \mathrm{y})=\mathrm{E}\left[\left(\mathrm{x}-\mu_{\mathrm{x}}\right)\left(\mathrm{y}-\mu_{\mathrm{y}}\right)\right]=\Sigma_{\mathrm{x}} \Sigma_{\mathrm{y}}\left(\mathrm{x}-\mu_{\mathrm{x}}\right)\left(\mathrm{y}-\mu_{\mathrm{y}}\right) \mathrm{f}(\mathrm{x}, \mathrm{y})
$$

which measures how much X and Y are linearly correlated.
$\operatorname{cov}(\mathrm{x}, \mathrm{y})>(<) 0$ positively (negatively) linearly related. $\operatorname{cov}(x, y)=0$ no linear relation.

8. Correlation

$$
\operatorname{corr}(x, y)=\frac{\operatorname{cov}(x, y)}{\sqrt{\operatorname{var}(x) \operatorname{var}(y)}} \equiv \frac{\sigma_{x y}}{\sigma_{x} \sigma_{y}} .
$$

- $-1 \leq \operatorname{corr}(\mathrm{x}, \mathrm{y}) \leq 1$:
- $\quad \operatorname{corr}(\mathrm{x}, \mathrm{y}) \rightarrow \quad$: highly positively linearly related.
$\operatorname{corr}(\mathrm{x}, \mathrm{y}) \rightarrow \quad-1$: highly negatively linearly related
$\operatorname{corr}(\mathrm{x}, \mathrm{y}) \rightarrow \quad 0$: no linear relation.
- If X \& Y are stochastically independent, then, $\operatorname{corr}(\mathrm{x}, \mathrm{y})=0$, but not vice versa.

9. Skewness and Kurtosis

See book, pp. 26-29.
10. Some useful facts: (p. 38, 63)

- $E(a+b x+c y)=a+b E(x)+c E(y)$.
- $\operatorname{var}(a+b y)=b^{2} \operatorname{var}(y)$.
- $\operatorname{var}(\mathrm{x})=\mathrm{E}\left(\mathrm{x}^{2}\right)-[\mathrm{E}(\mathrm{x})]^{2}$
- $\operatorname{cov}(x, y)=E(x y)-E(x) E(y)$.
- $\operatorname{var}(a x+b y)=a^{2} \operatorname{var}(x)+2 a b \operatorname{cov}(x, y)+b^{2} \operatorname{var}(y)$.

Exercise:

$\mathrm{Y} \backslash \mathrm{X}$	100	200	300	400	$\mathrm{f}_{\mathrm{y}}(\mathrm{y})$
30	1/12	1/12	2/12	1/12	5/12
40	1/12	0	1/12	1/12 :	3/12
50	0	1/12	1/12	2/12	4/12
$\mathrm{f}_{\mathrm{x}}(\mathrm{x})$	2/12	2/12	4/12	4/12	1

- Compute $\mathrm{E}(\mathrm{x}), \mathrm{E}(\mathrm{y}), \operatorname{var}(\mathrm{x}), \operatorname{var}(\mathrm{y}), \operatorname{cov}(\mathrm{x}, \mathrm{y}), \mathrm{E}(1+2 \mathrm{x}+3 \mathrm{y}), \operatorname{var}(2+3 \mathrm{x})$, and $\operatorname{var}(\mathrm{x}+2 \mathrm{y})$.
- Compute $\operatorname{cov}(x, y)$ and $E(x y)-E(x) E(y)$. Are they the same?

[2] Examples of pdf's

(1) Normal distribution

$$
X \sim N\left(\mu, \sigma^{2}\right), \text { where } \mathrm{E}(\mathrm{x})=\mu \text { and } \operatorname{var}(\mathrm{x})=\sigma^{2}
$$

1) pdf: $f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right),-\infty<\mathrm{x}<\infty$.
2) $f(x)$ is symmetric around $x=\mu$

FIGURE 2.3 The Normal Probability Density

The normal probability density function with mean μ and variance σ^{2} is a bell-shaped curve, centered at μ. The area under the normal p.d.f. between $\mu-1.96 \sigma$ and $\mu+1.96 \sigma$ is 0.95 . The normal distribution is denoted $N\left(\mu, \sigma^{2}\right)$.

3) $\operatorname{Pr}(\mu-\sigma<\mathrm{X}<\mu+\sigma) \approx 0.68 ; \operatorname{Pr}(\mu-1.96 \sigma<\mathrm{X}<\mu+1.96 \sigma)=0.95$;
$\operatorname{Pr}(\mu-2.58 \sigma<\mathrm{X}<\mu+2.58 \sigma)=0.99$.
4) Standard Normal Distribution: $Z \sim N(0,1)$.

Pdf is given:

$$
\phi(z)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{z^{2}}{2}\right),-\infty<\mathrm{z}<\infty ; \Phi(a)=\operatorname{Pr}(Z<a)=\int_{-\infty}^{a} \phi(z) d z
$$

5) Some useful facts: (p. 40, pp. 58-63)

- $\operatorname{Pr}(\mathrm{a}<\mathrm{Z}<\mathrm{b})=\Phi(b)-\Phi(a)$.
- $\operatorname{Pr}(\mathrm{a}<\mathrm{Z})=1-\Phi(a)$.

EX: Find $\operatorname{Pr}(1<\mathrm{Z}<2)$ and $\operatorname{Pr}(\mathrm{Z}>0.5)$.
5) If $\mathrm{X} \sim \mathrm{N}\left(\mu, \sigma^{2}\right)$. Then, $Z=\frac{X-\mu}{\sigma} \sim \mathrm{N}(0,1)$.

