TOPIC IV

CALCULUS

[1] Limit

- Suppose that we have a function $\mathrm{y}=\mathrm{f}(\mathrm{x})$. What would happen to y as $\mathrm{x} \rightarrow \mathrm{x}_{\mathrm{o}}$?

Definition:

Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$. Then, the limit value of y as $\mathrm{x} \rightarrow \mathrm{a}$ is denoted by $\lim _{\mathrm{x}-\mathrm{a}} \mathrm{f}(\mathrm{x})$.

EX 1: $y=1+2 x$.
As $\mathrm{x} \rightarrow 0, \mathrm{y} \rightarrow 1 . \Rightarrow \lim _{\mathrm{x}-0} \mathrm{y}=1$.
EX 2: $y=1 / x, x \neq 0$.
As $\mathrm{x} \rightarrow 0, \mathrm{y} \rightarrow \infty$ or $-\infty \rightarrow$ Limit does not exists.

EX 3: $y=\frac{1}{x-1}$.

- $\lim _{x \rightarrow 2} y=1$;
- $\lim _{\mathrm{x} \rightarrow 1^{+}} \mathrm{y}=\infty ; \quad$ - $\lim _{\mathrm{x} \rightarrow 1^{-} \mathrm{y}}=-\infty$.
- $\lim _{x \rightarrow \infty} y=0 ; \quad$ - $\lim _{x \rightarrow-\infty} y=0$.

EX 4: $y=\frac{1-x^{2}}{1-\mathrm{x}}, \mathrm{x} \neq 1$.

- $\lim _{x-1} y=\frac{0}{0}=0(?)$

$$
\Rightarrow \text { Nope!!!. }
$$

$$
\Rightarrow \lim _{x \rightarrow 1} \frac{1-x^{2}}{1-x}=\lim _{x \rightarrow 1} \frac{(1-x)(1+x)}{1-x}=\lim _{x \rightarrow 1}(1+x)=2!!!
$$

EX 5: $y=\frac{x^{2}}{x}, x \neq 0$.

- $\lim _{\mathrm{x}-0} \mathrm{y}=\lim _{\mathrm{x} \rightarrow 0} \mathrm{x}=0$.
- $\lim _{x \rightarrow \infty} y=\lim _{x \rightarrow \infty} x=\infty$.

Note:

- Before computing a limit, better to simplify the function f .
- Although $\mathrm{f}(\mathrm{x})$ may not be defined at $\mathrm{x}=\mathrm{x}_{\mathrm{o}}, \mathrm{f}(\mathrm{x})$ could have a limit.

EX 6: $y=\frac{x+a}{x}$.

- $\lim _{x \rightarrow \infty} y=\lim _{x \rightarrow \infty}\left(1+\frac{a}{x}\right)=1$.

Theorem:

Suppose that $\lim f(x)$ and $\lim g(x)$ exists. (Here, $\lim =\lim _{x \rightarrow x_{0}}$.) Then,
(R1) $\lim [f(x) \pm g(x)]=\lim f(x) \pm \lim g(x)$.
(R2) $\lim [f(x) g(x)]=[\lim f(x)][\lim g(x)]$
(R3) $\lim [f(x) / g(x)]=[\lim f(x)] /[\lim g(x)]$, if $\lim g(x) \neq 0$.

EX: $y=e^{x} / x^{2}$.

- $\lim _{x \rightarrow \infty} \mathrm{y}=\left[\lim _{\mathrm{x} \rightarrow \infty} \mathrm{e}^{\mathrm{x}}\right] /\left[\lim _{\mathrm{x} \rightarrow \infty} \mathrm{x}^{2}\right](?)$
\Rightarrow Nope!!!, since $\lim _{x \rightarrow \infty} \mathrm{e}^{\mathrm{x}}$ and $\lim _{\mathrm{x} \rightarrow \infty} \mathrm{x}^{2}$ do not exist.
\Rightarrow In fact, $\lim _{\mathrm{x} \rightarrow \infty} \mathrm{e}^{\mathrm{x}} / \mathrm{x}^{2}=\infty$.
- $\lim _{x-0} y=\left[\lim _{x \rightarrow 0} e^{x}\right] /\left[\lim _{x \rightarrow 0} x^{2}\right]$ (?)
\Rightarrow Nope!!!, since $\lim _{x-0} x^{2}=0$.
\Rightarrow In fact, $\lim _{x \rightarrow 0} y=\infty$.
EX: $\mathrm{y}=\left(\mathrm{x}^{2}-1\right) /(\mathrm{x}-1), \mathrm{x} \neq 1$.
- $\lim _{x \rightarrow 1} y=\left[\lim \left(x^{2}-1\right)\right] /[\lim (x-1)](?)$
\Rightarrow Nope!!!, since $\lim _{x-1}(x-1)=0$.
\Rightarrow In fact, $\lim _{x-1} y=\lim _{x-1}(x+1)=2$.

