TOPIC III LINEAR ALGEBRA

[1] Linear Equations
(1) Case of Two Endogenous Variables

1) Linear vs. Nonlinear Equations

- Linear equation: $\mathrm{ax}+\mathrm{by}=\mathrm{c}$, where a, b and c are constants.
- Nonlinear equation: $a x^{2}+b y=c$.
- Can express a linear equation by a line in a graph.

EX 1: $-2 x+y=1$
EX 2: $-x^{2}+y=0$ (nonlinear equation)

2) System of Linear Equations

- mequations: $\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}=\mathrm{c}_{1}$

$$
\begin{gathered}
\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}=\mathrm{c}_{2} \\
: \\
\mathrm{a}_{\mathrm{m}} \mathrm{x}+\mathrm{b}_{\mathrm{m}} \mathrm{y}=\mathrm{c}_{\mathrm{m}}
\end{gathered}
$$

- If (\bar{x}, \bar{y}) satisfies all of the equations, it is called a solution.
- 3 possible cases: - Unique solution
- No solution
- Infinitely many solutions

EX 1: Case of no solution (inconsistent equations)

1) $x-y=1$;
2) $\mathrm{x}-\mathrm{y}=2 \quad \Rightarrow$ inconsistent. \Rightarrow No solution.

EX 2: Case of infinitely many solutions
(two equations and one redundant equation)

1) $x-y=1$;
2) $2 \mathrm{x}-2 \mathrm{y}=2 \quad \Rightarrow(\overline{\mathrm{x}}, \overline{\mathrm{y}})=(1,0),(2,1), \ldots$

EX 3: Case of unique solution
(two equations and no inconsistent and no redundant equations)

1) $x-y=1$;
2) $x+y=1 \quad \Rightarrow(\bar{x}, \bar{y})=(1,0)$ (unique)
(2) Extension to Systems of Multiple Endogenous Variables

- System of m equations and n endogenous variables:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
: \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{m}
\end{gathered}
$$

\rightarrow variables: $\mathrm{X}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$
constants: $\mathrm{a}_{\mathrm{ij}}, \mathrm{b}_{\mathrm{i}}(\mathrm{i}=1, \ldots, \mathrm{~m} ; \mathrm{j}=1, \ldots \mathrm{n})$

- If $\left(\overline{\mathrm{x}}_{1}, \ldots, \overline{\mathrm{x}}_{\mathrm{n}}\right)$ satisfies all of the equations, it is called a solution.
- 3 possible cases.
- Is there any systematic way to solve the system?

[3] Matrix and Matrix Operations

Definition:

- A matrix, A , is a rectangular array of numbers:

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]=\left[a_{i j}\right]_{\mathrm{m} \times n}
$$

where i denotes row and j denotes columns.

- A is called a $\mathrm{m} \times \mathrm{n}$ matrix. ($\mathrm{m}=\#$ of rows $; \mathrm{n}=\#$ of columns.)

EX:

$$
\left[\begin{array}{cc}
1 & 2 \\
3 & 0 \\
-1 & 4
\end{array}\right]_{3 \times 2},\left[\begin{array}{llll}
2 & 1 & 0 & -3
\end{array}\right]_{1 \times 4},[4]_{1 \times 1} \text { (scalar) }
$$

Definition:

If $\mathrm{m}=\mathrm{n}$ for a $\mathrm{m} \times \mathrm{n}$ matrix A, A is called a square matrix.
EX:

$$
\left[\begin{array}{ccc}
1 & 2 & 1 \\
3 & 0 & 0 \\
-1 & 4 & 1
\end{array}\right]
$$

Definition:
Let A be a $m \times n$ matrix. The transpose of A is denoted by A^{t} (or A^{\prime}), which is a $\mathrm{n} \times \mathrm{m}$ matrix; and it is obtained by the following procedure.

- 1 st column of $\mathrm{A} \Rightarrow 1$ st row of A^{t}
- 2 nd column of $A \Rightarrow 2$ st column of A^{t}... etc.

EX:

$$
A=\left[\begin{array}{lll}
2 & 1 & 4 \\
6 & 3 & 3
\end{array}\right] ; A^{\prime}=\left[\begin{array}{ll}
2 & 6 \\
1 & 3 \\
4 & 3
\end{array}\right]
$$

Definition:

Let A be a square matrix. A is called symmetric if and only if $A=A^{t}$ (or $\left.A^{\prime}\right)$. EX:

$$
\mathrm{A}=\left[\begin{array}{lll}
1 & 3 & 4 \\
3 & 2 & 1 \\
4 & 1 & 1
\end{array}\right]=\mathrm{A}^{\mathrm{t}}
$$

Note:
For any matrix $\mathrm{A}, \mathrm{A}^{t} \mathrm{~A}$ is always symmetric.

Definition:

Let $A=\left[a_{i j}\right]$ be a $m \times n$ matrix. If all of the $a_{i j}=0$, then A is call a zero matrix. EX:

$$
\mathrm{A}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0
\end{array}\right] ; \mathrm{B}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] . \Rightarrow \mathrm{A} \text { is not a zero matrix, but } \mathrm{B} \text { is. }
$$

Definition:

Let A and B are $\mathrm{m} \times \mathrm{n}$ matrices. $\mathrm{A}+\mathrm{B}$ is obtained by adding corresponding entries of A and B.

EX:

$$
\left[\begin{array}{ll}
1 & 4 \\
2 & 2
\end{array}\right]+\left[\begin{array}{ll}
3 & 1 \\
4 & 5
\end{array}\right]=\left[\begin{array}{ll}
4 & 5 \\
6 & 7
\end{array}\right] ;\left[\begin{array}{ll}
1 & 4 \\
2 & 2
\end{array}\right]-\left[\begin{array}{cc}
3 & 1 \\
4 & 5
\end{array}\right]=\left[\begin{array}{cc}
-2 & 3 \\
-2 & -3
\end{array}\right] .
$$

Definition:
Let A be a $\mathrm{m} \times \mathrm{n}$ matrix and c be a scalar (real number). Then, cA is obtained by multiplying all the entries of A by c .