EX: Suppose $\mathrm{X} \sim \mathrm{N}(1,4)$. Find $\operatorname{Pr}(\mathrm{X}<3)$.
SOL: $\operatorname{Pr}(X<3)=\operatorname{Pr}\left(\frac{X-1}{\sqrt{4}}<\frac{3-1}{\sqrt{4}}\right)=\operatorname{Pr}(Z<1)$.
6) How to read z-table [Appendix Table 1, pp. 755-756]:

The table describes $\operatorname{Pr}(\mathrm{Z}<\mathrm{a})=\mathrm{b}: \mathrm{a} \rightarrow \mathrm{b}$, or $\mathrm{b} \rightarrow \mathrm{a}$.

TABL	The Cumulative Standard Normal Distribution Function, $\Phi(z)=\operatorname{Pr}\left(Z^{\prime \prime} z\right)$									
z	Second Decimal Value of z									
	0	1	2	3	4	5	6	7	8	9
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611

z	Second Decimal Value of \mathbf{x}									
	0	1	2	3	4	5	6	7	8	9
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986

This table can be used to calculate $\operatorname{Pr}\left(Z^{\prime \prime} z\right)$ where Z is a standard normal variable. For example, when $z=1.17$, this probability is 0.8790 , which is the table entry for the row labeled 1.1 and the column labeled 7 .

EX: $\operatorname{Pr}(Z<1.96)=$?
EX: $\operatorname{Pr}(\mathrm{Z}<\mathrm{a})=0.9463$. What is a ?
(2) χ^{2} (chi-square) distribution

1) Let Z_{1}, \ldots, Z_{k} be iid with $N(0,1)$. Define:

$$
Y=\Sigma_{i=1}^{k} Z_{i}^{2}=Z_{1}^{2}+Z_{2}^{2}+\ldots+Z_{k}^{2} .
$$

Then, $\mathrm{Y} \sim \chi^{2}(\mathrm{k}), \mathrm{Y}>0$. Here, k is called degrees of freedom.
2) The pdf is right-skewed except for $\mathrm{k} \leq 2$.

3) $\mathrm{E}(\mathrm{y})=\mathrm{k} ; \operatorname{var}(\mathrm{y})=2 \mathrm{k}$.
4) How to read χ^{2}-table [Appendix Table 3, p. 758].

First, need to know the degrees of freedom (df) for the RV of your interest. Given df, the table describes $\operatorname{Pr}\left(\chi^{2}>a\right)=b$. Here, a is called "critical value" and b "significance level."

TABLE 3 Critical Values for the χ^{2} Distribution

Degrees of Freedom	Significance Level		
	10\%	5\%	1\%
1	2.71	3.84	6.63
2	4.61	5.99	9.21
3	6.25	7.81	11.34
4	7.78	9.49	13.28
5	9.24	11.07	15.09
6	10.64	12.59	16.81
7	12.02	14.07	18.48
8	13.36	15.51	20.09
9	14.68	16.92	21.67
10	15.99	18.31	23.21
11	17.28	19.68	24.72
12	18.55	21.03	26.22
13	19.81	22.36	27.69
14	21.06	23.68	29.14
15	22.31	25.00	30.58
16	23.54	26.30	32.00
17	24.77	27.59	33.41
18	25.99	28.87	34.81
19	27.20	30.14	36.19
20	28.41	31.41	37.57
21	29.62	32.67	38.93
22	30.81	33.92	40.29
23	32.01	35.17	41.64
24	33.20	36.41	42.98
25	34.38	37.65	44.31
26	35.56	38.89	45.64
27	36.74	40.11	46.96
28	37.92	41.34	48.28
29	39.09	42.56	49.59
30	40.26	43.77	50.89

This table contains the 90 th, 95 th, and 99 th percentiles of the χ^{2} distribution. These serve as critical values for tests with significance levels of $10 \%, 5 \%$, and 1%.

EX: $\operatorname{Pr}\left(\chi^{2}>a\right)=0.1$, and $d f=22$. Find a.
EX: $\operatorname{Pr}\left(\chi^{2}>36.41\right)=b$, and $d f=24$. Find b.
EX: X and Y are stoch. indep., and $\mathrm{N}(0,1)$. Find $\operatorname{Pr}\left(X^{2}+Y^{2}<1\right)$.

(3) Student's \mathbf{t} distribution

1) Let $Z \sim N(0,1), Y \sim \chi^{2}(k)$; and let Z and Y be stochastically independent. Define:

$$
T=\frac{Z}{\sqrt{Y / k}}
$$

Then, $T \sim t(k)$, where $k=d f$ (degrees of freedom).
2) $\mathrm{E}(\mathrm{t})=0, \mathrm{k}>1 ; \operatorname{var}(\mathrm{t})=\mathrm{k} /(\mathrm{k}-2), \mathrm{k}>2$.
3) As $\mathrm{k} \rightarrow \infty$, $\operatorname{var}(\mathrm{t}) \rightarrow 1$: In fact, $\mathrm{T} \rightarrow \mathrm{Z}$.
4) The pdf of T is similar to that of Z, but T has thicker tails.
5) How to read t-table [Appendix Table 2, p. 757]:

The table describes

$$
\operatorname{Pr}(\mathrm{T}>\mathrm{a})=\mathrm{b} \text { and } \operatorname{Pr}(|\mathrm{T}|>\mathrm{a})=\mathrm{b} .
$$

Note that:

$$
\operatorname{Pr}(|\mathrm{T}|>\mathrm{a})=2 \times \operatorname{Pr}(\mathrm{T}>\mathrm{a})
$$