EX: $y=\left(x^{2}+2\right) /\left(x^{2}+2 x+2\right)$.

- $\lim _{x \rightarrow \infty} \mathrm{y}=\left[\lim _{\mathrm{x} \rightarrow \infty}\left(\mathrm{x}^{2}+2\right)\right] /\left[\lim _{\mathrm{x} \rightarrow \infty}\left(\mathrm{x}^{2}+2 \mathrm{x}+2\right)\right]$ (?)

$$
\Rightarrow \text { Nope!!!, since } \lim _{x-\infty}\left(x^{2}+2\right) \text { does not exists. }
$$

- $\lim _{x \rightarrow \infty} \frac{x^{2}+2}{x^{2}+2 x+2}=\lim _{x \rightarrow \infty} \frac{1+2 / x^{2}}{1+2 / x+2 / x^{2}}$

$$
\begin{aligned}
& =\left[\lim \left(1+2 / x^{2}\right)\right] /\left[\lim \left(1+2 / x+2 / x^{2}\right)\right] \\
& =1
\end{aligned}
$$

L'Hôpital's Theorem

Suppose that we have two functions $f(x)$ and $g(x)$. Suppose:
$\lim f(x)=0$ and $\lim g(x)=0$,
or, $\lim f(x)= \pm \infty$ and $\lim g(x)= \pm \infty$.
Then, $\lim \frac{f(x)}{g(x)}=\lim \frac{f^{\prime}(x)}{g^{\prime}(x)}$.

[2] Derivative

- $y=f(x)$
- We want to know changes in $y(\Delta y)$ when x changes by Δx.
- rate of change $=\frac{\Delta y}{\Delta x}$
- $\left.\frac{\Delta \mathrm{y}}{\Delta \mathrm{x}}\right|_{\mathrm{x}=\mathrm{x}_{0}}=\frac{\mathrm{f}\left(\mathrm{x}_{0}+\Delta \mathrm{x}\right)-\mathrm{f}\left(\mathrm{x}_{0}\right)}{\Delta \mathrm{x}}$
- $\frac{d y}{d x}=y^{\prime}=f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$.

$$
\left.\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}\right|_{\mathrm{x}=\mathrm{x}_{0}}=\quad \text { derivative evaluated at } \mathrm{x}_{0}=\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)
$$

Note:
If $\underset{\Delta x \rightarrow 0^{+}}{\lim } \neq \lim _{\Delta x \rightarrow 0^{-}}$, then, we say that derivative does not exist.

Question: What is derivative?

- / : tangent line at $\mathrm{x}=\mathrm{x}_{0}$
- $\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)$: measures slope of tangent line

[3] Continuity vs. differentiability

Definition:
Consider a function $\mathrm{y}=\mathrm{f}(\mathrm{x})$. Suppose:

1) f is defined at x_{0};
2) $\operatorname{limf}(x)=\operatorname{limf}(x)=\operatorname{limf}(x)$;

$$
x \rightarrow x_{0}^{+} \quad x-x_{0}^{-} \quad x-x_{0}
$$

3) $\lim f(x)=f\left(x_{0}\right)$.

$$
x \rightarrow x_{0}
$$

Then, f is called continuous at $\mathrm{x}=\mathrm{x}_{0}$.

EX 1) $y=f(x)=6 x$, for all x.

- Is this function continuous at $\mathrm{x}=1$?

IV-7

1) $f(1)=6$;
2) $\lim y=6$;

$$
x \rightarrow 1
$$

3) $\lim y=f(1)$
$x \rightarrow 1$
\Rightarrow Continuous.

EX 2) $y=\frac{1}{x}$

- Is this function continuous at $\mathrm{x}=0$

1) $f(0)$ not defined.

$\Rightarrow \mathrm{y}$ is not continuous at $\mathrm{x}=0$.