EX:

$$
6 \times\left[\begin{array}{ll}
2 & 4 \\
3 & 5
\end{array}\right]=\left[\begin{array}{cc}
12 & 24 \\
18 & 30
\end{array}\right]
$$

Definition:

$$
A_{1}=\left[\begin{array}{llll}
a_{11} & a_{12} & \cdots & a_{1 p}
\end{array}\right] ; B_{1}=\left[\begin{array}{c}
b_{11} \\
b_{21} \\
\vdots \\
b_{p 1}
\end{array}\right] \Rightarrow \mathrm{A}_{1} \mathrm{~B}_{1}=\mathrm{a}_{11} \mathrm{~b}_{11}+\mathrm{a}_{12} \mathrm{~b}_{21}+\ldots+\mathrm{a}_{1 \mathrm{p}} \mathrm{~b}_{\mathrm{p} 1} .
$$

EX:

$$
A_{1}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] ; \mathrm{B}_{1}=\left[\begin{array}{l}
4 \\
1 \\
2
\end{array}\right] . \quad \rightarrow \mathrm{A}_{1} \mathrm{~B}_{1}=1 \times 4+2 \times 1+3 \times 2=12
$$

Definition:

Let A and B are $\mathrm{m} \times \mathrm{p}$ and $\mathrm{p} \times \mathrm{n}$ matrices, respectively.
Let $A=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 p} \\ a_{21} & a_{22} & \cdots & a_{2 p} \\ \vdots & \vdots & & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m p}\end{array}\right]=\left[\begin{array}{c}A_{1} \\ A_{2} \\ \vdots \\ A_{m}\end{array}\right] ; B=\left[\begin{array}{cccc}b_{11} & b_{12} & \cdots & b_{1 n} \\ b_{21} & b_{22} & \cdots & b_{2 b} \\ \vdots & \vdots & & \vdots \\ b_{p 1} & b_{p 2} & \cdots & b_{p n}\end{array}\right]=\left[\begin{array}{llll}B_{1} & B_{2} & \cdots & B_{n}\end{array}\right]$. Then,

$$
\mathrm{AB}=\left[\begin{array}{cccc}
\mathrm{A}_{1} \mathrm{~B}_{1} & \mathrm{~A}_{1} \mathrm{~B}_{2} & \cdots & \mathrm{~A}_{1} \mathrm{~B}_{\mathrm{n}} \\
\mathrm{~A}_{2} \mathrm{~B}_{1} & \mathrm{~A}_{2} \mathrm{~B}_{2} & \cdots & \mathrm{~A}_{2} \mathrm{~B}_{\mathrm{n}} \\
\vdots & \vdots & & \vdots \\
\mathrm{~A}_{\mathrm{m}} \mathrm{~B}_{1} & \mathrm{~A}_{\mathrm{m}} \mathrm{~B}_{2} & \vdots & \mathrm{~A}_{\mathrm{m}} \mathrm{~B}_{\mathrm{n}}
\end{array}\right]_{\mathrm{m} \times \mathrm{n}}
$$

EX 1:

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right] ; B=\left[\begin{array}{ll}
4 & 3 \\
2 & 1 \\
1 & 0
\end{array}\right] . \\
& \Rightarrow A B=\left[\begin{array}{ll}
1 \times 4+3 \times 2+5 \times 1 & 1 \times 3+3 \times 1+5 \times 0 \\
2 \times 4+4 \times 2+6 \times 1 & 2 \times 3+4 \times 1+6 \times 0
\end{array}\right]=\left[\begin{array}{cc}
15 & 6 \\
22 & 10
\end{array}\right] .
\end{aligned}
$$

EX 2:

- $\mathrm{a}_{11} \mathrm{x}_{1}+\mathrm{a}_{12} \mathrm{x}_{2}+\ldots+\mathrm{a}_{1 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{1}$

$$
\mathrm{a}_{21} \mathrm{x}_{1}+\mathrm{a}_{22} \mathrm{x}_{2}+\ldots+\mathrm{a}_{2 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{2}
$$

$$
\mathrm{a}_{\mathrm{m} 1} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{m} 2} \mathrm{x}_{2}+\ldots+\mathrm{a}_{\mathrm{m} \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{\mathrm{m}}
$$

- Define:

$$
\mathrm{A}=\left[\begin{array}{cccc}
\mathrm{a}_{11} & \mathrm{a}_{12} & \cdots & a_{1 \mathrm{n}} \\
\mathrm{a}_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
\mathrm{a}_{\mathrm{m} 1} & a_{\mathrm{m} 2} & \cdots & a_{\mathrm{mn}}
\end{array}\right] ; \mathrm{x}=\left[\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2} \\
\vdots \\
\mathrm{x}_{\mathrm{n}}
\end{array}\right] ; \mathrm{b}=\left[\begin{array}{c}
\mathrm{b}_{1} \\
\mathrm{~b}_{2} \\
\vdots \\
\mathrm{~b}_{\mathrm{m}}
\end{array}\right]
$$

- Observe that

$$
A x=\left[\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]=b .
$$

- Thus, we can express the above system of equations by:

$$
\mathrm{Ax}=\mathrm{b}
$$

EX 3:

$$
\begin{array}{ll}
& \mathrm{x}_{1}+2 \mathrm{x}_{2}=1 ; \mathrm{x}_{2}=0 \\
\rightarrow \quad & 1 \cdot \mathrm{x}_{1}+2 \cdot \mathrm{x}_{2}=1 \\
& 0 \cdot \mathrm{x}_{1}+1 \cdot \mathrm{x}_{2}=0 \\
\rightarrow & {\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] .}
\end{array}
$$

Some Caution in Matrix Operations:
(1) AB may not equal BA .

EX: $A=\left[\begin{array}{cc}-1 & 0 \\ 2 & 3\end{array}\right], B=\left[\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right] \Rightarrow$ Can show $A B \neq B A$.
(2) Suppose that $\mathrm{AB}=\mathrm{AC}$. It does not mean that $\mathrm{B}=\mathrm{C}$.
(3) $\mathrm{AB}=0$ (zero matrix) does not mean that $\mathrm{A}=0$ or $\mathrm{B}=0$.

$$
\begin{aligned}
\mathrm{EX}: & \mathrm{A}
\end{aligned}=\left[\begin{array}{ll}
0 & 1 \\
0 & 2
\end{array}\right] ; \mathrm{B}=\left[\begin{array}{ll}
1 & 1 \\
3 & 4
\end{array}\right] ; \mathrm{C}=\left[\begin{array}{ll}
2 & 5 \\
3 & 4
\end{array}\right] ; \mathrm{D}=\left[\begin{array}{ll}
3 & 7 \\
0 & 0
\end{array}\right] \quad \text { (zero matrix) }
$$

Definition:

Let A be a square matrix. A is call an identity matrix if all of the diagonal entries are one and all of the off-diagonals are zero.