Review-17

TABLE 2 Critical Values for 2-Sided and 1-Sided Tests Using the Student t Distribution

Degrees of Freedom	Significance Level				
	$\begin{aligned} & 20 \% \text { (2-Sided) } \\ & 10 \% \text { (1-Sided) } \end{aligned}$	$\begin{gathered} \text { 10\% (2-Sided) } \\ \text { 5\% (1-Sided) } \end{gathered}$	$\begin{gathered} 5 \% \text { (2-Sided) } \\ \text { 2.5\% (1-Sided) } \end{gathered}$	$\begin{aligned} & \mathbf{2 \%} \text { (2-Sided) } \\ & 1 \%(1 \text {-Sided) } \end{aligned}$	$\begin{gathered} 1 \%(2 \text {-Sided) } \\ 0.5 \%(1 \text {-Sided) } \end{gathered}$
1	3.08	6.31	12.71	31.82	63.66
2	1.89	2.92	4.30	6.96	9.92
3	1.64	2.35	3.18	4.54	5.84
4	1.53	2.13	2.78	3.75	4.60
5	1.48	2.02	2.57	3.36	4.03
6	1.44	1.94	2.45	3.14	3.71
7	1.41	1.89	2.36	3.00	3.50
8	1.40	1.86	2.31	2.90	3.36
9	1.38	1.83	2.26	2.82	3.25
10	1.37	1.81	2.23	2.76	3.17
11	1.36	1.80	2.20	2.72	3.11
12	1.36	1.78	2.18	2.68	3.05
13	1.35	1.77	2.16	2.65	3.01
14	1.35	1.76	2.14	2.62	2.98
15	1.34	1.75	2.13	2.60	2.95
16	1.34	1.75	2.12	2.58	2.92
17	1.33	1.74	2.11	2.57	2.90
18	1.33	1.73	2.10	2.55	2.88
19	1.33	1.73	2.09	2.54	2.86
20	1.33	1.72	2.09	2.53	2.85
21	1.32	1.72	2.08	2.52	2.83
22	1.32	1.72	2.07	2.51	2.82
23	1.32	1.71	2.07	2.50	2.81
24	1.32	1.71	2.06	2.49	2.80
25	1.32	1.71	2.06	2.49	2.79
26	1.32	1.71	2.06	2.48	2.78
27	1.31	1.70	2.05	2.47	2.77
28	1.31	1.70	2.05	2.47	2.76
29	1.31	1.70	2.05	2.46	2.76
30	1.31	1.70	2.04	2.46	2.75
60	1.30	1.67	2.00	2.39	2.66
90	1.29	1.66	1.99	2.37	2.63
120	1.29	1.66	1.98	2.36	2.62
∞	1.28	1.64	1.96	2.33	2.58

Values are shown for the critical values for 2 -sided (\nRightarrow) and 1 -sided $(>)$ alternative hypotheses. The critical value for the 1 -sided ($<$) test is the negative of the 1 -sided ($>$) critical value shown in the table. For example, 2.13 is the critical value for a 2 -sided test with a significance level of 5% using the Student t distribution with 15 degrees of freedom.

EX: $\operatorname{Pr}(\mathrm{T}>1.72)=\mathrm{b}$ and $\mathrm{df}=21$. Find b .
EX: $\operatorname{Pr}(|\mathrm{T}|>1.70)=\mathrm{b}$ and $\mathrm{df}=30$. Find b .
EX: Suppose $\mathrm{X} \sim \mathrm{N}(0.1)$ and $\mathrm{Y} \sim \chi^{2}(4)$ are stochastically independent. Find $\operatorname{Pr}(X<1.5 \sqrt{Y / 4})$.

(4) \mathbf{F} (Fisher's) distribution

1) Let $\mathrm{Y}_{1} \sim \chi^{2}\left(\mathrm{k}_{1}\right)$ and $\mathrm{Y}_{2} \sim \chi^{2}\left(\mathrm{k}_{2}\right)$ be stoch. indep.. Then, $M=\frac{Y_{1} / k_{1}}{Y_{2} / k_{2}} \sim \mathrm{~F}\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)$.
2) The pdf of F is right-skewed. F has a thicker tail than χ^{2}.
3) $\mathrm{F}\left(\mathrm{k}_{1}, \infty\right)=\chi^{2}\left(\mathrm{k}_{1}\right) / \mathrm{k}_{1}$.

4) How to read F-table [Appendix Table 5A-5C, pp. 760-762]: The table shows $\operatorname{Pr}(\mathrm{F}>\mathrm{a})=\mathrm{b}$.

