TOPIC I
 INTRODUCTION AND SET THEORY

[1] Introduction

- Economics Vs. Mathematical Economics.
- "Income positively affects consumption. Consumption level can never be negative. The marginal propensity consume is less than one."

$$
\rightarrow \quad \mathrm{C}=\mathrm{a}+\mathrm{bY} \text {, where } \mathrm{a}>0 \text { and } 0<\mathrm{b}<1 .
$$

- Pro: "Mathematics is language." (P. A. Samuelson)
- Con: "Mathematical economics is too mechanical."
- What is the goal of economics?
- Predict and explain economic decisions and phenomena.
$\rightarrow \quad$ Economics is a science.
$\rightarrow \quad$ Then, why not mathematics?
- Structure of (mathematical) economics as a science

1. Hypothesis (theory explaining a phenomenon)

- Assumptions \rightarrow conclusions
(causes) (results)
- Deductive

2. Test (Econometrics)

- Check validity of theories using real data.
- Deductive + Inductive.
- Mathematical economic model
- Equations (for assumptions).
- Prove equations.
- Get solutions (conclusion).

EX: A Simple Keynesian Model
No government (no tax and no government spending) Investment level (I) is exogenously given.

- Assumptions

1) $\mathrm{C}=\mathrm{a}+\mathrm{bY}, \mathrm{a}>0$ and $0<\mathrm{b}<1$.
2) $\mathrm{Y}=\mathrm{C}+\mathrm{I}$
\rightarrow Parameters (constants): a, b (given from heaven).
\rightarrow Exogenous variables: I (Given externally to the model).
\rightarrow Endogenous variables: C and Y
(which can be solved given exo. var. and par.).
\rightarrow Solutions: $\overline{\mathrm{C}}$ and $\overline{\mathrm{Y}}$.

- \quad Solve the equations (by Elimination of Variables):

2) \rightarrow):

$$
\mathrm{C}=\mathrm{a}+\mathrm{b}(\mathrm{C}+\mathrm{I})
$$

$$
\begin{aligned}
& \rightarrow(1-\mathrm{b}) \mathrm{C}=\mathrm{a}+\mathrm{bI} \\
& \text { 3) } \mathrm{C}=\frac{\mathrm{a}+\mathrm{bI}}{1-\mathrm{b}} . \\
&\text { 3) } \rightarrow 1): \\
& \mathrm{Y}=\frac{\mathrm{a}+\mathrm{bI}}{1-\mathrm{b}}+\mathrm{I}=\frac{\mathrm{a}}{1-\mathrm{b}}+\frac{1}{1-\mathrm{b}} \mathrm{I} .
\end{aligned}
$$

- Solutions:
$\overline{\mathrm{C}}=\frac{\mathrm{a}+\mathrm{bI}}{1-\mathrm{b}} ; \overline{\mathrm{Y}}=\frac{\mathrm{a}}{1-\mathrm{b}}+\frac{1}{1-\mathrm{b}} \mathrm{I}$.
$\rightarrow \quad$ When investment level increases by $\$ 1$, income level increases by $1 /(1-b)$.
$\rightarrow \quad$ If $\mathrm{b}=0.5$, income increases by $\$ 2$.
$\rightarrow \quad$ Since $1 /(1-\mathrm{b})$ (multiplier) is greater than one, income increases by more than $\$ 1$.
[2] Set Theory
(1) Set

Definition: (Set)
A set is a collection of distinct objects.

EX 1: $\quad S \quad=$ a set of students' names in the ECN 485 class
$=\{$ actual names ... $\}$ (enumeration)
$=\{x \mid x=$ a student's name in ECN 485\} (descriptive)
EX 2:

$$
\begin{aligned}
& \mathbb{N}=\{1,2, \ldots, 3\}=\{x \mid x=\text { natural number }\} \\
& \mathbb{I}=\{\ldots,-1,0,1, \ldots\}=\{x \mid x=\text { integer }\} \\
& \mathbb{Q}=\{1 / 2,1 / 3, \ldots\}=\{x \mid x=\text { rational number }\} \\
& \mathbb{R}=\{1 / 2, \sqrt{2}, \ldots\}=\{x \mid x=\text { real number }\}
\end{aligned}
$$

Definition:
$" \in$ " means "belongs to (a set)" or "is an element of (a set)".