EX:

$$
I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Note:
For $A_{m \times n}, I_{m} A_{m \times n}=A_{m \times n}$ and $A_{m \times n} I_{n}=A_{m \times n}$.

Definition:

For $A_{n \times n}$ and $B_{n \times n}$, B is the inverse of A iff $A B=I_{n}$ or $B A=I_{n}$. EX:

$$
\mathrm{A}=\left[\begin{array}{cc}
2 & -5 \\
-1 & 3
\end{array}\right] ; \mathrm{B}=\left[\begin{array}{ll}
3 & 5 \\
1 & 2
\end{array}\right] \Rightarrow \mathrm{AB}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \Rightarrow \mathrm{B}=\mathrm{A}^{-1}
$$

Note:
The inverse is unique, if it exists.

Theorem:

$$
A_{2 \times 2}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \Rightarrow A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] . \text { If } a d=b c, \text { no inverse. }
$$

Theorem:
Suppose that $A_{n \times n}$ and $B_{n \times n}$ are invertible. Then, $(A B)^{-1}=B^{-1} A^{-1}$.
EX 1:

$$
A^{n}=A \cdot A \cdot \cdots A, n \text { times. } \Rightarrow\left(A^{n}\right)^{-1}=A^{-1} \cdots A^{-1}=\left(A^{-1}\right)^{n} .
$$

EX 2:

- A system of linear equations is given by

$$
\underset{\mathrm{m} \times \mathrm{n} \mathrm{n} \times 1}{\mathrm{~A}} \mathrm{X}=\underset{\mathrm{m} \times 1}{\mathrm{~b}}
$$

- Assume $\mathrm{m}=\mathrm{n}$, and A is invertible. Then,

$$
A^{-1} A x=A^{-1} b \Rightarrow I x=A^{-1} b \Rightarrow \bar{x}=\left[\begin{array}{c}
\overline{\mathrm{x}}_{1} \\
: \\
\overline{\mathrm{x}}_{\mathrm{n}}
\end{array}\right]=\mathrm{A}^{-1} \mathrm{~b} \text { (solution). }
$$

[4] Determinant

Definition:

$$
\text { Let } A_{2 \times 2}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \text {. Then, }|A| \equiv \operatorname{det}(A)=a_{11} a_{22}-a_{12} a_{21}
$$

EX:

$$
A=\left[\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right] \Rightarrow \operatorname{det}(A)=8-3=5
$$

Definition:

$$
A_{3 \times 3}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \cdot \Rightarrow \begin{array}{lllllll}
a_{11} & a_{12} & a_{13} & \vdots & a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} & \vdots & a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33} & \vdots & a_{31} & a_{32} & a_{33}
\end{array}
$$

$$
\operatorname{det}(A)=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}-a_{12} a_{21} a_{33}-a_{11} a_{23} a_{32}
$$ EX:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 1 \\
1 & 3 & 4
\end{array}\right] \begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 1 \\
1 & 3 & 4
\end{array} \Rightarrow \operatorname{det}(\mathrm{~A})=20+2+36-3-32-15=58-50=8 .
$$

Definition:
Let $A_{n \times n}=\left[a_{i j}\right]$. Then,

- Minor of $\mathrm{a}_{\mathrm{ij}}\left(\equiv \mathrm{M}_{\mathrm{ij}}\right)=(\mathrm{n}-1) \times(\mathrm{n}-1)$ matrix excluding $\mathrm{i}^{\text {th }}$ row and $\mathrm{j}^{\text {th }}$ column of $A_{n \times n}$
- Cofactor of $\mathrm{a}_{\mathrm{ij}}\left(\equiv\left|\mathrm{C}_{\mathrm{ij}}\right|\right)=(-1)^{\mathrm{i}+\mathrm{j}}\left|\mathrm{M}_{\mathrm{ij}}\right|$

Definition: (Laplace expansion)

- $\operatorname{det}(A)=\sum_{j=1}^{n} a_{i j}\left|C_{i j}\right|$ for any given $\mathrm{i}=\mathrm{a}_{\mathrm{i} 1}\left|\mathrm{C}_{\mathrm{i} 1}\right|+\ldots+\mathrm{a}_{\mathrm{in}}\left|\mathrm{C}_{\mathrm{in}}\right|$.

$$
=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ij}}\left|\mathrm{C}_{\mathrm{ij}}\right| \text { for any given } \mathrm{j}=\mathrm{a}_{1 \mathrm{j}}\left|\mathrm{C}_{1 \mathrm{j}}\right|+\ldots+\mathrm{a}_{\mathrm{nj}}\left|\mathrm{C}_{\mathrm{nj}}\right| \text {. }
$$

- This holds for general n .

EX:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 1 \\
1 & 3 & 4
\end{array}\right]
$$

- Choose $1^{\text {st }}$ row:

$$
\begin{aligned}
& \mathrm{a}_{11}=1:\left|\mathrm{M}_{11}\right|=\left|\begin{array}{ll}
5 & 1 \\
3 & 4
\end{array}\right|=17 \Rightarrow\left|\mathrm{C}_{11}\right|=(-1)^{1+1}\left|\mathrm{M}_{11}\right|=17 \\
& \mathrm{a}_{12}=2:\left|\mathrm{M}_{12}\right|=\left|\begin{array}{ll}
4 & 1 \\
1 & 4
\end{array}\right|=15 \Rightarrow\left|\mathrm{C}_{12}\right|=(-1)^{1+2} \cdot 15=-15
\end{aligned}
$$

$$
\begin{aligned}
& a_{13}=3:\left|M_{13}\right|=\left|\begin{array}{ll}
4 & 5 \\
1 & 3
\end{array}\right|=7 \Rightarrow\left|C_{13}\right|=(-1)^{1+3} \cdot 7=7 \\
& \Rightarrow \operatorname{det}(A)=a_{11}\left|c_{11}\right|+a_{12}\left|c_{12}\right|+a_{13}\left|c_{13}\right|=1 \times 17+2 \times(-15)+3 \times 7=8
\end{aligned}
$$

- Choose the $2^{\text {nd }}$ row and do Laplace expansion (Do it by yourself).

