
 Note on Matrix Algebra 
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A is called a m×n matrix. (m = # of rows ; n = # of column.) 

 

Definition 2: 

Let A be an m×n matrix.  The transpose of A is denoted by At (or A′), 

which is a n×m matrix; and it is obtained by the following procedure. 

1st column of A → 1st row of At 

2nd column of A → 2st column of At ... etc. 
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Definition 3: 

Let A be a m×n matrix.  If m = n, A is called a square matrix. 

 

[EXAMPLE] 
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Definition 4: 

Let A be an m×n matrix.  If all the aij = 0, then A is called a zero 

matrix. 

 

[EXAMPLE]  
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A is not a zero matrix but B is. 

 

Definition 5: 

Let A be a square matrix.  A is call an identity matrix if all the 

diagonal entries are one and all the off-diagonals are zero. 

 

[EXAMPLE] 
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Definition 6: 

Let A be a square matrix.  A is called symmetric if and only if A = At 

(or A′). 
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[EXAMPLE] 
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1 3 4 1 3 4
3 2 1 3 2 1
4 1 1 4 1 1
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Note: 

For any matrix A, AtA is always symmetric. 
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Definition 7: 

Let A and B are m× n matrices.  A + B is obtained by adding 

corresponding entries of A and B. 

 

[EXAMPLE] 
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Definition 8: 

Let A be a m×n matrix and c be a scalar (real number).  Then, cA is 

obtained by multiplying all the entries of A by c. 

[EXAMPLE] 
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Definition  9: 
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Then, A1B1 = a11b11 + a12b21 + ... + a1pbp1. 

 



[EXAMPLE] 
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A1B1 = 1×4 + 2×1 + 3×2 = 12. 

 

Definition 10: 

Let A and B are m×p and p×n matrices, respectively.   

Let: 
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[EXAMPLE]  
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1 4 3 2 5 1 1 3 3 1 5 0 15 6

.
2 4 4 2 6 1 2 3 4 1 6 1 22 10
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Definition 11: 

Let A and B are n×n matrices.  If AB = In or BA = In, then B is called 

the inverse of A, and is denoted by A-1. 

 

[EXAMPLE] 
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[EXAMPLE] 
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(Check this by yourself.) 

 

Theorem 1: 

Let A be a m×n matrix.  Then, ImA = AIn = A. 

 



Theorem 2: 

Let A and B are m×p and p×n matrices.  Then,  

(AB)t = BtAt. 

 

[EXAMPLE] 
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[Check Theorem 2, using this example.] 

 

Theorem 3: 
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[EXAMPLE] 
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1 1 1 1 11
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