Denominator Degrees of Freedom (\boldsymbol{n}_{2})	Numerator Degrees of Freedom (n_{1})									
	1	2	3	4	5	6	7	8	9	10
1	39.86	49.50	53.59	55.83	57.24	58.20	58.90	59.44	59.86	60.20
2	8.53	9.00	9.16	9.24	9.29	9.33	9.35	9.37	9.38	9.39
3	5.54	5.46	5.39	5.34	5.31	5.28	5.27	5.25	5.24	5.23
4	4.54	4.32	4.19	4.11	4.05	4.01	3.98	3.95	3.94	3.92
5	4.06	3.78	3.62	3.52	3.45	3.40	3.37	3.34	3.32	3.30
6	3.78	3.46	3.29	3.18	3.11	3.05	3.01	2.98	2.96	2.94
7	3.59	3.26	3.07	2.96	2.88	2.83	2.78	2.75	2.72	2.70
8	3.46	3.11	2.92	2.81	2.73	2.67	2.62	2.59	2.56	2.54
9	3.36	3.01	2.81	2.69	2.61	2.55	2.51	2.47	2.44	2.42
10	3.29	2.92	2.73	2.61	2.52	2.46	2.41	2.38	2.35	2.32
11	3.23	2.86	2.66	2.54	2.45	2.39	2.34	2.30	2.27	2.25
12	3.18	2.81	2.61	2.48	2.39	2.33	2.28	2.24	2.21	2.19
13	3.14	2.76	2.56	2.43	2.35	2.28	2.23	2.20	2.16	2.14
14	3.10	2.73	2.52	2.39	2.31	2.24	2.19	2.15	2.12	2.10
15	3.07	2.70	2.49	2.36	2.27	2.21	2.16	2.12	2.09	2.06
16	3.05	2.67	2.46	2.33	2.24	2.18	2.13	2.09	2.06	2.03
17	3.03	2.64	2.44	2.31	2.22	2.15	2.10	2.06	2.03	2.00
18	3.01	2.62	2.42	2.29	2.20	2.13	2.08	2.04	2.00	1.98
19	2.99	2.61	2.40	2.27	2.18	2.11	2.06	2.02	1.98	1.96
20	2.97	2.59	2.38	2.25	2.16	2.09	2.04	2.00	1.96	1.94
21	2.96	2.57	2.36	2.23	2.14	2.08	2.02	1.98	1.95	1.92
22	2.95	2.56	2.35	2.22	2.13	2.06	2.01	1.97	1.93	1.90
23	2.94	2.55	2.34	2.21	2.11	2.05	1.99	1.95	1.92	1.89
24	2.93	2.54	2.33	2.19	2.10	2.04	1.98	1.94	1.91	1.88
25	2.92	2.53	2.32	2.18	2.09	2.02	1.97	1.93	1.89	1.87
26	2.91	2.52	2.31	2.17	2.08	2.01	1.96	1.92	1.88	1.86
27	2.90	2.51	2.30	2.17	2.07	2.00	1.95	1.91	1.87	1.85
28	2.89	2.50	2.29	2.16	2.06	2.00	1.94	1.90	1.87	1.84
29	2.89	2.50	2.28	2.15	2.06	1.99	1.93	1.89	1.86	1.83
30	2.88	2.49	2.28	2.14	2.05	1.98	1.93	1.88	1.85	1.82
60	2.79	2.39	2.18	2.04	1.95	1.87	1.82	1.77	1.74	1.71
90	2.76	2.36	2.15	2.01	1.91	1.84	1.78	1.74	1.70	1.67
120	2.75	2.35	2.13	1.99	1.90	1.82	1.77	1.72	1.68	1.65

This table contains the 90 th percentile of the $F_{n_{1}, n,}$ distribution, which serves as the critical values for a test with a 10% significance level.

 ○审	\sim ω \sim 0 0 0 0 0 0	

TABLE 5C	Critical	Values for	e $F_{n_{1}, n_{2}}$ D	Distribution	-1\% Sig	ificance	vel			
Denominator Degrees of Freedom (\boldsymbol{n}_{2})	Numerator Degrees of Freedom (\boldsymbol{n}_{1})									
	1	2	3	4	5	6	7	8	9	10
1	4052.00	4999.00	5403.00	5624.00	5763.00	5859.00	5928.00	5981.00	6022.00	6055.00
2	98.50	99.00	99.17	99.25	99.30	99.33	99.36	99.37	99.39	99.40
3	34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.35	27.23
4	21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.66	14.55
5	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16	10.05
6	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98	7.87
7	12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72	6.62
8	11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91	5.81
9	10.56	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.35	5.26
10	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94	4.85
11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63	4.54
12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39	4.30
13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19	4.10
14	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	4.03	3.94
15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89	3.80
16	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78	3.69
17	8.40	6.11	5.18	4.67	4.34	4.10	3.93	3.79	3.68	3.59
18	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60	3.51
19	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52	3.43
20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46	3.37
21	8.02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.40	3.31
22	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.35	3.26
23	7.88	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.30	3.21
24	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26	3.17
25	7.77	5.57	4.68	4.18	3.85	3.63	3.46	3.32	3.22	3.13
26	7.72	5.53	4.64	4.14	3.82	3.59	3.42	3.29	3.18	3.09
27	7.68	5.49	4.60	4.11	3.78	3.56	3.39	3.26	3.15	3.06
28	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	3.12	3.03
29	7.60	5.42	4.54	4.04	3.73	3.50	3.33	3.20	3.09	3.00
30	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07	2.98
60	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72	2.63
90	6.93	4.85	4.01	3.53	3.23	3.01	2.84	2.72	2.61	2.52
120	6.85	4.79	3.95	3.48	3.17	2.96	2.79	2.66	2.56	2.47

This table contains the 99 th percentile of the $F_{n_{t}, w_{2}}$ distribution, which serves as the critical values for a test with a 1% significance level.

EX: $\operatorname{Pr}(\mathrm{F}>3.52)=\mathrm{b}$ with $\mathrm{k}_{1}=4$ and $\mathrm{k}_{2}=5$. Find b .
EX: $\operatorname{Pr}(\mathrm{F}>\mathrm{a})=0.01$ with $\mathrm{k}_{1}=7$ and $\mathrm{k}_{2}=9$. Find a .
EX: Suppose $\mathrm{X} \sim \chi^{2}(3)$ and $\mathrm{Y} \sim \chi^{2}(5)$ are stochastically independent. Find $\operatorname{Pr}\left(\frac{X}{3}<2 \times \frac{Y}{5}\right)$.

