[6] Vector

Definition:

Vector is a $n \times 1$ or $1 \times n$ matrix.

Note:

• Vector is usually expressed by the form of (1,1) or $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

•
$$(1,1) \Rightarrow$$
 row vector; $\begin{pmatrix} 1\\1 \end{pmatrix} \Rightarrow$ column vector.

- When people talk about vectors, they are usually column vectors.
- Vector arithmetics follow matrix arithmetics.

EX:

$$\mathbf{v} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix}; \ \mathbf{u} = \begin{pmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{pmatrix}.$$

• $\mathbf{v} + \mathbf{u} = \begin{pmatrix} \mathbf{x}_1 + \mathbf{y}_1 \\ \mathbf{x}_2 + \mathbf{y}_2 \end{pmatrix}; \ \mathbf{av} = \begin{pmatrix} \mathbf{ax}_1 \\ \mathbf{ax}_2 \end{pmatrix}; \ \mathbf{v'u} = (\mathbf{x}_1, \mathbf{x}_2) \begin{pmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{pmatrix} = \mathbf{x}_1 \mathbf{y}_1 + \mathbf{x}_2 \mathbf{y}_2$

Definition:

Two vectors u and v are called orthogonal iff u'v = 0. EX:

Definition:

Norm of a vector $v \equiv ||v||$ = Length of v EX:

- $||\mathbf{v}|| = \sqrt{\mathbf{x}_1^2 + \mathbf{x}_2^2}.$
- In general,

$$\mathbf{v} = \begin{pmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{pmatrix} \quad \Rightarrow ||\mathbf{v}|| = \sqrt{\sum_i \mathbf{x}_i^2}.$$

• Classic mistake:

$$\sqrt{{\Sigma_i x_i}^2} = {\Sigma_i x_i}$$
 (please say no!!)

EX:

$$v = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix} \implies ||v|| = \sqrt{1^2 + 3^2 + 4^2} = \sqrt{26}.$$

Definition: (Distance between two vectors)

Let
$$\mathbf{v} = \begin{pmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{pmatrix}$$
 and $\mathbf{u} = \begin{pmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_n \end{pmatrix}$. Then, $\mathbf{d}(\mathbf{v}, \mathbf{u}) = ||\mathbf{v} - \mathbf{u}|| = \sqrt{\sum_i (\mathbf{x}_i - \mathbf{y}_i)^2}$.

$$[=\Sigma_i(x_i - y_i) (No!!!)]$$

Definition:

Let $v_1, ..., v_r \in \mathbb{R}^n$. Suppose that $\exists real \#s \ a_1, ..., a_r \ni w = a_1v_1 + ... + a_rv_r$. Then, w is called a linear combination of $v_1 \cdots v_r$.

EX:

 $\mathbf{v}_1 = \begin{pmatrix} 1\\2\\-1 \end{pmatrix}; \mathbf{v}_2 = \begin{pmatrix} 6\\4\\2 \end{pmatrix}; \mathbf{w} = \begin{pmatrix} 9\\2\\7 \end{pmatrix}$. Show that w is a linear combination.

<proof>

• Have to show that $\exists a_1$ and a_2 such that $a_1 \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + a_2 \begin{pmatrix} 6 \\ 4 \\ 2 \end{pmatrix} = \begin{pmatrix} 9 \\ 2 \\ 7 \end{pmatrix}$.

• Set
$$\begin{pmatrix} a_1 \\ 2a_1 \\ -a_1 \end{pmatrix}$$
 + $\begin{pmatrix} 6a_2 \\ 4a_2 \\ 2a_2 \end{pmatrix}$ = $\begin{pmatrix} 9 \\ 2 \\ 7 \end{pmatrix}$.

$$\Rightarrow ① a_1 + 6a_2 = 9$$
② 2a₁ + 4a₂ = 2
③ -a₁ + 2a₂ = 7

From 1 and 2,

(4)
$$a_1 = -3, a_2 = 2$$

We can show ④ satisfies ③.