EX 3) $y= \begin{cases}x+1 & \text { if } x \geq 1 \\ x+2 & \text { if } x<1\end{cases}$

1) $f(1)=2$.
2) $\lim f(x)=2 ; \lim f(x)=3$
$x-1^{+} \quad x-1^{-}$
\Rightarrow Not continuous.

Definition:

Suppose that at x_{0},

$$
\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)=\lim _{\Delta \mathrm{x}-0} \frac{\mathrm{f}\left(\mathrm{x}_{0}+\Delta \mathrm{x}\right)-\mathrm{f}\left(\mathrm{x}_{0}\right)}{\Delta \mathrm{x}} \text { exists. }
$$

Then, we say thaty f is differentiable at x_{0}.
Note:

- If $\lim \neq \lim$, we say that derivative does not exist. $\Delta x=0^{+} \quad \Delta x=0^{-}$

Theorem:
If f is differentiable at x_{0}, then, f is continuous at x_{0}. <proof>

Note that:

$$
\mathrm{f}(\mathrm{x})-\mathrm{f}\left(\mathrm{x}_{0}\right)=\frac{\mathrm{f}(\mathrm{x})-\mathrm{f}\left(\mathrm{x}_{0}\right)}{\mathrm{x}-\mathrm{x}_{0}} \cdot\left(\mathrm{x}-\mathrm{x}_{0}\right)
$$

Then,

$$
\lim _{x \rightarrow x_{0}}\left[f(x)-f\left(x_{0}\right)\right]=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \cdot\left(x-x_{0}\right)=f^{\prime}\left(x_{0}\right) \cdot 0=0
$$

Thus, $\lim _{x \rightarrow x_{0}} f(x)-f\left(x_{0}\right)=0 \Rightarrow \lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.

Corollary:
If f is not continuous, then f is not differentiable.
EX 1) $y= \begin{cases}x+1 & x \geq 1 \\ x+2 & x<1\end{cases}$

- Not continuous at $\mathrm{x}=1$
\Rightarrow not differentiable.

Note:

- If a function is continuous, it may or may not be differentiable.

Definition:

$$
|a|=\left\{\begin{array}{cc}
a & \text { if } a \geq 0 \\
-a & \text { if } a<0
\end{array}\right.
$$

EX 1) $|-4|=4 ;|4|=4$
EX2) $y=f(x)=|x-2|+1$
$\Rightarrow y=\left\{\begin{array}{cc}x-1 & \text { if } x \geq 2 \\ -x+3 & \text { if } x<2\end{array}\right.$
\Rightarrow Continuous?

1) $f(2)$ defined and $f(2)=1$
2) $\lim f(x)=\lim f(x)=1$

$$
x-2^{+} \quad x-2^{-}
$$

3) $\lim _{x \rightarrow 2} f(x)=f(2)$.
\Rightarrow So, f is continuous.
\Rightarrow Differentiable?

$$
\begin{aligned}
\lim _{\Delta \mathrm{x} \rightarrow 0^{+}} \frac{\mathrm{f}(2+\Delta \mathrm{x})-\mathrm{f}(2)}{\Delta \mathrm{x}} & =\lim _{\Delta \mathrm{x} \rightarrow 0^{+}} \frac{\{(2+\Delta \mathrm{x})-1\}-1}{\Delta \mathrm{x}} \\
& =\lim _{\Delta \mathrm{x} \rightarrow 0^{+}} \frac{\Delta \mathrm{x}}{\Delta \mathrm{x}}=1
\end{aligned}
$$

$$
\begin{aligned}
\lim _{\Delta x \rightarrow 0^{-}} \frac{\mathrm{f}(2+\Delta \mathrm{x})-\mathrm{f}(2)}{\Delta \mathrm{x}} & =\lim _{\Delta \mathrm{x} \rightarrow 0^{-}} \frac{\{-(2+\Delta \mathrm{x})+3\}-1}{\Delta \mathrm{x}} \\
& =\lim _{\Delta \mathrm{x} \rightarrow 0^{-}}-\frac{\Delta \mathrm{x}}{\Delta \mathrm{x}}=-1 \\
& \Rightarrow \text { not differentiable }
\end{aligned}
$$

[4] Rules for Derivatives

(1) $y=f(x)=k$.