[3] Statistical Inference

(1) Point Estimation

- Wish to know the population mean and variance of college graduates' hourly earnings (Y).
- Do not know pdf of Y
- Unknown parameters: The things a researcher wishes to estimate (such as population mean or population variance).
- Need Sample of data to estimate unknown parameters

1) Random sampling

- Random sample is a sample in which n objects are drawn at random from a population and each object is equally likely to be drawn.
- Let Y_{i} be the value of the i'th randomly drawn object. Then, the random variables Y_{1}, \ldots, Y_{n} are said to be independent and identically distributed.
- A random sample is a sample that can represent the population well.
- An example of nonrandom sampling:
- Suppose you wish to estimate the \% of supporters of the Republican Party in the Phoenix metropolitan area.
- Choose people living in the street corners.
- If you do, your sample is not random. Because rich people are likely to live in corner houses!

2) Definition of Sample Mean and Sample Variance

- Let $\left\{\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{n}}\right\}$ be a random sample $\left(\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{n}}\right.$ are i.i.d.) from a population with population mean μ_{Y} and population variance σ_{Y}^{2} Define sample mean and variance by

$$
\bar{Y}=\frac{1}{n}\left(Y_{1}+\ldots+Y_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} Y_{i} ; s_{Y}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} .
$$

- The formulas \bar{Y} and s_{Y}^{2} are called "estimators". But the actual values of \bar{Y} and s_{Y}^{2} computed from actual data are called "estimates".
\rightarrow Estimator is an random variable in the sense that its outcome can change depending on sample chosen. Estimate is a nonrandom variable.

3) Sampling distributions of sample mean and sample variance

- Let $\left\{\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{n}}\right\}$ be a random sample $\left(\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{n}}\right.$ are i.i.d.) from a population with population mean μ_{Y} and population variance σ_{Y}^{2}
- Consider the set of all possible random samples of size n :

Sample 1:	$\left\{\mathrm{Y}_{1}{ }^{[1]}, \mathrm{Y}_{2}{ }^{[1]}, \ldots, \mathrm{Y}_{\mathrm{n}}^{[1]}\right\}$	\rightarrow	$\bar{Y}^{[1]}, s_{Y}^{2[1]}$
Sample 2:	$\left\{\mathrm{Y}_{1}{ }^{[2]}, \mathrm{Y}_{2}{ }^{[2]}, \ldots, \mathrm{Y}_{\mathrm{n}}^{[2]}\right\}$	\rightarrow	$\bar{Y}^{[2]}, s_{Y}^{2[2]}$
Sample 3:	$\left\{\mathrm{Y}_{1}{ }^{[3]}, \mathrm{Y}_{2}{ }^{[3]}, \ldots, \mathrm{Y}_{\mathrm{n}}{ }^{[3]}\right\}$	\rightarrow	$\bar{Y}^{[3]}, s_{Y}^{2[3]}$

Sample b: $\quad\left\{\mathrm{Y}_{1}{ }^{[\mathrm{b}]}, \mathrm{Y}_{2}{ }^{[\mathrm{bb}}, \ldots, \mathrm{Y}_{\mathrm{n}}{ }^{[b]}\right\} \quad \rightarrow \quad \bar{Y}^{[b]}, \mathrm{s}_{Y}^{2[b]}$

- Consider the population of $\left\{\bar{Y}^{[1]}, \ldots, \bar{Y}^{[b]}\right\}$:
- $E(\bar{Y})=\mu_{Y} ; E\left(s_{Y}^{2}\right)=\sigma_{Y}^{2}$.
\rightarrow We say that $\bar{Y}\left(s_{Y}^{2}\right)$ is an unbiased estimator of $\mu_{Y}\left(\sigma_{Y}^{2}\right)$.
- If \bar{Y} is computed from a nonrandom sample, it could be biased.
- $\operatorname{var}(\bar{Y})=\frac{\sigma_{Y}^{2}}{n} ; \operatorname{var}\left(s_{Y}^{2}\right)=\frac{2 \sigma_{Y}^{4}}{n-1}$.
- If the population is normally distributed, so is the sampling distribution of the sample mean $\bar{Y}: \bar{Y} \sim N\left(\mu_{Y}, \frac{\sigma_{Y}^{2}}{n}\right)$.
- What would be the sampling distribution of the sample mean if the population is not normal?
- Efficiency of \bar{Y}
- Let \tilde{Y} be an estimator of μ_{Y} other than \bar{Y}. Can we find \tilde{Y} such that $\operatorname{var}(\tilde{Y})<\operatorname{var}(\bar{Y})$? [If $\operatorname{var}(\tilde{Y})<\operatorname{var}(\bar{Y}), \tilde{Y}$ must be more reliable (efficient) estimator than \bar{Y}.]
- Consider $\tilde{Y}=a_{1} Y_{1}+a_{2} Y_{2}+\ldots+a_{n} Y_{n}$ for some nonnegative $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}$ such that $\mathrm{a}_{1}+\ldots+\mathrm{a}_{\mathrm{n}}=1$. The estimators of this form are called "linear unbiased estimators."
- It can be shown that $\operatorname{var}(\tilde{Y})$ is minimized when $\mathrm{a}_{1}=\ldots=\mathrm{a}_{\mathrm{n}}=1 / \mathrm{n}$.
\rightarrow This means that \bar{Y} is the minimum-variance estimator among linear unbiased estimators.
$\rightarrow \quad \bar{Y}$ is called the "best linear unbiased estimator" (BLUE).
$\rightarrow \quad$ If the population is normally distributed, \bar{Y} and s_{Y}^{2} are the minimum-variance unbiased estimators.
- Least Square Estimator: $\bar{Y}=$ value of m which $\min . \sum_{i=1}^{n}\left(Y_{i}-m\right)^{2}$

