
1
1

1
1

x1

x2

y1

y2

x1 � y1

x2 � y2

ax1

ax2

y1

y2
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[6] Vector

Definition:

Vector is a n×1 or 1×n matrix.

Note:

• Vector is usually expressed by the form of (1,1) or .

� (1,1) � row vector;  � column vector.

• When people talk about vectors, they are usually column vectors.

• Vector arithmetics follow matrix arithmetics.

EX:

v = ; u = .

• v + u = ; av = ; v�u = (x ,x ) = x y  + x y1 2 1 1 2 2

Definition:

Two vectors u and v are called orthogonal iff u�v = 0.

EX:



1
1

�1
1

a 2
� x 2

1 � x 2
2 � a � x 2

1 � x 2
2
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v =  and u = � u�v = 0.

Definition:

Norm of a vector v � �v�= Length of v

EX:

•  (Pythagoras' Theorem)



x 2
1 � x 2

2

x1

�

xn

�i x
2
i

�ix
2
i

1

3

4

12
� 32

� 42
� 26

x1

�

xn

y1

�

yn

�i (xi�yi)
2
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• ||v|| = .

• In general,

v = � ||v|| = .

• Classic mistake:

 = � x  (please say no!!)i i

EX:

v = � ||v|| = .

Definition:  (Distance between two vectors)

Let v =  and u = .  Then, d(v,u) = ||v-u|| = .

[= � (x  - y )  (No!!!)]i i i

Definition:
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�
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Let v , ..., v  � � .  Suppose that �real #s a , ..., a  	 w = a v  + ... + a v .  Then,1 r 1 r 1 1 r r
n

w is called a linear combination of v  
 
 
 v .1 r

EX:

v  = ; v  = ; w = .  Show that w is a linear combination.1 2

<proof>

• Have to show that �a  and a  such that .1 2

• Set .

� � a  + 6a  = 91 2

� 2a  + 4a  = 21 2

� -a  + 2a  = 71 2

From � and �,

� a  = -3, a  = 21 2

We can show � satisfies �.

So, solutions are a  = -3, a  = 2.1 2



� �

4

�1

8

4

�1

8

� a1

1

2

�1

� a2

6

4

2

� v1 v2

�
22
8

9
8
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• w = -3v  + 2v  � w is a linear combination of v  and v .1 2 1 2

EX:

Is a linear combination of v  and v ?1 2

• Set  

• � a  + 6a  = 41 2

� 2a  + 4a  = -11 2

� -a  + 2a  = 81 2

• From � and �,

� a  = ; a  = .1 2

• But, this solution does not satisfy �.

• No solution for a  and a .1 2

• � is not a linear combination of v  and v .1 2

Definition:



1
0

0
1

1
0

0
1

a1

a2

0
0

1
0

1
1

a1 � a2

a2
�

0
0

1
1

2
2
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v  
 
 
 v  are linearly independent,1 r

iff a  = 
 
 
 = a  = 0 whenever a v  + 
 
 
 + a v  = 0 [zero vector].1 r 1 1 r r

EX1:

e  =  ; e  = .  Show that e  and e  are lin. indep.1 2 1 2

<proof>

• Start by assuming a e  + a e  = 0 :1 1 2 2 2×1

a e  + a e  = a  + a  =  = .1 1 2 2 1 2

� a  = a  = 0.1 2

 • e  and e  are linearly independent.1 2

EX2:

v  =  ; v  = .1 2

• Start by assuming a v  + a v  = 0 :1 1 2 2 2×1

� a  = 0, a  = 0.2 1

• v  and v  are linearly independent.1 2

EX3:

v  =  ; v  = 1 2



a1 � 2a2

a1 � 2a2
�

0
0

�

a2

a1

v2 � 
 
 
 � �

ar

a1

vr

1
0

0
1

x1

x2
��2
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• a v  + a v  = 1 1 2 2

• A solution is a  = 2, a  = -1 (Not only a  = 0, a  = 0)1 2 1 2

• v  and v  are linearly dependent.1 2

Implication of linear dependence:

• Suppose that a v  + 
  
  
 + a v  = 0 and a  � 0.  Then,1 1 r r 1

v  = .1

� v  is a linear combination of v  
 
 
 v .1 2 r

• So, v  
 
 
 v  are linearly independent iff no one is a lin. comb. of others.1 r

Definition:

Let v  
 
 
 v  � � .  Suppose that for any u � � , �a  
 
 
 a  such that,1 r 1 r
m m

u = a v  + 
 
 
 + a v .1 1 r r

Then, we say {v , 
 
 
 v } spans � .1 r
m

EX1:

e  =  ; e  = .  Show that e  and e  span � .1 2 1 2
2

<proof>

• Let u = .  It is enough to show that



x1

x2
�

x1

0
�

0
x2

� x1
1
0 � x2

0
1

1
0

1
1

u �

x1

x2

�

x1 � x2 � x2

x2
�

x1 � x2

0
�

x2

x2

(x1�x2)
1

0
� x2

1

1

1
1

2
2
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�a ,a  �� � u = a e  + a e .1 2 1 1 2 2

• Note that .