$$
\frac{d y}{d x}=0 .
$$

(2) $y=a x^{n}$

$$
\mathrm{y}^{\prime}=\mathrm{an} \mathrm{x}^{\mathrm{n}-1}
$$

EX 1) $y=3 x^{6}$

$$
\Rightarrow y^{\prime}=3 \times 6 \times x^{6-1}=18 x^{5}
$$

EX 2) $\mathrm{y}=3 \sqrt{\mathrm{x}}=3 \mathrm{x}^{\frac{1}{2}}$

$$
\Rightarrow y^{\prime}=3 \times \frac{1}{2} \times x^{\frac{1}{2}-1}=\frac{3}{2} \mathrm{x}^{-\frac{1}{2}}=\frac{3}{2} \frac{1}{\mathrm{x}^{\frac{1}{2}}}=\frac{3}{2 \sqrt{\mathrm{x}}}
$$

(3) $\frac{d}{d x}(f(x)+g(x))=\frac{d}{d x} f(x)+\frac{d}{d x} g(x)=f^{\prime}(x)+g^{\prime}(x)$

EX) $y=2 x^{2}+x$

$$
\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=4 x+1
$$

(4) $\frac{d}{d x}(f(x) g(x))=\left(\frac{d}{d x} f(x)\right) g(x)+f(x)\left(\frac{d}{d x} g(x)\right)$
(5) $\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{\left(\frac{d}{d x} f(x)\right) g(x)-f(x)\left(\frac{d}{d x} g(x)\right)}{[g(x)]^{2}}$.

EX) $f(x)=6 x^{2}+6 x$

$$
\begin{aligned}
& g(x)=3 x^{3}+6 x^{2} \\
\Rightarrow & f^{\prime}(x)=12 x+6 ; g^{\prime}(x)=9 x^{2}+12 x \\
\Rightarrow & \frac{d}{d x}(f(x) \cdot g(x))=(12 x+6)\left(3 x^{3}+6 x^{2}\right)+\left(6 x^{2}+6 x\right)\left(9 x^{2}+12 x\right) \\
\Rightarrow & \frac{d}{d x}\left(\frac{f}{g}\right)=\frac{(12 x+6)\left(3 x^{3}+6 x^{2}\right)-\left(6 x^{2}+6 x\right)\left(9 x^{2}+12 x\right)}{\left(3 x^{3}+6 x^{2}\right)^{2}}
\end{aligned}
$$

[5] Chain Rule

- $\mathrm{X} \rightarrow \mathrm{y} \rightarrow \mathrm{z}$
- $z=f(y)$
- $y=g(x)$
- $\frac{d z}{d x}=\frac{d z}{d y} \frac{d y}{d x}=f^{\prime}(y) \cdot g^{\prime}(x)$
- $\mathrm{x} \rightarrow \mathrm{y} \rightarrow \mathrm{z} \rightarrow \mathrm{w}$
- $\frac{d w}{d x}=\frac{d w}{d z} \frac{d z}{d y} \frac{d y}{d x}$.

EX 1) $z=3 y^{2} ; y=2 x+5$
$\Rightarrow \mathrm{x} \rightarrow \mathrm{y} \rightarrow \mathrm{z}$
$\Rightarrow \frac{d z}{d x}=\frac{d z}{d y} \frac{d y}{d x}=(6 y) \cdot 2=12 y=12(2 x+5)=24 x+60$
$\left.\Rightarrow \frac{\mathrm{dz}}{\mathrm{dx}}\right|_{\mathrm{x}=1}=24 \times 1+60=84$

EX 2) $y=3\left(2 x^{2}+1\right)^{3}$.
\Rightarrow Set $\mathrm{z}=2 \mathrm{x}^{2}+1$.
\Rightarrow Then, $\mathrm{y}=3 \mathrm{z}^{3} ; \mathrm{z}=2 \mathrm{x}^{2}+1$.
$\Rightarrow d y / d x=(d y / d z)(d z / d x)=\left(9 z^{2}\right)(4 x)=36 x z^{2}=36 x\left(2 x^{2}+1\right)^{2}$.
EX 3) $\quad T R=f(Q) ; Q=g(L)$
$\Rightarrow \frac{\mathrm{dTR}}{\mathrm{dL}}=\frac{\mathrm{dTR}}{\mathrm{dQ}} \cdot \frac{\mathrm{dQ}}{\mathrm{dL}}=\mathrm{MR} \cdot \mathrm{MP}_{\mathrm{L}}=\mathrm{MRP}_{\mathrm{L}}$
[6] Inverse Function
(EX 1) Consider the following example.

- Looking at the reversed relation:

(EX 2) Consider the following example.