EX:

$$
A=\left[\begin{array}{llll}
1 & 2 & 1 & 2 \\
2 & 6 & 1 & 1 \\
3 & 0 & 0 & 0 \\
4 & 3 & 1 & 4
\end{array}\right] \Rightarrow \operatorname{det}(A)=3(-1)^{3+1}\left[\begin{array}{lll}
2 & 1 & 2 \\
6 & 1 & 1 \\
3 & 1 & 4
\end{array}\right] .
$$

Theorem:

Consider $\mathrm{A}_{\mathrm{n} \times n}$. If all of the entries in the $\mathrm{i}^{\text {ih }}$ row of A are zero, $\operatorname{det}(\mathrm{A})=0$.

Definition: (Triangular matrices)

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 4 & 5 \\
0 & 0 & 6
\end{array}\right] \text { upper t.m; } B=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 3 & 0 \\
4 & 5 & 6
\end{array}\right] \text { lower t.m. }
$$

EX: (not triangular)

$$
B=\left[\begin{array}{llll}
3 & 2 & 1 & 1 \\
6 & 4 & 1 & 0 \\
2 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \text {. }
$$

Theorem:

Let $A_{n \times n}$ be a triangular matrix. Then, $\operatorname{det}(A)=$ product of diagonals. EX:

$$
\operatorname{det}(A)=1 \times 4 \times 6=24 ; \operatorname{det}(B)=1 \times 3 \times 6=18
$$

Theorem:

(a) If B is a matrix that results when a single row (column) of A is multiplied by a constant k, then $\operatorname{det}(B)=k \cdot \operatorname{det}(A)$.

EX:

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\text { something }
\end{array}\right] ; B=\left[\begin{array}{cccc}
2 & 4 & 6 & 8 \\
\text { same } & \text { as } & A
\end{array}\right] \Rightarrow \operatorname{det}(B)=2 \times \operatorname{det}(A) .
$$

- Same results when $\mathrm{A}=\left[\begin{array}{ll}1 & \\ 2 & \\ 3 & \text { something } \\ 4 & \end{array}\right] \& B=\left[\begin{array}{ll}2 & \\ 4 & \\ 6 & \text { same as } \mathrm{A} \\ 8 & \end{array}\right]$.

EX:

$$
\begin{aligned}
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 1 \\
1 & 1 & 2
\end{array}\right] ; B=\left[\begin{array}{lll}
2 & 4 & 6 \\
4 & 2 & 2 \\
1 & 1 & 2
\end{array}\right] \\
\rightarrow \operatorname{det}(B)=2 \cdot \operatorname{det}\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 2 & 2 \\
1 & 1 & 2
\end{array}\right]=2 \cdot 2 \cdot \operatorname{det}\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 1 \\
1 & 1 & 2
\end{array}\right]=4 \cdot \operatorname{det}(\mathrm{~A}) .
\end{aligned}
$$

(b) If B results when a multiple of one row (column) of A is added to another row $($ column $), \operatorname{det}(B)=\operatorname{det}(A)$.

EX:
$\mathrm{A}=\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ \text { something }\end{array}\right] ; \mathrm{B}=\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \\ \text { same as } & \mathrm{A}\end{array}\right] \Rightarrow \operatorname{det}(\mathrm{B})=\operatorname{det}(\mathrm{A})$

- Same results when $A=\left[\begin{array}{lll}1 & 2 & \\ 2 & 3 & \\ 3 & 4 & \ldots \\ 4 & 5\end{array}\right] \& B=\left[\begin{array}{lll}1 & 1 & \\ 2 & 1 & \\ 3 & 1 & \ldots . \\ 4 & 1 & \end{array}\right]$.
(c) If B results when two rows (columns) of A are interchanged,

$$
\operatorname{det}(B)=-\operatorname{det}(A)
$$

EX:

$$
\mathrm{A}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
\text { same }
\end{array}\right] ; \mathrm{B}=\left[\begin{array}{ccc}
4 & 5 & 6 \\
1 & 2 & 3 \\
\text { same }
\end{array}\right] \Rightarrow \operatorname{det}(\mathrm{B})=-\operatorname{det}(\mathrm{A})
$$

- Same results if $\mathrm{A}=\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right]$ same $\quad \& B=\left[\begin{array}{ll}4 & 1 \\ 5 & 2 \\ 6 & 3\end{array}\right]$ same .

EX:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
1 & 2 & 3
\end{array}\right] \Rightarrow \operatorname{det}(A)=\operatorname{det}\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
0 & 0 & 0
\end{array}\right]=0
$$

Note:
If two rows or two columns are the same, then det $=0$.

EX 1:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 4 \\
1 & 2 & 1
\end{array}\right] \Rightarrow \operatorname{det}(\mathrm{A})=1+8-3-8=-2
$$

(1) $\mathrm{A}_{1}=\left[\begin{array}{lll}4 & 8 & 12 \\ 0 & 1 & 4 \\ 1 & 2 & 1\end{array}\right] . \Rightarrow 1^{\text {st }}$ row of $\mathrm{A}_{1}=4 \times 1^{\text {st }}$ row of A

$$
\Rightarrow \operatorname{det}\left(\mathrm{A}_{1}\right)=4 \times \operatorname{det}(\mathrm{A})=-8[\mathrm{by}(\mathrm{a})]
$$

(2) $A_{2}=\left[\begin{array}{ccc}1 & 2 & 3 \\ -2 & -3 & -2 \\ 1 & 2 & 1\end{array}\right] \Rightarrow 2^{\text {nd }}$ row of $A_{2}=2^{\text {nd }}$ row of $\mathrm{A}-2 \times 1^{\text {st }}$ row of A

$$
\Rightarrow \operatorname{det}\left(\mathrm{A}_{2}\right)=\operatorname{det}(\mathrm{A})=-2[\mathrm{by}(\mathrm{~b})]
$$

(3) $\mathrm{A}_{3}=\left[\begin{array}{lll}0 & 1 & 4 \\ 1 & 2 & 3 \\ 1 & 2 & 1\end{array}\right] \Rightarrow 1^{\text {st }}$ and $2^{\text {nd }}$ rows of A interchanged.

$$
\Rightarrow \operatorname{det}\left(\mathrm{A}_{3}\right)=-\operatorname{det}(\mathrm{A})=2[\mathrm{by}(\mathrm{c})]
$$