EX 1: $\quad A=\{a, b, c\}$

$$
\rightarrow \quad \mathrm{a} \in \mathrm{~A} .
$$

EX 2: Wish to describe a set of all real numbers greater than 2.

$$
\rightarrow \quad \mathrm{J}=\{\mathrm{x} \mid \mathrm{x}>2, \mathrm{x} \in \mathbb{R}\} .
$$

(2) Finite and Infinite Set

- $\mathrm{A}=\{1,2,3\} \rightarrow$ finite set.
- $\mathbb{R}=\{\mathrm{x} \mid \mathrm{x}=$ real number $\} \rightarrow$ infinite set
(3) Countable and Uncountable Sets
- $\mathrm{A}=\{1,2,3\} \rightarrow$ countable.
- $\quad \mathbb{N}=$ the set of natural numbers \rightarrow infinite but countable.
- $\mathbb{I}=$ the set of integers \rightarrow infinite and (surprisingly) countable.
- $\quad \mathbb{R}=$ the set of real number \rightarrow (surprisingly) uncountable.
(4) Subsets

Definition:
Let S_{1} and S_{2} be sets. S_{1} is said to be a subset of $S_{2}, S_{1} \subset S_{2}$, iff (if and only iff) $\forall \mathrm{a} \in \mathrm{S}_{1} \Rightarrow \mathrm{a} \in \mathrm{S}_{2}$.

EX 1: $\quad A=\{1,2,3\} ; B=\{1,2\}$

$$
\mathrm{B} \subset \mathrm{~A} ; \mathrm{A} \subset \mathrm{~A} ; \varnothing(\text { null set }) \subset \mathrm{A} .
$$

\# of possible subsets.
If a set A has n elements, the number of possible subsets is 2^{n}.

EX: $A=\{1,2\}$

$$
\begin{aligned}
& \rightarrow \varnothing,\{1\},\{2\} \text { and }\{1,2\} \rightarrow 4=2^{2} . \\
B= & \{1,2,3\} \\
& \rightarrow \varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\} \rightarrow 8=2^{3} .
\end{aligned}
$$

(5) Set Algebra

Definition:

$$
S_{1}=S_{2} \text { iff } S_{1} \subset S_{2} \text { and } S_{2} \subset S_{1} \text {. }
$$

EX: $A=\{1,2,3\} ; B=\{3,2,1\}$
\rightarrow Order does not matter.

Definition:
$A \cup B=\{a \mid a \in A$ or $a \in B\}$ (union)
$A \cap B=\{a \mid a \in A$ and $a \in B\}$ (intersection)

EX: $A=\{1,2,3\}, B=\{3,4\}$
$\rightarrow \quad \mathrm{A} \cup \mathrm{B}=\{1,2,3,4\} ; \mathrm{A} \cap \mathrm{B}=\{3\}$

Definition:
A and B are called disjoint iff $\mathrm{A} \cap \mathrm{B}=\varnothing$.

EX: $A=\{1,2\}, B=\{3,4\}$

Definition:

$$
A-B=\{x \mid x \in A \text { and } x \notin B\}
$$

EX 1: $\quad A=\{1,2,3\}, B=\{3,4,5\}, C=\{6,7\}$

$$
\begin{aligned}
& \mathrm{A}-\mathrm{B}=? \\
& \mathrm{~A}-\mathrm{C}=?
\end{aligned}
$$

EX 2: Let A and B be two sets.
Show that if $\mathrm{A} \cap \mathrm{B}=\varnothing, \mathrm{A}-\mathrm{B}=\mathrm{A}$.
Proof:
We first show that $\mathrm{A}-\mathrm{B} \subset \mathrm{A}$.

$$
\forall \mathrm{x} \in \mathrm{~A}-\mathrm{B} \Rightarrow \mathrm{x} \in \mathrm{~A} \text { and } \notin \mathrm{B} \Rightarrow \mathrm{x} \in \mathrm{~A} .
$$

We now show that $\mathrm{A} \subset \mathrm{A}-\mathrm{B}$.

$$
\forall x \in A \Rightarrow x \in A \text { and } x \notin B \text { (since } A \cap B=\varnothing) \Rightarrow x \in A-B
$$

Definition:
A universal set is a set of interest.