Now, look at the reversed relation:

Definition:

If the reversed relation is also a function, we say that there exists the inverse function, and we denote it by f^{-1}.

Definition:

A function $y=f(x)$ is strictly increasing (decreasing) iff $f\left(x_{1}\right)>f\left(x_{2}\right)$, whenever $\mathrm{x}_{1}>(<) \mathrm{x}_{2}$.

Theorem:

If a function $y=f(x)$ is strictly increasing or strictly decresing, then $x=f^{-1}(y)$ (inverse function) exists.

Note:
(1) "Function": If you know what happened yesterday (cause), you can predict what will happen today (result).
(2) "Inverse function": If you know what happens today (result), you can figure out what happened yesterday (cause).

EX) $y=f(x)=5 x+25,-\infty<x<\infty$.
$\Rightarrow x=y / 5-5=f^{-1}(y)$.

Theorem:
Suppose that a function $y=f(x)$ has an inverse function. Then,

$$
\frac{d x}{d y}=\frac{1}{\frac{d y}{d x}}
$$

EX) For the above example,

- $d y / d x=5 ; d x / d y=1 / 5$.
- Clearly, $d x / d y=1 /(d y / d x)$.

[7] Partial Differentiation

- Consider a function:

$$
\mathrm{y}=\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right),
$$

where $\mathrm{x}_{\mathrm{i}}{ }^{\prime}$ s are independent variables and y is a dependent variables.
Suppose we would like to know the rate of change of y when x_{1} changes.

Definition:

$$
\left.\frac{\partial y}{\partial x_{1}}=\frac{d y}{d x_{1}} \right\rvert\, \text { ceteris paribus }=\lim _{\Delta x_{1} \rightarrow \infty} \frac{\Delta y}{\Delta x_{1}} .
$$

(Here, we treat all other variables as constant!!!!)

EX 1) $\mathrm{y}=3 \mathrm{x}_{1}{ }^{2}+\mathrm{x}_{1} \mathrm{x}_{2}+4 \mathrm{x}_{2}{ }^{2}$

- $\partial \mathrm{y} / \partial \mathrm{x}_{1}=6 \mathrm{x}_{1}+\mathrm{x}_{2}$.
- $\partial \mathrm{y} / \partial \mathrm{x}_{2}=\mathrm{x}_{1}+8 \mathrm{x}_{2}$.

EX 2) $y=\left(x_{1}+4\right)\left(3 x_{1}+4 x_{2}\right)$.

- $\partial \mathrm{y} / \partial \mathrm{x}_{1}=\left[\partial\left(\mathrm{x}_{1}+4\right) / \partial \mathrm{x}_{1}\right]\left(3 \mathrm{x}_{1}+4 \mathrm{x}_{2}\right)$

$$
\begin{gathered}
+\left(\mathrm{x}_{1}+4\right)\left[\partial\left(3 \mathrm{x}_{1}+4 \mathrm{x}_{2}\right) / \partial \mathrm{x}_{1}\right] \\
=3 \mathrm{x}_{1}+4 \mathrm{x}_{2}+\left(\mathrm{x}_{1}+4\right) 3=6 \mathrm{x}_{1}+4 \mathrm{x}_{2}+12 .
\end{gathered}
$$

- $\partial \mathrm{y} / \partial \mathrm{x}_{2}=4 \mathrm{x}_{1}+16$ (Show this at home.)

EX 3) $y=\frac{x_{1} x_{2}^{2}}{x_{1}-x_{2}}$.

- $\frac{\partial y}{\partial x_{1}}=\frac{\frac{\partial\left(x_{1} x_{2}^{2}\right)}{\partial x_{1}}\left(x_{1}-x_{2}\right)-\left(x_{1} x_{2}^{2}\right) \frac{\partial\left(x_{1}-x_{2}\right)}{\partial x_{1}}}{\left(x_{1}-x_{2}\right)^{2}}$

$$
=\frac{x_{2}^{2}\left(x_{1}-x_{2}\right)-x_{1} x_{2}^{2}(1)}{\left(x_{1}-x_{2}\right)^{2}}=\frac{-x_{2}^{3}}{\left(x_{1}-x_{2}\right)^{2}} .
$$

- Simliarly,

$$
\partial \mathrm{y} / \partial \mathrm{x}_{2}=\left(2 \mathrm{x}_{1}{ }^{2} \mathrm{x}_{2}-\mathrm{x}_{1} \mathrm{x}_{2}{ }^{2}\right) /\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{2} .
$$