EX 2:

$$
A=\left[\begin{array}{llll}
3 & 2 & 1 & 1 \\
6 & 1 & 1 & 0 \\
1 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

$$
\rightarrow \operatorname{det}(A)=-\operatorname{det}\left[\begin{array}{llll}
1 & 2 & 1 & 3 \\
0 & 1 & 1 & 6 \\
0 & 3 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]=(-)(-) \operatorname{det}\left[\begin{array}{llll}
1 & 1 & 2 & 3 \\
0 & 1 & 1 & 6 \\
0 & 0 & 3 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]=(+) 1 \cdot 1 \cdot 3 \cdot 1=3
$$

EX 3:

$$
B=\left[\begin{array}{ccccc}
0 & 0 & 2 & 2 & 2 \\
3 & -3 & 3 & 3 & 3 \\
-4 & 4 & 4 & 4 & 4 \\
4 & 3 & 1 & 9 & 2 \\
1 & 2 & 1 & 3 & 1
\end{array}\right] \Rightarrow \operatorname{det}\left[\begin{array}{ccccc}
0 & 0 & 2 & 2 & 2 \\
3 & -3 & 0 & 0 & 0 \\
-4 & 4 & 0 & 0 & 0 \\
4 & 3 & 1 & 9 & 2 \\
1 & 2 & 1 & 3 & 1
\end{array}\right]=\operatorname{det}\left[\begin{array}{ccccc}
0 & 0 & 2 & 2 & 2 \\
3 & -3 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
4 & 3 & 1 & 9 & 2 \\
1 & 2 & 1 & 3 & 1
\end{array}\right]=0 .
$$

[2nd row - $(3 / 2) \cdot 1$ st row] $\quad[3$ rd row $+(4 / 3) \cdot 2$ nd row]
[3rd row - $2 \cdot 1$ st row]

Definition:
Let $A_{m \times n}=\left[a_{i j}\right]$. Then, $A^{t}($ transpose of $A)=\left[a_{j i}\right]_{n \times m}$ EX:

$$
A=\left[\begin{array}{lll}
2 & 1 & 5 \\
3 & 4 & 6
\end{array}\right] \Rightarrow A^{t}=\left[\begin{array}{ll}
2 & 3 \\
1 & 4 \\
5 & 6
\end{array}\right] .
$$

Theorem:
(a) $\left(\mathrm{A}^{\mathrm{t}}\right)^{\mathrm{t}}=\mathrm{A}$
(b) $(A+B)^{t}=A^{t}+B^{t}$
(c) $(\mathrm{AB})^{t}=\mathrm{B}^{\mathrm{t}} \mathrm{A}^{\mathrm{t}}$
(d) $\operatorname{det}\left(\mathrm{A}^{t}\right)=\operatorname{det}(\mathrm{A})$.

Theorem:

Let A and B be $n \times n$ matrices. Then, $\operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B)$.
EX:

$$
\begin{aligned}
\mathrm{A}=\left[\begin{array}{ll}
3 & 1 \\
2 & 1
\end{array}\right] ; \mathrm{B}=\left[\begin{array}{cc}
-1 & 3 \\
5 & 8
\end{array}\right] & \Rightarrow|\mathrm{A}|=3-2=1 ;|\mathrm{B}|=-8-15=-23 \\
& \Rightarrow|\mathrm{~A}||\mathrm{B}|=-23 . \\
\mathrm{AB}=\left[\begin{array}{ll}
2 & 17 \\
3 & 14
\end{array}\right] \quad & \Rightarrow|\mathrm{AB}|=28-51=-23!!!
\end{aligned}
$$

Note:

$$
\operatorname{det}(A+B) \neq \operatorname{det}(A)+\operatorname{det}(B)
$$

Theorem:
$\mathrm{A}_{\mathrm{n} \times \mathrm{n}}$ invertible iff $\operatorname{det}(\mathrm{A}) \neq 0$.
Theorem:

$$
\operatorname{det}\left(\mathrm{A}^{-1}\right)=\frac{1}{\operatorname{det}(\mathrm{~A})}
$$

EX:
$A=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 0 & 1 \\ 2 & 4 & 6\end{array}\right] \Rightarrow \operatorname{det}(A)=0 \Rightarrow A$ is not invertible.

Notation:
When $\operatorname{det}(A)=0$, we say A is singular.
When $\operatorname{det}(A) \neq 0$, we say A is nonsingular.

[5] Inverse

Some useful facts for $\mathrm{A}^{-1:}$
(1) $\mathrm{A}=\left[\begin{array}{ccccc}\mathrm{a}_{11} & 0 & 0 & \ldots & 0 \\ 0 & \mathrm{a}_{22} & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \ldots & \mathrm{a}_{\mathrm{nn}}\end{array}\right] \Rightarrow \mathrm{A}^{-1}=\left[\begin{array}{ccccc}1 / \mathrm{a}_{11} & 0 & 0 & \ldots & 0 \\ 0 & 1 / a_{22} & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \ldots & 1 / a_{\mathrm{nn}}\end{array}\right]$
(2) $\quad \mathrm{A}=\left[\begin{array}{ll}\mathrm{B}_{\mathrm{p} \times \mathrm{p}} & \mathrm{O}_{\mathrm{p} \times \mathrm{q}} \\ \mathrm{O}_{\mathrm{q} \times \mathrm{p}} & \mathrm{C}_{\mathrm{q} \times \mathrm{q}}\end{array}\right]_{(\mathrm{p}+\mathrm{q}) \times(\mathrm{p}+\mathrm{q})} \Rightarrow \mathrm{A}^{-1}=\left[\begin{array}{cc}\mathrm{B}^{-1} & 0 \\ 0 & \mathrm{C}^{-1}\end{array}\right]$

EX1:

$$
A=\left[\begin{array}{ccc}
5 & 7 & 0 \\
7 & 10 & 0 \\
0 & 0 & 3
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
5 & 7 \\
7 & 10
\end{array}\right]^{-1}=\left[\begin{array}{cc}
10 & -7 \\
-7 & 5
\end{array}\right] \Rightarrow A^{-1}=\left[\begin{array}{ccc}
10 & -7 & 0 \\
-7 & 5 & 0 \\
0 & 0 & \frac{1}{3}
\end{array}\right]
$$

EX2:

$$
\left[\begin{array}{cccc}
5 & 7 & 0 & 0 \\
7 & 10 & 0 & 0 \\
0 & 0 & 5 & 7 \\
0 & 0 & 7 & 10
\end{array}\right]=\mathrm{A} . \quad \mathrm{A}^{-1}=?
$$

Definition:
Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{n} \times \mathrm{n}} ;$
$\mathrm{C}=$ matrix of cofactors $=\left[\begin{array}{ccc}\left|\mathrm{C}_{11}\right| & \ldots & \left|\mathrm{C}_{1 \mathrm{n}}\right| \\ \left|\mathrm{C}_{21}\right| & \ldots & \left|\mathrm{C}_{2 \mathrm{n}}\right| \\ \vdots & & \vdots \\ \left|\mathrm{C}_{\mathrm{n} 1}\right| & \ldots & \left|\mathrm{C}_{\mathrm{nn}}\right|\end{array}\right] ;$ and $\operatorname{adj}(\mathrm{A})=\mathrm{C}^{\mathrm{t}}$.