EX 1: $\quad U=\{1,2, \ldots\} ; U=\{x \mid x=$ real number $\}$

Definition: (Complementary set)
Let $\mathrm{A} \subset \mathrm{U}$. Then, $\mathrm{A}^{\mathrm{C}}=\mathrm{U}-\mathrm{A}=\{\mathrm{x} \mid \mathrm{x} \in \mathrm{U}$ and $\mathrm{x} \notin \mathrm{A}\}$

EX: $\mathrm{U}=\{1,2,3,4\}, \mathrm{A}=\{1,2\}$

$$
\rightarrow \quad \mathrm{A}^{\mathrm{C}}=\mathrm{U}-\mathrm{A}=\{3,4\} .
$$

(6) Venn Diagram

EX 1:

EX 2: $\quad A \cup B$

EX 3: $\quad A \cap B$

EX 4: $\quad \mathrm{A}-\mathrm{B}=\mathrm{A}-(\mathrm{A} \cap \mathrm{B})$

EX 5: $\quad A-B=A \cap B^{C}$

EX 6: $\quad \mathrm{A} \subset \mathrm{B}$

$$
\rightarrow \quad \mathrm{A} \cup \mathrm{~B}=\mathrm{B}, \mathrm{~A} \cap \mathrm{~B}=\mathrm{A} .
$$

(7) Three Laws of Operation
A. Commutative Law

$$
\mathrm{A} \cup \mathrm{~B}=\mathrm{B} \cup \mathrm{~A} ; \mathrm{A} \cap \mathrm{~B}=\mathrm{B} \cap \mathrm{~A}
$$

B. Associative Law

$$
\begin{aligned}
& A \cup(B \cup C)=(A \cup B) \cup C \\
& A \cap(B \cap C)=(A \cap B) \cap C
\end{aligned}
$$

C. Distributive Law

$$
\mathrm{A} \cup(\mathrm{~B} \cap \mathrm{C})=(\mathrm{A} \cup \mathrm{~B}) \cap(\mathrm{A} \cup \mathrm{C}) .
$$

I-12

EX: Prove $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
(8) De Morgan's Law

$$
\begin{aligned}
& (A \cap B)^{C}=A^{C} \cup B^{C} . \\
& (A \cup B)^{C}=A^{C} \cap B^{C} .
\end{aligned}
$$

EX: Show $(A \cup B)^{C}=A^{C} \cap B^{C}$.
EX: Textbook, p. 17, Q2-Q8.

[3] Relations and Functions

(1) Ordered Set

- For usual sets, the order of elements do not matter: $\{\mathrm{a}, \mathrm{b}\}=\{\mathrm{b}, \mathrm{a}\}$
- \quad Ordered set $=\mathrm{A}$ set in which the order of elements does matter.
\rightarrow Use notation (a,b).

EX: $\quad($ age, weight $)=(19,127)$
(2) Cartesian Product

Definition: Cartesian Product (A set of ordered sets)

$$
\mathrm{A} \times \mathrm{B}=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x} \in \mathrm{~A} \text { and } \mathrm{y} \in \mathrm{~B}\} .
$$

EX 1: $\quad A=\{\mathrm{ko}, \mathrm{jn}\}$ and $B=\{\mathrm{su}, \mathrm{ki}, \mathrm{st}\}$
$\rightarrow \mathrm{A} \times \mathrm{B}=\{(\mathrm{ko}, \mathrm{su}),(\mathrm{ko}, \mathrm{ki}),(\mathrm{ko}, \mathrm{st}),(\mathrm{jn}, \mathrm{su}),(\mathrm{jn}, \mathrm{ki}),(\mathrm{jn}, \mathrm{st})\}$.
EX 2: $\quad \mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x} \in \mathbb{R}$ and $\mathrm{y} \in \mathbb{R}\}$
\rightarrow 2-dimensional Euclidean space.

EX 3: $\quad A \times B \times C=\{(x, y, z) \mid x \in A$ and $y \in B$ and $z \in C\}$.
EX 4: $\quad \mathbb{R}^{\mathrm{n}}=\mathbb{R} \times \mathbb{R} \times \ldots \times \mathbb{R}(\mathrm{n}$ times $)$
(3) Relation

Definition: (Relation)
A relation R from A to B is a subset of $A \times B$. Usually it is denoted by: $\mathrm{R}: \mathrm{A} \rightarrow \mathrm{B}$.

EX: $A=\{a, b\}, B=\{x, y\}$.
$\rightarrow \quad \mathrm{A} \times \mathrm{B}=\{(\mathrm{a}, \mathrm{x}),(\mathrm{a}, \mathrm{y}),(\mathrm{b}, \mathrm{x}),(\mathrm{b}, \mathrm{y})\}$

1) $\{(\mathrm{a}, \mathrm{x}),(\mathrm{a}, \mathrm{y}),(\mathrm{b}, \mathrm{x})\}$

2) $\quad \mathrm{R}=\{(\mathrm{a}, \mathrm{x}),(\mathrm{a}, \mathrm{y})\}$

3) $\mathrm{A} \times \mathrm{B}$

A

B

Definition: (Domain and Image)

$$
\begin{aligned}
& \operatorname{Dom}(R)=\{a \mid(a, b) \in R\} \\
& \operatorname{Im}(R)=\{b \mid(a, b) \in R\} \text { (or called range) }
\end{aligned}
$$