� e  and e  span �1 2
2

EX2:

v  = ; v  = .  Show that v  and v  span � .1 2 1 2
2

<proof>

• Have to show that �a ,a�� such that a v  + a v  = u, for all u � � .1 2 1 1 2 2
2

• Note that .

= .

• Thus, v  and v  span � .1 2
2

EX3:

v  = ; v  = .  Do they span � ?1 2
2

<proof> Do it by yourself.

Note:



A m×n �

a11 a12 � a1n

a21 a22 � a2n

� � � �

am1 am2 � amn
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• In EX1) and EX2), two vectors are lin. indep.

• In EX3), two vectors are lin. dep.

Theorem:

v  
 
 
 v , v  
 
 
 v  (m < n) � � .  Then, at best m vectors are linearly1 m m+1 n
m

independent.

Theorem:

Let v , ... , v  � � .  v , ... , v  are linearly independent iff v , ... , v  span � .1 m 1 m 1 m
m m

Back to Matrix:

• .

• A = [A , A , ... , A ].1 2 n

Definition:

Let A  = [A , A , ..., A ].  Then, rank(A) � # of linearly indep. A 's.m×n 1 2 n j

Theorem:

rank(A) 
 n, rank(A) 
 m.



1 0 1

0 1 1
1
0

0
1

1
1

1 2

0 0
1
0

2
0

0 1

0 0

0 0 0

0 0 0

1 3 5

2 4 6
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<proof>

• rank(A) 
 n � obvious.

• Note that A , A , A  
 
 
 A  � �1 2 3 n
m

� only m vectors can be linearly independent.

� rank(A) 
 m.

EX1: A , A , A3×2 1×10 20×20

EX2:

 � A ; A  = ; A  = � rank = 2.1 =  2  3

EX3:

 � A  =  ; A  =  � rank = 11 2

EX4:

� rank = 1

EX5:

� rank = 0

EX6:

 = A



1
2

3
4

a1 � 3a2

2a1 � 4a2

0
0

a11x1 � a12x2 � 
 
 
 � a1nxn � b1

a21x1 � a22x2 � 
 
 
 � a2nxn � b2

�

am1x1 � am2x2 � 
 
 
 � amnxn � bm

�

x1

a11

a21

�

am1

� x2

a12

a22

�

am2

� 
 
 
 � xn

a1n

a2n

�

amn

�

b1

b2

�

bm
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• rank(A) 
 2

• Drop the last column of A and consider A  and A :1 2

� A  = ; A  = .1 2

� a A  + a A  = = .1 1 2 2

� a  = a  = 0.1 2

• rank(A) = 2.

Back to the System of Equations:

� Ax = b �

• Let A  = j  column of A:j
th

.

� x A  + x A  + 
 
 
 + x A  = b �1 1 2 2 n n



x̄1, x̄2, 
 
 
 x̄n
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• When does a solution ( ) exist?

[Answer] If b is a linear combination of A  
 
 
 A .1 n

[Note that b �� , A  �� ]m m
j

Theorem:

The system of linear equations Ax = b has a (not necessarily unique) solution

if b is a linear combination of A , ..., A .1 n

Theorem:

If rank(A) = m, Ax = b has a solution (unique or infinitely many) for all b.

<proof>

• If rank(A) = m, m columns of of A  
 
 
 A  are linearly independent.1 n

� These m independent columns will span � .m

� Thus, {A , 
 
 
 A } spans � .1 n
m

� For every b �� , b is a linear combination of A 's.m
j

� Ax = b has a solution for every b.

Implication:

If rank(A) = # of equations (or # of rows of A), Ax = b has at least a solution.

Theorem:

If rank(A) < m, there may be no solution.

<proof>

• If rank(A) < m, A  
 
 
 A  fail to span � .1 n
m



1 1

1 1

x1

x2
�

1
2

1 1

1 1

x1

x2
�

2
2

x̄ � A �1b
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• For some b �� , there may be no solution.m

EX1: [Case of no solution]

x  + x  = 1 �1 2

x  + x  = 2 �1 2

� .

• A  and A  are linearly dependent.1 2

• rank(A) = 1 < 2 = n.

EX2: [Case of infinitely many solutions]

x  + x  = 21 2

x  + x  = 21 2

�

• Rank(A) = 1 < 2

Consider cases where m = n (A is square):

• If rank(A) = n,  Ax = b has a solution for any b.

Furthermore, the solution  is unique.

• If rank(A) < n, then, rank(A) < m:

 • There may not be a solution.

• If any, infinitely many.
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Theorem:

Following statements are equivalent for A :n×n

(a) A is invertible.

(b) det(A) � 0.

(c) Ax = b has unique solution for every b.

(d) rank(A) = n

(e) All of the columns of A are linearly independent.


