Q1. A random variable X has the following pdf:

x	0	1	2	3	4
$\mathrm{f}(\mathrm{x})$	b	2 b	3 b	4 b	5 b

1) What is the value of b ? Why?
2) Find the $P(X \leq 3)$.
3) Find $E(x)$.

Q2. The joint probability distribution of X and Y is given by the following table: (For example, $\mathrm{f}(4,9)=0$.)

$\mathrm{x} \backslash \mathrm{y}$	1	3	9
2	$1 / 8$	$1 / 24$	$1 / 12$
4	$1 / 4$	$1 / 4$	0
6	$1 / 8$	$1 / 24$	$1 / 12$

1) Find the marginal pdfs of X and Y.
2) Find $\operatorname{var}(2 x+3 y)$.

Q3. Let X stand for the rate of return on a security (say, IBM) and Y the rate of return on another security (say, General Motors). Let $\mu_{X}=\mu_{Y}=0.5, \sigma_{X}^{2}=4, \sigma_{Y}^{2}=9$ and $\operatorname{corr}(\mathrm{x}, \mathrm{y})=-0.8$.

1) Find $E[0.5 x+0.5 y]$ and var[$0.5 x+0.5 y]$. [Hint: $E[0.5 x+0.5 y]=0.5 \cdot E(x)+0.5 \cdot E(y)$ and $\operatorname{var}[0.5 \mathrm{x}+0.5 \mathrm{y}]=(0.5)^{2} \cdot \operatorname{var}(\mathrm{x})+(0.5)^{2} \cdot \operatorname{var}(\mathrm{y})+2 \cdot(0.5) \cdot(0.5) \cdot \operatorname{cov}(\mathrm{x}, \mathrm{y})$; $\left.\operatorname{cov}(\mathrm{x}, \mathrm{y})=\operatorname{corr}(\mathrm{x}, \mathrm{y}) \cdot \sigma_{\mathrm{X}} \sigma_{\mathrm{Y}}.\right]$
2) Is it better to invest equally in the two securities (i.e., diversify) than in either security exclusively? (Hint: Investors consider both expected rate of return and risk.) Explain in detail why or why not.

Q4. Let $\mathrm{Y} \sim \chi^{2}(5)$.

1) Find a such that $\mathrm{P}(\mathrm{Y}>\mathrm{a})=0.05$.
2) Find c such that $\mathrm{P}(\mathrm{Y}<\mathrm{c})=0.9$.

Q5. Let the two random variables, X_{1} and X_{2}, are i.i.d. with $N(0,1)$. Find $P\left(X_{1}{ }^{2}+X_{2}{ }^{2}\right.$ >9.21).

Q6. Consider the three random variables, X, Y, and Z . Assume that all of them are stochastically independent. Let X be $\mathrm{N}(0,1)$; Y be $\chi^{2}(5) ; \mathrm{Z}$ be $\chi^{2}(4)$.

1) Find $\operatorname{Pr}\left(\frac{X}{\sqrt{Y / 5}}>2.57\right)$.
2) Find $\operatorname{Pr}\left(\frac{\sqrt{Y / 5}}{\sqrt{Z / 4}}>2.5020\right)$.

Answers:

1. 2) $\quad \mathrm{b}=1 / 15$, since $\Sigma_{\mathrm{x}} \mathrm{f}(\mathrm{x})=1$.
2) $\operatorname{Pr}(\mathrm{X}=0)+\operatorname{Pr}(\mathrm{X}=1)+\operatorname{Pr}(\mathrm{X}=2)+\operatorname{Pr}(\mathrm{X}=3)=2 / 3$.
3) $8 / 3$.
2. 3) $f_{\mathrm{x}}(2)=1 / 4 ; \mathrm{f}_{\mathrm{X}}(4)=1 / 2 ; \mathrm{f}_{\mathrm{X}}(6)=1 / 4 ; \mathrm{f}_{\mathrm{Y}}(1)=1 / 2 ; \mathrm{f}_{\mathrm{Y}}(3)=1 / 3 ; \mathrm{f}_{\mathrm{Y}}(9)=1 / 6$.
2) 80 .
3. 4) $\mathrm{E}(0.5 \mathrm{x}+0.5 \mathrm{y})=0.5 \cdot \mathrm{E}(\mathrm{x})+0.5 \cdot \mathrm{E}(\mathrm{y})=0.5$ $\operatorname{var}(0.5 \mathrm{x}+0.5 \mathrm{y})=(0.5)^{2} \cdot 4+(0.5)^{2} \cdot 9+2 \cdot(0.5) \cdot(0.5) \cdot 2 \cdot 3 \cdot(-0.8)=0.85$.
2) Observe that $\mathrm{E}[(1 / 2) \cdot \mathrm{x}+(1 / 2) \cdot \mathrm{y}]=\mathrm{E}(\mathrm{x})=\mathrm{E}(\mathrm{y})=0.5$. Thus, the two investment strategies give you the same expected return. However, $\operatorname{var}(1 / 2 \cdot x+1 / 2 \cdot y)=0.85, \operatorname{var}(X)=4$ and $\operatorname{var}(Y)=9$. So, investing equally in the two securities is less risky than investing in one security exclusively.
4. 5) $\mathrm{a}=11.07$
2) $\quad \operatorname{Pr}(\mathrm{Y}>\mathrm{c})=1-0.9=0.1 . \rightarrow \mathrm{c}=9.24$.
5. $\operatorname{Pr}\left[\chi^{2}(2)>9.21\right]=0.01$. [Hint: Note that $\mathrm{X}_{1}{ }^{2}+\mathrm{X}_{2}{ }^{2}$ is $\chi^{2}(2)$.]
6. 7) $\operatorname{Pr}[\mathrm{t}(5)>2.57]=0.025$;
2)

$$
\begin{aligned}
\operatorname{Pr}(\sqrt{F(5,4)}>2.5020) & =\operatorname{Pr}\left(F(5,4)>2.5020^{2}\right) \\
& =\operatorname{Pr}(F(5,4)>6.26)=0.05
\end{aligned}
$$

