Note on Matrix Algebra

Definition 1:

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
: & : & & : \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)
$$

A is called a $m \times n$ matrix. ($m=\#$ of rows ; $n=\#$ of column.)

Definition 2:

Let A be an $m \times n$ matrix. The transpose of A is denoted by A^{t} (or A^{\prime}), which is a $\mathrm{n} \times \mathrm{m}$ matrix; and it is obtained by the following procedure. 1 st column of $A \rightarrow 1$ st row of A^{t} 2nd column of $\mathrm{A} \rightarrow 2$ st column of A^{t}... etc.

[EXAMPLE]

$$
A=\left(\begin{array}{lll}
2 & 1 & 4 \\
6 & 3 & 3
\end{array}\right)_{2 \times 3} ; A^{t}=\left(\begin{array}{ll}
2 & 6 \\
1 & 3 \\
4 & 3
\end{array}\right)_{3 \times 2}
$$

Definition 3:

Let A be a $\mathrm{m} \times \mathrm{n}$ matrix. If $\mathrm{m}=\mathrm{n}, \mathrm{A}$ is called a square matrix.
[EXAMPLE]

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
2 & 4 \\
3 & 5
\end{array}\right) . \\
& \text { trix - } 1
\end{aligned}
$$

Definition 4:

Let A be an $m \times n$ matrix. If all the $a_{i j}=0$, then A is called a zero matrix.
[EXAMPLE]

$$
A=\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right) ; B=\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right)
$$

A is not a zero matrix but B is.

Definition 5:

Let A be a square matrix. A is call an identity matrix if all the diagonal entries are one and all the off-diagonals are zero.
[EXAMPLE]

$$
I_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Definition 6:

Let A be a square matrix. A is called symmetric if and only if $A=A^{t}$ (or A^{\prime}).

[EXAMPLE]

$$
A=\left(\begin{array}{lll}
1 & 3 & 4 \\
3 & 2 & 1 \\
4 & 1 & 1
\end{array}\right) \rightarrow A^{t}=\left(\begin{array}{lll}
1 & 3 & 4 \\
3 & 2 & 1 \\
4 & 1 & 1
\end{array}\right)
$$

Note:

For any matrix $\mathrm{A}, \mathrm{A}^{\mathrm{t}} \mathrm{A}$ is always symmetric.

Definition 7:

Let A and B are $\mathrm{m} \times \mathrm{n}$ matrices. $\mathrm{A}+\mathrm{B}$ is obtained by adding corresponding entries of A and B .

[EXAMPLE]

$$
\left(\begin{array}{ll}
1 & 4 \\
2 & 2
\end{array}\right)+\left(\begin{array}{ll}
3 & 1 \\
4 & 5
\end{array}\right)=\left(\begin{array}{ll}
4 & 5 \\
6 & 7
\end{array}\right) ;\left(\begin{array}{ll}
1 & 4 \\
2 & 2
\end{array}\right)-\left(\begin{array}{ll}
3 & 1 \\
4 & 5
\end{array}\right)=\left(\begin{array}{cc}
-2 & 3 \\
-2 & -3
\end{array}\right)
$$

Definition 8:

Let A be a $m \times n$ matrix and c be a scalar (real number). Then, cA is obtained by multiplying all the entries of A by c. [EXAMPLE]

$$
6 \times\left(\begin{array}{ll}
2 & 4 \\
3 & 5
\end{array}\right)=\left(\begin{array}{ll}
12 & 24 \\
18 & 30
\end{array}\right)
$$

Definition 9:

Let $A_{1}=\left(\begin{array}{llll}a_{11} & a_{12} & \ldots & a_{1 p}\end{array}\right)$ and $B_{1}=\left(\begin{array}{c}b_{11} \\ b_{21} \\ : \\ b_{p 1}\end{array}\right)$.
Then, $\mathrm{A}_{1} \mathrm{~B}_{1}=\mathrm{a}_{11} \mathrm{~b}_{11}+\mathrm{a}_{12} \mathrm{~b}_{21}+\ldots+\mathrm{a}_{1 \mathrm{p}} \mathrm{b}_{\mathrm{p} 1}$.