So, solutions are $a_1 = -3$, $a_2 = 2$.

• $w = -3v_1 + 2v_2 \Rightarrow w$ is a linear combination of v_1 and v_2 . EX:

Is
$$\xi = \begin{pmatrix} 4 \\ -1 \\ 8 \end{pmatrix}$$
 a linear combination of v_1 and v_2 ?

• Set
$$\begin{pmatrix} 4 \\ -1 \\ 8 \end{pmatrix} = a_1 \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + a_2 \begin{pmatrix} 6 \\ 4 \\ 2 \end{pmatrix}$$

 $\xi \quad v_1 \quad v_2$

• ①
$$a_1 + 6a_2 = 4$$

② $2a_1 + 4a_2 = -1$
③ $-a_1 + 2a_2 = 8$

• From ① and ②,

$$(a_1 = -\frac{22}{8}; a_2 = \frac{9}{8}.$$

- But, this solution does not satisfy ③.
- No solution for a₁ and a₂.
- ξ is not a linear combination of v_1 and v_2 .

Definition:

 $v_1 \cdots v_r$ are linearly independent,

iff $a_1 = \cdots = a_r = 0$ whenever $a_1v_1 + \cdots + a_rv_r = 0$ [zero vector]. EX1:

$$e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
; $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Show that e_1 and e_2 are lin. indep.

<proof>

• Start by assuming $a_1e_1 + a_2e_2 = 0_{2\times 1}$:

$$\mathbf{a}_1\mathbf{e}_1 + \mathbf{a}_2\mathbf{e}_2 = \mathbf{a}_1\begin{pmatrix}1\\0\end{pmatrix} + \mathbf{a}_2\begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}\mathbf{a}_1\\\mathbf{a}_2\end{pmatrix} = \begin{pmatrix}0\\0\end{pmatrix}.$$

 \Rightarrow a₁ = a₂ = 0.

• e₁ and e₂ are linearly independent.

EX2:

$$\mathbf{v}_1 = \begin{pmatrix} 1\\0 \end{pmatrix} \; ; \; \mathbf{v}_2 = \begin{pmatrix} 1\\1 \end{pmatrix} \, .$$

• Start by assuming $a_1v_1 + a_2v_2 = 0_{2\times 1}$:

$$\begin{pmatrix} a_1 + a_2 \\ a_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow a_2 = 0, a_1 = 0.$$

• v_1 and v_2 are linearly independent.

EX3:

$$\mathbf{v}_1 = \begin{pmatrix} 1\\1 \end{pmatrix} ; \mathbf{v}_2 = \begin{pmatrix} 2\\2 \end{pmatrix}$$

•
$$a_1v_1 + a_2v_2 = \begin{pmatrix} a_1 + 2a_2 \\ a_1 + 2a_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

- A solution is $a_1 = 2$, $a_2 = -1$ (Not only $a_1 = 0$, $a_2 = 0$)
- v_1 and v_2 are linearly dependent.

Implication of linear dependence:

• Suppose that $a_1v_1 + \cdots + a_rv_r = 0$ and $a_1 \neq 0$. Then,

$$\mathbf{v}_1 = \left(\begin{array}{c} -\frac{\mathbf{a}_2}{\mathbf{a}_1} \end{array}\right) \mathbf{v}_2 + \cdots + \left(\begin{array}{c} -\frac{\mathbf{a}_r}{\mathbf{a}_1} \end{array}\right) \mathbf{v}_r.$$

 \Rightarrow v₁ is a linear combination of v₂ · · · v_r.

• So, $v_1 \cdots v_r$ are linearly independent iff no one is a lin. comb. of others.

Definition:

Let $v_1 \cdots v_r \in \mathbb{R}^m$. Suppose that for any $u \in \mathbb{R}^m$, $\exists a_1 \cdots a_r$ such that,

$$\mathbf{u} = \mathbf{a}_1 \mathbf{v}_1 + \cdots + \mathbf{a}_r \mathbf{v}_r.$$

Then, we say $\{v_1, \cdots v_r\}$ spans \mathbb{R}^m .