EX: $A=\{a, b\}, B=\{x, y\}$

$$
\mathrm{R}=\{(\mathrm{a}, \mathrm{x}),(\mathrm{b}, \mathrm{x})\}
$$

$\operatorname{Dom}(\mathrm{R})=\{\mathrm{a}, \mathrm{b}\}$ $\operatorname{Im}(\mathrm{R})=\{\mathrm{x}\}$

$$
\mathrm{R}=\mathrm{A} \times \mathrm{B}
$$

$$
\operatorname{Dom}(R)=\{a, b\}
$$

$$
\operatorname{Im}(\mathrm{R})=\{\mathrm{x}, \mathrm{y}\}
$$

(4) Function

Definition:
Let X and Y be two sets. Let f be a relation from X to $\mathrm{Y}(\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$). For each $x \in X, \exists \mid y \in Y \ni(x, y) \in f$. Then, f is called a function.

Note:

- A relation f is a function, if

1) $\operatorname{Dom}(\mathrm{f})=\mathrm{X}$ ["Any cause has a result."];
2) If $\left(x, y_{1}\right) \in f$ and $\left(x, y_{2}\right) \in f$, then, $y_{1}=y_{2}$
["One cause has only one result."].
Then, we write $y=f(x)$.

- $\quad \mathrm{x}$ is called independent variable and y is called dependent variable.

EX 1:

$$
\mathrm{X}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}\right\} ; \mathrm{Y}=\left\{\mathrm{y}_{1}, \mathrm{y}_{2}\right\}
$$

Not a function.

A function.

EX 2:

$$
S=\left\{(x, y\} \mid y \leq x,(x, y) \in \mathbb{R}^{2}\right\} \rightarrow \text { Not a function. }
$$

EX 3:

$$
y=x^{2},-1 \leq x \leq 1 .
$$

y

$$
\begin{array}{r}
y=x^{2} \\
\\
\\
\\
\\
\end{array}
$$

EX 4:

$$
x^{2}+y^{2}=1,-1 \leq x \leq 1
$$

A function.

$$
\operatorname{Dom}(\mathrm{f})=\{\mathrm{x} \mid-1 \leq \mathrm{x} \leq 1\}
$$

$\quad \operatorname{Dom}(f)=\{x \mid-1 \leq x \leq 1\}$

$\operatorname{Im}(f)=\{y \mid 0 \leq y \leq 1\}$

$$
\operatorname{Im}(f)=\{y \mid 0 \leq y \leq 1\}
$$

EX 5:

$$
\mathrm{x}^{2}+\mathrm{y}^{2}=1,-1 \leq \mathrm{x} \leq 1 \text { and } 0 \leq \mathrm{y} \leq 1 .
$$

A function.
(5) Types of Function

1) Constant function:

$$
\mathrm{y} \equiv \mathrm{f}(\mathrm{x})=7
$$

2) Polynomial function:

- $\quad y \equiv f(x)=a_{o}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$.
[n'th order polynomial function]
- constant $f^{\mathrm{n}}: \mathrm{y}=\mathrm{a}_{\mathrm{o}}$
- \quad linear $f^{n}: y=a_{o}+a_{1} x$
- quadratic $f^{n}: y=a_{o}+a_{1} x+a_{2} x^{2}$
- \quad cubic $f^{n}: y=a_{o}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$

3) Rational function

- $y=\frac{x-1}{x^{2}+2 x+4}$.
- $y=\frac{a}{x}($ or $x y=a$: rectangular hypobola $)$.
(6) Extension of Function

1) $\mathrm{f}: \mathrm{A} \times \mathrm{B} \rightarrow \mathrm{C}$

$$
\begin{aligned}
& \text { Let } A=\{b m, g m\}, B=\{a+, a-\}, C=\{d, n d\} \\
& \quad f=\{((b m, a+), n d),((b m, a-), d),((g m, a+), d),((g m, a-), n d)\} \\
& \quad(b m, a+) \rightarrow n d \\
& \\
& (b m, a-) \rightarrow d \\
& \\
& (g m, a+) \rightarrow d \\
& \\
& (g m, a-) \rightarrow n d
\end{aligned}
$$

2) $\mathrm{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}$.

$$
f:(x, y) \rightarrow z\left[z=x^{2}+y^{2}, z=x^{2}+x y+y^{2}\right]
$$

EX: Textbook, p. 23, Q1-Q6; p. 29, Q1, Q3, Q5, Q6.