[EXAMPLE]

$$
A_{1}=\left(\begin{array}{lll}
4 & 1 & 2
\end{array}\right) ; B_{1}=\left(\begin{array}{l}
4 \\
1 \\
2
\end{array}\right)
$$

$\mathrm{A}_{1} \mathrm{~B}_{1}=1 \times 4+2 \times 1+3 \times 2=12$.

Definition 10:

Let A and B are $m \times p$ and $p \times n$ matrices, respectively.
Let:

$$
\begin{gathered}
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 p} \\
a_{21} & a_{22} & \ldots & a_{2 p} \\
\vdots & \vdots & & : \\
a_{m 1} & a_{m 2} & \ldots & a_{m p}
\end{array}\right)=\left(\begin{array}{c}
A_{1} \\
A_{2} \\
\vdots \\
A_{m}
\end{array}\right) ; \\
B=\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 n} \\
b_{21} & b_{22} & \ldots & b_{2 n} \\
\vdots & \vdots & & : \\
b_{p 1} & b_{p 2} & \ldots & a_{p n}
\end{array}\right)=\left(\begin{array}{llll}
B_{1} & B_{2} & \ldots & B_{n}
\end{array}\right) . \\
\text { Then, } A B=\left(\begin{array}{cccc}
A_{1} B_{1} & A_{1} B_{2} & \ldots & A_{1} B_{n} \\
A_{2} B_{1} & A_{2} B_{2} & \ldots & A_{2} B_{n} \\
\vdots & \vdots & & : \\
A_{m} B_{1} & A_{m} B_{2} & \ldots & A_{m} B_{n}
\end{array}\right)_{m \times n}
\end{gathered}
$$

[EXAMPLE]

$$
\begin{gathered}
A=\left(\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right) ; B=\left(\begin{array}{ll}
4 & 3 \\
2 & 1 \\
1 & 0
\end{array}\right) . \\
A B=\left(\begin{array}{cc}
1 \times 4+3 \times 2+5 \times 1 & 1 \times 3+3 \times 1+5 \times 0 \\
2 \times 4+4 \times 2+6 \times 1 & 2 \times 3+4 \times 1+6 \times 1
\end{array}\right)=\left(\begin{array}{cc}
15 & 6 \\
22 & 10
\end{array}\right) .
\end{gathered}
$$

Definition 11:

Let A and B are $n \times n$ matrices. If $A B=I_{n}$ or $B A=I_{n}$, then B is called the inverse of A, and is denoted by A^{-1}.
[EXAMPLE]

$$
A=\left(\begin{array}{ll}
3 & 1 \\
2 & 1
\end{array}\right) \rightarrow A^{-1}=\left(\begin{array}{cc}
1 & -1 \\
-2 & 3
\end{array}\right)
$$

[EXAMPLE]

$$
A=\left(\begin{array}{lll}
3 & 1 & 0 \\
2 & 1 & 0 \\
0 & 0 & 4
\end{array}\right) \rightarrow A^{-1}=\left(\begin{array}{ccc}
1 & -1 & 0 \\
-2 & 3 & 0 \\
0 & 0 & 1 / 4
\end{array}\right)
$$

(Check this by yourself.)

Theorem 1:

Let A be a $\mathrm{m} \times \mathrm{n}$ matrix. Then, $\mathrm{I}_{\mathrm{m}} \mathrm{A}=\mathrm{AI}_{\mathrm{n}}=\mathrm{A}$.

Theorem 2:

Let A and B are $m \times p$ and $p \times n$ matrices. Then,

$$
(\mathrm{AB})^{\mathrm{t}}=\mathrm{B}^{\mathrm{t}} \mathrm{~A}^{\mathrm{t}} .
$$

[EXAMPLE]

$$
A=\left(\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right) ; B=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

[Check Theorem 2, using this example.]

Theorem 3:

$$
\text { Let } A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \text {. Then, } A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \text {. }
$$

[EXAMPLE]

$$
A=\left(\begin{array}{ll}
3 & 1 \\
2 & 1
\end{array}\right) \rightarrow A^{-1}=\frac{1}{3 \times 1-1 \times 2}\left(\begin{array}{cc}
1 & -1 \\
-2 & 3
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
-2 & 3
\end{array}\right)
$$