[Some Math Exercises]

If random sample is used, $E(\bar{Y})=\mu_{Y} ; E\left(s_{Y}^{2}\right)=\sigma_{Y}^{2}$
<Proof>

$$
\begin{aligned}
& E(\bar{Y})=E\left(\frac{1}{n} Y_{1}+\frac{1}{n} Y_{2}+\ldots+\frac{1}{n} Y_{n}\right)=\frac{1}{n} E\left(Y_{1}\right)+\ldots+\frac{1}{n} E\left(Y_{n}\right)=\frac{1}{n} \mu_{Y}+\ldots+\frac{1}{n} \mu_{Y}=\frac{1}{n} n \mu_{Y}=\mu_{Y} . \\
& \operatorname{Var}(\bar{X})=\operatorname{Var}\left(\frac{1}{n} Y_{1}+\frac{1}{n} Y_{2}+\ldots+\frac{1}{n} Y_{n}\right)=\left(\frac{1}{n}\right)^{2} \operatorname{Var}\left(Y_{1}\right)+\ldots+\left(\frac{1}{n}\right)^{2} \operatorname{Var}\left(Y_{n}\right)=\left(\frac{1}{n}\right)^{2} n \sigma_{Y}^{2}=\frac{\sigma_{Y}^{2}}{n}
\end{aligned}
$$

Observe that:

$$
\Sigma_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}=\Sigma_{i=1}^{n}\left[\left(Y_{i}-\mu_{Y}\right)-\left(\bar{Y}-\mu_{Y}\right)\right]^{2}=\Sigma_{i=1}^{n}\left(Y_{i}-\mu_{Y}\right)^{2}-n\left(\bar{Y}-\mu_{Y}\right)^{2}
$$

Thus,

$$
\begin{aligned}
E\left(\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}\right) & =E\left(\Sigma_{i=1}^{n}\left(Y_{i}-\mu_{Y}\right)^{2}-n\left(\bar{Y}-\mu_{Y}\right)^{2}\right)=\Sigma_{i=1}^{n} E\left[\left(Y_{i}-\mu_{Y}\right)^{2}\right]-n E\left[\left(\bar{Y}-\mu_{Y}\right)^{2}\right] \\
& =\sum_{i=1}^{n} \sigma_{Y}^{2}-n\left(\sigma_{Y}^{2} / n\right)=(n-1) \sigma_{Y}^{2}
\end{aligned}
$$

Thus,

$$
E\left(s_{Y}^{2}\right)=E\left(\frac{1}{n-1} \Sigma_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}\right)=\sigma_{Y}^{2} .
$$

4) Sampling distribution of \bar{Y} and s_{Y}^{2} when n is large.

- The Law of Large Numbers:

Under some general conditions, $\lim _{n \rightarrow \infty} \operatorname{Pr}\left[\bar{Y}\right.$ is in the very close neighbor of $\left.\mu_{Y}\right]=1$.
\rightarrow We say that \bar{Y} is a consistent estimator of μ_{Y}.
\rightarrow The sample variance, s_{Y}^{2} is also a consistent estimator of σ_{Y}^{2}.
[Intuition for the consistency of \bar{Y}]

- $\operatorname{var}(\bar{Y})$ measures the average deviation of \bar{Y} from μ_{Y}.
- Observe that $\operatorname{var}(\bar{Y})=\frac{\sigma_{Y}^{2}}{n} \rightarrow 0$, as $\mathrm{n} \rightarrow \infty$.
- The Central Limit Theorem:

Under some general conditions,

$$
\frac{\bar{Y}-\mu_{Y}}{\sqrt{\operatorname{var}(\bar{Y})}}=\frac{\bar{Y}-\mu_{Y}}{\sqrt{\sigma_{Y}^{2} / n}} \rightarrow N(0,1), \text { as } \mathrm{n} \rightarrow \infty
$$

\rightarrow Even if the population is not normally distributed, the sampling distribution of \bar{Y} is roughly normal, when n is large.
\rightarrow We say that \bar{Y} is asymptotically normally distributed.

(2) Confidence Interval for Population Mean

- What would be the possible range for the true value of μ_{Y} ?
- Confidence interval: the range between lower and upper bounds that can contain the true μ_{Y}.
- Confidence level (1- α): Prespecified probability that the confidence interval contains the true $\mu_{Y}(90 \%, 95 \%, 99 \%)$.

1) Standard Error of \bar{Y} :

$$
S E(\bar{Y})=\sqrt{\text { Estimated } \operatorname{var}(\bar{Y})}=\sqrt{\frac{s_{Y}^{2}}{n}}=\frac{s_{Y}}{\sqrt{n}} \text {, where } \mathrm{s}_{\mathrm{Y}} \text { is called sample standard deviation. }
$$