EX1:

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
; $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Show that \mathbf{e}_1 and \mathbf{e}_2 span \mathbb{R}^2 .

<proof>

• Let
$$\mathbf{u} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} \in \mathbb{R}^2$$
. It is enough to show that

$$\exists a_1, a_2 \in \mathbb{R} \Rightarrow u = a_1 e_1 + a_2 e_2.$$

• Note that $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ x_2 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$

 \Rightarrow e₁ and e₂ span \mathbb{R}^2

EX2:

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
; $\mathbf{v}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Show that \mathbf{v}_1 and \mathbf{v}_2 span \mathbb{R}^2 .

<proof>

• Have to show that $\exists a_1, a_2 \in \mathbb{R}$ such that $a_1v_1 + a_2v_2 = u$, for all $u \in \mathbb{R}^2$.

• Note that
$$\mathbf{u} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{x}_1 + \mathbf{x}_2 - \mathbf{x}_2 \\ \mathbf{x}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{x}_1 - \mathbf{x}_2 \\ \mathbf{0} \end{pmatrix} + \begin{pmatrix} \mathbf{x}_2 \\ \mathbf{x}_2 \end{pmatrix}.$$

$$= (\mathbf{x}_1 - \mathbf{x}_2) \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \mathbf{x}_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

• Thus, v_1 and v_2 span \mathbb{R}^2 .

EX3:

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}; \mathbf{v}_2 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
. Do they span \mathbb{R}^2 ?

<proof> Do it by yourself.

Note:

- In EX1) and EX2), two vectors are lin. indep.
- In EX3), two vectors are lin. dep.

Theorem:

 $v_1 \cdots v_m, v_{m+1} \cdots v_n \ (m < n) \in \mathbb{R}^m.$ Then, at best m vectors are linearly independent.

Theorem:

Let $v_1, \ldots, v_m \in \mathbb{R}^m$. v_1, \ldots, v_m are linearly independent iff v_1, \ldots, v_m span \mathbb{R}^m .

Back to Matrix:

•
$$\mathbf{A}_{m \times n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
.

•
$$A = [A_1, A_2, ..., A_n].$$

Definition:

Let $A_{m \times n} = [A_1, A_2, ..., A_n]$. Then, rank(A) = # of linearly indep. A_j 's.

Theorem:

 $rank(A) \leq n, rank(A) \leq m.$

<proof>

- $rank(A) \le n \Rightarrow obvious.$
- Note that $A_1, A_2, A_3 \cdots A_n \in \mathbb{R}^m$

 \rightarrow only m vectors can be linearly independent.

 \Rightarrow rank(A) \leq m.

EX1: $A_{3\times 2}, A_{1\times 10}, A_{20\times 20}$

EX2:

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \Rightarrow \mathbf{A}_{1=} \begin{pmatrix} 1 \\ 0 \end{pmatrix} ; \mathbf{A}_{2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} ; \mathbf{A}_{3} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \Rightarrow \operatorname{rank} = 2.$$

EX3:

$$\begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} \Rightarrow A_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} ; A_2 = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \Rightarrow rank = 1$$

EX4:

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \Rightarrow \operatorname{rank} = 1$$

EX5:

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \Rightarrow \text{ rank} = 0$$

EX6:

$$\begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix} = \mathbf{A}$$

- $rank(A) \leq 2$
- Drop the last column of A and consider A_1 and A_2 :

$$\Rightarrow A_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}; A_2 = \begin{pmatrix} 3 \\ 4 \end{pmatrix}.$$
$$\Rightarrow a_1 A_1 + a_2 A_2 = \begin{pmatrix} a_1 + 3a_2 \\ 2a_1 + 4a_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

$$\Rightarrow a_1 = a_2 = 0.$$

•
$$\operatorname{rank}(A) = 2$$
.