Theorem:
Suppose that A is invertible. Then,

$$
\mathrm{A}^{-1}=\frac{1}{\operatorname{det}(\mathrm{~A})} \operatorname{adj}(\mathrm{A})
$$

Note:

$$
\mathrm{A}^{-1} \text { exists iff } \operatorname{det}(\mathrm{A}) \neq 0
$$

EX:

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
3 & 2 & -1 \\
1 & 6 & 3 \\
2 & -4 & 0
\end{array}\right] \\
\left|C_{11}\right| & =(-1)^{1+1}\left|\begin{array}{cc}
6 & 3 \\
-4 & 0
\end{array}\right|=12 ;\left|C_{12}\right|=(-1)^{1+2}\left|\begin{array}{ll}
1 & 3 \\
2 & 0
\end{array}\right|=6 ;\left|C_{13}\right|=(-1)^{1+3}\left|\begin{array}{cc}
1 & 6 \\
2 & -4
\end{array}\right|=-16 . \\
\left|C_{21}\right| & =(-1)^{2+1}\left|\begin{array}{cc}
2 & -1 \\
-4 & 0
\end{array}\right|=4 ;\left|C_{22}\right|=2 ;\left|C_{23}\right|=16 ;
\end{aligned}
$$

$\left|C_{31}\right|=12 ;\left|C_{32}\right|=-10 ;\left|C_{33}\right|=16$.

$$
\Rightarrow C=\left[\begin{array}{ccc}
12 & 6 & -16 \\
4 & 2 & 16 \\
12 & -10 & 16
\end{array}\right] \Rightarrow C^{t}=\operatorname{adj}(A)=\left[\begin{array}{ccc}
12 & 4 & 12 \\
6 & 2 & -10 \\
-16 & 16 & 16
\end{array}\right]
$$

$$
\Rightarrow \operatorname{det}(\mathrm{A})=12+4+12+36=64
$$

$$
\Rightarrow \mathrm{A}^{-1}=\frac{1}{64} \times\left[\begin{array}{ccc}
12 & 4 & 12 \\
6 & 2 & -10 \\
-16 & 16 & 16
\end{array}\right]
$$

[4] Cramer's Rule

- Consider $\mathrm{Ax}=\mathrm{b}$ where $\mathrm{A}_{\mathrm{n} \times \mathrm{n}}$.
- n equations and n unknowns:

$$
\mathrm{x}=\left[\begin{array}{c}
\mathrm{x}_{1} \\
\vdots \\
\mathrm{x}_{\mathrm{n}}
\end{array}\right]
$$

- How can we find solutions, $\overline{\mathrm{x}}_{1} \cdots \overline{\mathrm{x}}_{\mathrm{n}}$?
- Assume that A is invertible.
- $A x=b$

$$
\Rightarrow A^{-1} A x=A^{-1} b \Rightarrow I_{n} x=A^{-1} b \Rightarrow \bar{x}=\left[\begin{array}{c}
\bar{x}_{1} \\
\vdots \\
\overline{\mathrm{x}}_{\mathrm{n}}
\end{array}\right]=\mathrm{A}^{-1} \mathrm{~b}
$$

- Cramer's Rule:

Consider $\mathrm{Ax}=\mathrm{b}$, where $\mathrm{A}_{\mathrm{n} \times \mathrm{n}}$. Define

$$
A_{j}=\left[\begin{array}{cccccc}
a_{11} & a_{12} & \ldots & b_{1} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & b_{2} & \ldots & a_{2 n} \\
\vdots & \vdots & & & & \vdots \\
a_{n 1} & a_{n 2} & \ldots & b_{n} & \ldots & a_{n n}
\end{array}\right] . \text { Then, } \bar{x}_{j}=\frac{\operatorname{det}\left(A_{j}\right)}{\operatorname{det}(A)} .
$$

EX:

$$
\begin{aligned}
& \mathrm{x}_{1}+2 \mathrm{x}_{3}=6 \\
& -3 \mathrm{x}_{1}+4 \mathrm{x}_{2}+6 \mathrm{x}_{3}=30 \\
& -\mathrm{x}_{1}-2 \mathrm{x}_{2}+3 \mathrm{x}_{3}=8 \\
& \Rightarrow \mathrm{~A}=\left[\begin{array}{ccc}
1 & 0 & 2 \\
-3 & 4 & 6 \\
-1 & -2 & 3
\end{array}\right]: \mathrm{b}=\left[\begin{array}{c}
6 \\
30 \\
8
\end{array}\right]: \mathrm{x}=\left[\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2} \\
\mathrm{x}_{3}
\end{array}\right] . \\
& \Rightarrow \mathrm{A}_{1}=\left[\begin{array}{ccc}
6 & 0 & 2 \\
30 & 4 & 6 \\
8 & -2 & 3
\end{array}\right] ; \mathrm{A}_{2}=\left[\begin{array}{ccc}
1 & 6 & 2 \\
-3 & 30 & 6 \\
-1 & 8 & 3
\end{array}\right] ; \mathrm{A}_{3}=\left[\begin{array}{ccc}
1 & 0 & 6 \\
-3 & 4 & 30 \\
-1 & -2 & 8
\end{array}\right] . \\
& \Rightarrow \overline{\mathrm{x}}_{1}=\left|\mathrm{A}_{1}\right| /|\mathrm{A}| ; \overline{\mathrm{x}}_{2}=\left|\mathrm{A}_{1}\right| /|\mathrm{A}| ; \text { and } \overline{\mathrm{x}}_{3}=\left|\mathrm{A}_{1}\right| /|\mathrm{A}| .
\end{aligned}
$$