2) The Central Limit Theorem

When n is large, $\frac{\bar{Y}-\mu_{Y}}{S E(\bar{Y})} \approx N(0,1)$.
If $Y \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right), \frac{\bar{Y}-\mu_{Y}}{\sqrt{s_{Y}^{2} / n}}=\frac{\left(\bar{Y}-\mu_{Y}\right) / \sqrt{\sigma_{Y}^{2} / n}}{\sqrt{s_{Y}^{2} / n / \sqrt{\sigma_{Y}^{2} / n}}}=\frac{\frac{\bar{Y}-\mu_{Y}}{\sqrt{\sigma_{Y}^{2} / n}}}{\sqrt{\frac{s_{Y}^{2}}{\sigma_{Y}^{2}}}}=\frac{N(0,1)}{\sqrt{\chi^{2}(n-1) /(n-1)}} \sim t(n-1)$
<Insert a standard normal pdf graph>

$$
\begin{aligned}
& \rightarrow \quad \operatorname{Pr}\left(-1.96<\frac{\bar{Y}-\mu_{Y}}{S E(\bar{Y})}<1.96\right)=0.95 . \rightarrow \operatorname{Pr}\left(-1.96<\frac{\mu_{Y}-\bar{Y}}{S E(\bar{Y})}<1.96\right)=0.95 \\
& \rightarrow \quad \operatorname{Pr}\left(-1.96 S E(\bar{Y})<\mu_{Y}-\bar{Y}<1.96 S E(\bar{Y})\right)=0.95 . \\
& \rightarrow \quad \operatorname{Pr}\left(\bar{Y}-1.96 S E(\bar{Y})<\mu_{Y}<\bar{Y}+1.96 S E(\bar{Y})\right)=0.95 .
\end{aligned}
$$

(3) Testing hypothesis regarding the population mean

- Let Y be a random variable denoting a college graduate's hourly earnings. Someone claims that $\mathrm{E}(\mathrm{Y})=\$ 20$. How can I test for this hypothesis?
- Null hypothesis: $\mathrm{H}_{0}: \mathrm{E}(\mathrm{Y})=20$.

Alternative hypothesis: $\mathrm{H}_{1}: \mathrm{E}(\mathrm{Y}) \neq 20$ (two-sided alternative).

- Test procedure for $\mathrm{H}_{0}: \mathrm{E}(\mathrm{Y})=\mu_{\mathrm{Y}, 0}$ against $\mathrm{H}_{1}: \mathrm{E}(\mathrm{Y}) \neq \mu_{\mathrm{Y}, 0}$

STEP 1: Determine the significance level (α) (Usually, 5 or 1%)
STEP 2: From the z-table, find the critical value (c).

$$
c=1.96 \text { if } \alpha=5 \%
$$

STEP 3: Compute the t-statistic:

$$
t=\frac{\bar{Y}-\mu_{Y, 0}}{S E(\bar{Y})} .
$$

STEP 4: If $|t|>c$, reject H_{o} in favor of H_{1}. If $|\mathrm{t}|<\mathrm{c}$, do not reject H_{0}.

Why? < Insert a standard normal pdf graph>

- Why the above statistic is called a "t-statistic"?
- If the population is normally distributed, the sampling distribution of the t-statistic follows a t distribution with degrees of freedom equal to ($\mathrm{n}-1$).

EXAMPLE:

$\mathrm{Y} \sim \mathrm{N}\left(\mu_{\mathrm{Y}}, \sigma_{Y}^{2}\right)$. From a sample of size $\mathrm{n}=21$, you obtained $\Sigma_{i=1}^{n} Y_{i}=21$ and $\Sigma_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}=420$. Test $H_{0}: \mu_{\mathrm{Y}}=4$ against $\mathrm{H}_{1}: \mu_{\mathrm{Y}} \neq 4$ with the significance level of 5%.
[Solution]
STEP 1: $\alpha=5 \%$.
STEP 2: From the z -table, $\mathrm{c}=1.96$.
STEP 3: $\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}=\frac{21}{21}=1 ; s_{Y}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}=\frac{420}{20}=21$.

$$
t=\frac{\bar{Y}-\mu_{Y, 0}}{S E(\bar{Y})}=\frac{\bar{Y}-\mu_{Y, 0}}{\sqrt{s_{Y}^{2} / n}}=\frac{1-4}{\sqrt{21 / 21}}=-3 .
$$

STEP 4: \quad Since $|t|=3>1.96$, reject H_{0}.

EXAMPLE:

$\mathrm{Y} \sim \mathrm{N}\left(\mu_{\mathrm{Y}}, \sigma_{Y}^{2}\right)$. From a sample of size $\mathrm{n}=100$, you obtained $\sum_{i=1}^{n} Y_{i}=590$ and $\Sigma_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}=420$.
Test $H_{0}: \mu_{Y}=6$ against $\mu_{Y} \neq 6$ with the 5% significance level.
[Solution]
STEP 1: $\alpha=5 \%$.
STEP 2: From the z-table, $\mathrm{c}=1.96$.
STEP 3: $\bar{Y}=\frac{590}{100}=5.9 ; s_{Y}^{2}=\frac{420}{99}=4.24$;

$$
t=\frac{5.9-6}{\sqrt{4.24 / 100}}=-0.49
$$

STEP 4: Since $|t|<1.96$, do not reject H_{0}.

- P-value:
- The minimum significance level at which the null hypothesis can be rejected.
$\rightarrow \quad$ If $\mathrm{p}>\alpha$, do not reject H_{0}. If $\mathrm{p}<\alpha$, reject H_{0}.
$\rightarrow \quad \mathrm{p}$-value $=2 \times \operatorname{Pr}(\mathrm{Z}>|\mathrm{t}|)=2 \times(1-\operatorname{Pr}(\mathrm{Z}<|\mathrm{t}|)=2 \times(1-\Phi(|t|))$.