Back to the System of Equations:

$$\begin{array}{c} a_{11}x_{1} + a_{12}x_{2} + \cdots + a_{1n}x_{n} = b_{1} \\ a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n} = b_{2} \\ \vdots \\ a_{m1}x_{1} + a_{m2}x_{2} + \cdots + a_{mn}x_{n} = b_{m} \end{array} \right\}$$

$$\Rightarrow Ax = b$$
 2

• Let $A_j = j^{th}$ column of A:

$$\mathbf{x}_{1} \begin{pmatrix} \mathbf{a}_{11} \\ \mathbf{a}_{21} \\ \vdots \\ \mathbf{a}_{m1} \end{pmatrix} + \mathbf{x}_{2} \begin{pmatrix} \mathbf{a}_{12} \\ \mathbf{a}_{22} \\ \vdots \\ \mathbf{a}_{m2} \end{pmatrix} + \cdots + \mathbf{x}_{n} \begin{pmatrix} \mathbf{a}_{1n} \\ \mathbf{a}_{2n} \\ \vdots \\ \mathbf{a}_{mn} \end{pmatrix} = \begin{pmatrix} \mathbf{b}_{1} \\ \mathbf{b}_{2} \\ \vdots \\ \mathbf{b}_{m} \end{pmatrix}$$

$$\Rightarrow x_1 A_1 + x_2 A_2 + \dots + x_n A_n = b \qquad (3)$$

When does a solution (x
₁, x
₂, ··· x
_n) exist?
 [Answer] If b is a linear combination of A₁ ··· A_n.
 [Note that b ∈ ℝ^m, A_i ∈ ℝ^m]

Theorem:

The system of linear equations Ax = b has a (not necessarily unique) solution if b is a linear combination of A_1 , ..., A_n .

Theorem:

If rank(A) = m, Ax = b has a solution (unique or infinitely many) for all b. <proof>

• If rank(A) = m, m columns of of $A_1 \cdots A_n$ are linearly independent.

 \Rightarrow These m independent columns will span \mathbb{R}^{m} .

 \Rightarrow Thus, {A₁, \cdots A_n} spans \mathbb{R}^{m} .

 \Rightarrow For every $b \in \mathbb{R}^m$, b is a linear combination of A_j 's.

 \Rightarrow Ax = b has a solution for every b.

Implication:

If rank(A) = # of equations (or # of rows of A), Ax = b has at least a solution.

Theorem:

If rank(A) < m, there may be no solution.

<proof>

• If rank(A) < m, $A_1 \cdots A_n$ fail to span \mathbb{R}^m .

• For some $b \in \mathbb{R}^m$, there may be no solution.

EX1: [Case of no solution]

$$\begin{aligned} \mathbf{x}_1 + \mathbf{x}_2 &= 1 \quad \textcircled{1} \\ \mathbf{x}_1 + \mathbf{x}_2 &= 2 \quad \textcircled{2} \\ \Rightarrow \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} &= \begin{pmatrix} 1 \\ 2 \end{pmatrix}. \end{aligned}$$

- A₁ and A₂ are linearly dependent.
- rank(A) = 1 < 2 = n.

EX2: [Case of infinitely many solutions]

$$x_{1} + x_{2} = 2$$

$$x_{1} + x_{2} = 2$$

$$\Rightarrow \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

• Rank(A) = 1 < 2

Consider cases where m = n (A is square):

- If rank(A) = n, Ax = b has a solution for any b.
 Furthermore, the solution x̄ = A⁻¹b is unique.
- If rank(A) < n, then, rank(A) < m:
 - There may not be a solution.
 - If any, infinitely many.

Theorem:

Following statements are equivalent for $A_{n \times n}$:

- (a) A is invertible.
- (b) $det(A) \neq 0$.
- (c) Ax = b has unique solution for every b.
- (d) rank(A) = n
- (e) All of the columns of A are linearly independent.