EX:

$$
Q_{d}=a+b p ; Q_{s}=c+d p
$$

\Rightarrow Then,

$$
\begin{array}{cc}
\overline{\mathrm{Q}}=\mathrm{a}+\mathrm{b} \overline{\mathrm{P}} & \overline{\mathrm{Q}}-\mathrm{b} \overline{\mathrm{P}}=\mathrm{a} \\
\overline{\mathrm{Q}}=\mathrm{c}+\mathrm{d} \mathrm{\bar{P}} & \overline{\mathrm{Q}}-\mathrm{d} \overline{\mathrm{P}}=\mathrm{c} \\
\Rightarrow \quad\left[\begin{array}{cc}
1 & -\mathrm{b} \\
1 & -\mathrm{d}
\end{array}\right]\left[\begin{array}{l}
\overline{\mathrm{Q}} \\
\overline{\mathrm{P}}
\end{array}\right]= & {\left[\begin{array}{l}
\mathrm{a} \\
\mathrm{c}
\end{array}\right]} \\
\mathrm{A} \quad \mathrm{x} & \mathrm{~b}
\end{array}
$$

$$
\begin{aligned}
& \Rightarrow \quad \mathrm{A}_{1}=\left[\begin{array}{ll}
\mathrm{a} & -\mathrm{b} \\
\mathrm{c} & -\mathrm{d}
\end{array}\right] \Rightarrow \operatorname{det}\left(\mathrm{A}_{1}\right)=-\mathrm{ad}+\mathrm{bc} ; \mathrm{A}_{2}=\left[\begin{array}{ll}
1 & \mathrm{a} \\
1 & \mathrm{c}
\end{array}\right] \Rightarrow \operatorname{det}\left(\mathrm{A}_{2}\right)=\mathrm{c}-\mathrm{a} \\
& \Rightarrow \quad \operatorname{det}(\mathrm{~A})=-\mathrm{d}+\mathrm{b} \\
& \Rightarrow \overline{\mathrm{Q}}=\frac{\operatorname{det}\left(\mathrm{A}_{1}\right)}{\operatorname{det}(\mathrm{A})}=\frac{-\mathrm{ad}+\mathrm{bc}}{-\mathrm{d}+\mathrm{b}}=\frac{\mathrm{ad}-\mathrm{bc}}{\mathrm{~d}-\mathrm{b}} ; \overline{\mathrm{P}}=\frac{\operatorname{det}\left(\mathrm{A}_{2}\right)}{\operatorname{det}(\mathrm{A})}=\frac{\mathrm{c}-\mathrm{a}}{-\mathrm{d}+\mathrm{b}}=\frac{\mathrm{a}-\mathrm{c}}{\mathrm{~d}-\mathrm{b}}
\end{aligned}
$$

EX:

$$
\begin{aligned}
& \mathrm{Y}=\mathrm{C}+\mathrm{I}_{0}+\mathrm{G}_{0} \\
& \mathrm{C}=\mathrm{a}+\mathrm{bY}
\end{aligned}
$$

\Rightarrow Then,

$$
\begin{gathered}
\mathrm{Y} \quad-\mathrm{C}=\mathrm{I}_{0}+\mathrm{G}_{0} \\
-\mathrm{bY}+\mathrm{C}=\mathrm{a} \\
\Rightarrow\left[\begin{array}{cc}
1 & -1 \\
-\mathrm{b} & 1
\end{array}\right]\left[\begin{array}{c}
\overline{\mathrm{Y}} \\
\overline{\mathrm{C}}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{I}_{0}+\mathrm{G}_{0} \\
\mathrm{a}
\end{array}\right] \\
\mathrm{A} \quad \mathrm{x}
\end{gathered}
$$

$$
\Rightarrow \operatorname{det}(\mathrm{A})=1-\mathrm{b}
$$

$$
\Rightarrow \operatorname{det}\left(A_{1}\right)=\left[\begin{array}{cc}
I_{0}+G_{0} & -1 \\
a & 1
\end{array}\right]=I_{0}+G_{0}+a ; \operatorname{det}\left(A_{2}\right)=\left[\begin{array}{cc}
1 & I_{0}+G_{0} \\
-b & a
\end{array}\right]=a+b\left(I_{0}+G_{0}\right)
$$

$$
\Rightarrow \overline{\mathrm{Y}}=\frac{\mathrm{I}_{0}+\mathrm{G}_{0}+\mathrm{a}}{1-\mathrm{b}} ; \quad \overline{\mathrm{C}}=\frac{\mathrm{a}+\mathrm{b}\left(\mathrm{I}_{0}+\mathrm{G}_{0}\right)}{1-\mathrm{b}} .
$$

- Solution Outcomes for a Linear-Equation System:
$\mathrm{Ax}=\mathrm{b}$ where $\mathrm{A}_{\mathrm{nxn}}$.
- When $\mathrm{b} \neq 0$:
- If $|\mathrm{A}| \neq 0$, there is a unique solution $\overline{\mathrm{X}} \neq 0$.

$$
\rightarrow \mathrm{A}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] ; \mathrm{b}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{l}
\overline{\mathrm{x}}_{1} \\
\overline{\mathrm{x}}_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- If $|\mathrm{A}|=0$, there is an infinite number of solutions or no solution.

$$
\begin{aligned}
& \rightarrow \mathrm{A}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] ; \mathrm{b}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \Rightarrow \text { no solution }\left(\overline{\mathrm{x}}_{1}=\left|\mathrm{A}_{1}\right| /|\mathrm{A}|=1 / 0\right) \\
& \rightarrow \mathrm{A}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] ; \mathrm{b}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \Rightarrow \text { infinitely many solutions. }
\end{aligned}
$$

$$
\left(\overline{\mathrm{x}}_{1}=\left|\mathrm{A}_{1}\right| /|\mathrm{A}|=0 / 0\right)
$$

- When $\mathrm{b}=0$:
- If $|\mathrm{A}| \neq 0$, there is a unique solution $\overline{\mathrm{X}}=0$.

$$
\rightarrow \mathrm{A}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] ; \mathrm{b}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow\left[\begin{array}{l}
\overline{\mathrm{x}}_{1} \\
\overline{\mathrm{x}}_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \cdot\left(\overline{\mathrm{x}}_{1}=0 / 1\right)
$$