FIGURE 3.1 Calculating a p-value

The p-value is the probability of drawing a value of \bar{Y} that differs from $\mu_{Y, 0}$ by at least as much as $\bar{Y}^{\circ c t}$. In large samples, \bar{Y} is distributed $N\left(\mu_{Y, 0}, \sigma_{Y}^{2}\right)$ under the null hypothesis, so $\left(\bar{Y}-\mu_{Y, 0}\right) / \sigma_{Y}$ is distributed $N(0,1)$. Thus the p-value is the shaded standard normal tail probability outside $\pm 1\left(Y^{\text {act }}-\mu_{Y, 0}\right) / \sigma_{Y} \mid$.

- Test procedure for $\mathrm{H}_{0}: \mathrm{E}(\mathrm{Y})=\mu_{\mathrm{Y}, 0}$ against $\mathrm{H}_{1}: \mathrm{E}(\mathrm{Y})>\mu_{\mathrm{Y}, 0}$ (One tail)

STEP 1: Determine the significance level (α) (Usually, 5 or 1\%)
STEP 2: From the z-table, find the critical value (c).

$$
\mathrm{c}=1.645 \text { if } \alpha=5 \% .
$$

STEP 3: Compute the t-statistic:

$$
t=\frac{\bar{Y}-\mu_{Y, 0}}{S E(\bar{Y})} .
$$

STEP 4: If $\mathrm{t}>\mathrm{c}$, reject H_{o} in favor of H_{1}. If $\mathrm{t}<\mathrm{c}$, do not reject H_{0}.
< Insert a standard normal pdf graph>
$\rightarrow \mathrm{p}$-value $=\operatorname{Pr}(\mathrm{Z}>\mathrm{t}$-statistic $)=1-\Phi(\mathrm{t})$.

EXAMPLE:

$\mathrm{Y} \sim \mathrm{N}\left(\mu_{\mathrm{Y}}, \sigma_{Y}^{2}\right)$. From a sample of size $\mathrm{n}=21$, you obtained $\sum_{i=1}^{n} Y_{i}=21$ and $\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}=420$. Test $\mathrm{H}_{0}: \mu_{\mathrm{Y}}=0$ against $\mathrm{H}_{1}: \mu_{\mathrm{Y}}>0$ at 5% of significance level.
[Solution]
STEP 1: $\alpha=5 \%$.
STEP 2: From the z -table, $\mathrm{c}=1.645$.
STEP 3: $\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}=\frac{21}{21}=1 ; s_{Y}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}=\frac{420}{20}=21$.

$$
t=\frac{\bar{Y}-\mu_{Y, 0}}{S E(\bar{Y})}=\frac{\bar{Y}-\mu_{Y, 0}}{\sqrt{s_{Y}^{2} / n}}=\frac{1-0}{\sqrt{21 / 21}}=1 .
$$

STEP 4: Since $\mathrm{t}<1.645$, do not reject H_{0}.

- Test procedure for $\mathrm{H}_{0}: \mathrm{E}(\mathrm{Y})=\mu_{Y, 0}$ against $\mathrm{H}_{1}: \mathrm{E}(\mathrm{Y})<\mu_{Y, 0}$ (One tail)

STEP 1: Determine the significance level (α) (Usually, 5 or 1%)
STEP 2: From the z-table, find the critical value (c): $\mathrm{c}=1.645$ if $\alpha=5 \%$.
STEP 3: Compute the t-statistic: $t=\frac{\bar{Y}-\mu_{Y, 0}}{S E(\bar{Y})}$.
STEP 4: If $\mathrm{t}<-\mathrm{c}$, reject H_{o} in favor of H_{1}. If $\mathrm{t}>-\mathrm{c}$, do not reject H_{0}.
< Insert a standard normal pdf graph>
$\rightarrow \mathrm{P}$-value $=\operatorname{Pr}(\mathrm{Z}<\mathrm{t}$-statistic $)=\Phi(\mathrm{t})$.

EXAMPLE:

$\mathrm{Y} \sim \mathrm{N}\left(\mu_{\mathrm{Y}}, \sigma_{Y}^{2}\right)$. From a sample of size $\mathrm{n}=21$, you obtained $\Sigma_{i=1}^{n} Y_{i}=21$ and $\Sigma_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}=420$. Test $\mathrm{H}_{0}: \mu_{\mathrm{Y}}=4$ against $\mathrm{H}_{1}: \mu_{\mathrm{Y}}<4$ with the significance level of 5%.
[Solution]
STEP 1: $\alpha=5 \%$.
STEP 2: From the z -table, $\mathrm{c}=1.645$.
STEP 3: $\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}=\frac{21}{21}=1 ; s_{Y}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}=\frac{420}{20}=21$;

$$
t=\frac{\bar{Y}-\mu_{Y, 0}}{S E(\bar{Y})}=\frac{\bar{Y}-\mu_{Y, 0}}{\sqrt{s_{Y}^{2} / n}}=\frac{1-4}{\sqrt{21 / 21}}=-3 .
$$

STEP 4: Since $\mathrm{t}<-1.645$, reject H_{0}.

(4) Scatterplots, Sample Covariance and Sample Correlation

- Scatterplots

FIGURE 3.2 Scatterplot of Average Hourly Earnings vs. Age

Each point in the plot represents the age and average earnings of one of the 184 workers in the sample. The colored dot corresponds to a 35 -year-old worker who earns $\$ 19.61$ per hour. The data are for technicians in the communications industry without college degrees from the March 1999 CPS.

- Sample covariance:
- Data: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$.
- sample covariance: $s_{X Y}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)$.
- sample correlation: $r_{X Y}=\frac{s_{X Y}}{s_{X} s_{Y}} \rightarrow-1 \leq \mathrm{r}_{X Y} \leq 1$.

Review-42