- If $|\mathrm{A}|=0$, there is an infinite number of solutions.

$$
\rightarrow \mathrm{A}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] ; \mathrm{b}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow \text { infinitely many solutions. }\left(\overline{\mathrm{x}}_{1}=0 / 0\right)
$$

[5] Leontief Input-Output Model

(1) An Example of Simple Economy:

1) Three industries (industry 1,2 and 3 ; say, steel, autos and food)
2) An industry's products are used for production of the industry itself and others:

- The products of industries 1,2 and 3 are used for industry 1 .
$\Rightarrow \mathrm{a}_{11}=\$$ worth of ind. 1's product required for $\$ 1$ worth of ind. 1's product. ($\mathrm{a}_{11}=0.2 \Rightarrow \$.2$ worth of steel is needed to produce $\$ 1$ worth of steel.)
$\Rightarrow \mathrm{a}_{21}=\$$ worth of ind. 2's product required for $\$ 1$ worth of ind. 1's product ($\mathrm{a}_{21}=0.4 \Rightarrow \$.4$ worth of autos is needed to produce $\$ 1$ worth of steel.)
$\Rightarrow \mathrm{a}_{31}=\$$ worth of ind. 3's product required for $\$ 1$ worth of ind. 1's product $\left(\mathrm{a}_{31}=0.1 \Rightarrow \$.1\right.$ worth of food is needed to produce $\$ 1$ worth of steel.)
- The products of industries 1,2 and 3 are used for industry 2 .
$\Rightarrow \mathrm{a}_{12}=\$$ worth of ind. 1's product required for $\$ 1$ worth of ind. 2's product ($\mathrm{a}_{12}=0.3 \Rightarrow \$.3$ worth of steel is needed to produce $\$ 1$ worth of autos.)
$\Rightarrow \mathrm{a}_{22}=\$$ worth of ind. 2's product required for $\$ 1$ worth of ind. 2's product ($\mathrm{a}_{22}=0.1 \Rightarrow \$.1$ worth of autos is needed to produce $\$ 1$ worth of autos.)
$\Rightarrow \mathrm{a}_{32}=\$$ worth of ind. 3's product required for $\$ 1$ worth of ind. 2's product $\left(a_{32}=0.3 \Rightarrow \$.3\right.$ worth of food is needed to produce $\$ 1$ worth of autos.)
- The products of industries 1,2 and 3 are used for industry 3 .
$\Rightarrow \mathrm{a}_{13}=0.2 \Rightarrow \$.2$ worth of steel is needed to produce $\$ 1$ worth of food.
$\Rightarrow \mathrm{a}_{23}=0.2 \Rightarrow \$.2$ worth of autos is needed to produce $\$ 1$ worth of food.
$\Rightarrow \mathrm{a}_{33}=0.2 \Rightarrow \$.2$ worth of food is needed to produce $\$ 1$ worth of food.

3) Final consumption (noninput demand):

- $\mathrm{d}_{1}=\$$ worth of households' consumption of steel.
- $\mathrm{d}_{2}=\$$ worth of households' consumption of autos.
- $\mathrm{d}_{3}=\$$ worth of households' consumption of food.

4) The sum of input values need to produce $\$ 1$ worth of industry j 's $(\mathrm{j}=1,2,3)$ products should not be greater than 1 :

$$
\mathrm{a}_{11}+\mathrm{a}_{21}+\mathrm{a}_{31}=\sum_{\mathrm{i}=1}^{3} \mathrm{a}_{\mathrm{i} 1}<1 ; \mathrm{a}_{12}+\mathrm{a}_{22}+\mathrm{a}_{32}=\sum_{\mathrm{i}=1}^{3} \mathrm{a}_{\mathrm{i} 2}<1 ; \mathrm{a}_{13}+\mathrm{a}_{23}+\mathrm{a}_{33}=\sum_{\mathrm{i}=1}^{3} \mathrm{a}_{\mathrm{i} 3}<1 .
$$

5) Let x_{j} be the total value of industry j 's products. Then,

- $\mathrm{x}_{1}=\mathrm{a}_{11} \mathrm{x}_{1}+\mathrm{a}_{12} \mathrm{x}_{2}+\mathrm{a}_{13} \mathrm{x}_{3}+\mathrm{d}_{1}:$
$\Rightarrow \mathrm{a}_{11} \mathrm{x}_{1}=$ total value of ind. 1's products used in ind. 1 .
$\Rightarrow \mathrm{a}_{12} \mathrm{X}_{2}=$ total value of ind. 1 's products used in ind. 2 .
- $x_{2}=a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+d_{2} ;$
- $\mathrm{x}_{3}=\mathrm{a}_{31} \mathrm{x}_{1}+\mathrm{a}_{32} \mathrm{x}_{2}+\mathrm{a}_{33} \mathrm{x}_{3}+\mathrm{d}_{3}$.

6) Let:

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
0.2 & 0.3 & 0.2 \\
0.4 & 0.1 & 0.2 \\
0.1 & 0.3 & 0.2
\end{array}\right], \text { which is called "input coefficient matrix". } \\
& x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] ; d=\left[\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right] .
\end{aligned}
$$

7) Then,

$$
\mathrm{Ix}=\mathrm{Ax}+\mathrm{d}
$$

$\rightarrow(\mathrm{I}-\mathrm{A}) \mathrm{x}=\mathrm{d}$, where I-A is called "technology matrix."
\rightarrow If we assume (I-A) is invertible and d is given,

$$
\overline{\mathrm{x}}=(\mathrm{I}-\mathrm{A})^{-1} \mathrm{~d}
$$

\rightarrow In our example, if $d=(10,5,6)^{\prime}$, we can obtain

$$
\overline{\mathrm{x}}=\left[\begin{array}{l}
\overline{\mathrm{x}}_{1} \\
\overline{\mathrm{x}}_{2} \\
\overline{\mathrm{x}}_{3}
\end{array}\right]=(\mathrm{I}-\mathrm{A})^{-1} \mathrm{~d}=\left[\begin{array}{c}
24.84 \\
20.68 \\
18.36
\end{array}\right] .
$$

(2) Generalization:

1) Suppose that there are n industries. Then we can define $A_{n \times n}, x_{n \times 1}$ and $d_{n \times 1}$.
2) Then, we have $(I-A) x=b$.
3) If (I-A) is invertible and b is given, we can solve for $\overline{\mathrm{x}}$.