[8] Jacobian Determinant

- There are n equations:

$$
\begin{gathered}
\mathrm{y}_{1}=\mathrm{f}^{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+2}, \ldots \mathrm{x}_{\mathrm{m}}\right) \\
\mathrm{y}_{2}=\mathrm{f}^{2}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+2}, \ldots, \mathrm{x}_{\mathrm{m}}\right) \\
\vdots \\
\mathrm{y}_{\mathrm{n}}=\mathrm{f}^{\mathrm{n}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+2}, \ldots, \mathrm{x}_{\mathrm{m}}\right) .
\end{gathered}
$$

- Let's treat $\mathrm{x}_{\mathrm{n}+1}, \ldots \mathrm{x}_{\mathrm{m}}$ as given. (Treat them as constants)
- Sometimes, we wish to know whether all the functions are distinctive, that is, whether there are redundant functions or not.
- For this case, we use Jacobian matrix:

$$
\mathrm{J}=\left(\begin{array}{cccc}
\frac{\partial \mathrm{y}_{1}}{\partial \mathrm{x}_{1}} & \frac{\partial \mathrm{y}_{1}}{\partial \mathrm{x}_{2}} & \cdots & \frac{\partial \mathrm{y}_{1}}{\partial \mathrm{x}_{\mathrm{n}}} \\
\frac{\partial \mathrm{y}_{2}}{\partial \mathrm{x}_{1}} & \frac{\partial \mathrm{y}_{2}}{\partial \mathrm{x}_{2}} & \cdots & \frac{\partial \mathrm{y}_{2}}{\partial \mathrm{x}_{\mathrm{n}}} \\
\vdots & & & \\
\frac{\partial \mathrm{y}_{\mathrm{n}}}{\partial \mathrm{x}_{1}} & \frac{\partial \mathrm{y}_{\mathrm{n}}}{\partial \mathrm{x}_{2}} & \cdots & \frac{\partial \mathrm{y}_{\mathrm{n}}}{\partial \mathrm{x}_{\mathrm{n}}}
\end{array}\right)
$$

- If $|J|=0$, we say that the functions are functionally dependent.
- If $|J| \neq 0$, we say that the functions are functionally independent.

EX 1) $\mathrm{y}_{1}=2 \mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{3} ; \mathrm{y}_{2}=\mathrm{x}_{1}^{2} \mathrm{x}_{2}$

$$
\begin{aligned}
& \frac{\partial y_{1}}{\partial x_{1}}=2 \times 2 x_{1}+0 ; \quad \frac{\partial y_{1}}{\partial x_{2}}=3 x_{2}^{2} \\
& \frac{\partial y_{2}}{\partial x_{1}}=2 x_{1} x_{2} \quad ; \quad \frac{\partial y_{2}}{\partial x_{2}}=x_{1}^{2} \\
\Rightarrow & |J|=\left|\begin{array}{cc}
4 x_{1} & 3 x_{2}^{2} \\
2 x_{1} x_{2} & x_{1}^{2}
\end{array}\right|=4 x_{1}^{3}-6 x_{1} x_{2}^{3} \neq 0
\end{aligned}
$$

EX 2) $y_{1}=x_{1}+2 x_{2}$

$$
\begin{aligned}
& \Rightarrow \quad y_{2}=x_{1}^{2}+4 x_{1} x_{2}+4 x_{2}^{2}=\left(x_{1}+2 x_{2}\right)^{2} \\
& \Rightarrow \quad|J|=\left|\begin{array}{cc}
1 & 2 \\
2 x_{1}+4 x_{2} & 4 x_{1}+8 x_{2}
\end{array}\right|=4 x_{1}+8 x_{2}-2\left(2 x_{1}+4 x_{2}\right)=0
\end{aligned}
$$

[9] Differentials

- $\frac{\mathrm{dy}}{\mathrm{dx}}$: derivatives
- dy, dx : differentials (small changes)
- $\frac{d y}{d x}=f^{\prime}(x) \Rightarrow d y=f^{\prime}(x) d x$

EX) $y=3 x^{2}+7 x$

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=f^{\prime}(x)=6 x+7 \\
& \Rightarrow d y=(6 x+7) d x
\end{aligned}
$$

One important application of differentials:

- ε_{d} (price-elasticity of demand)

$$
=\frac{\% \text { changes in demand }}{\% \text { changes in price }}
$$

$=\%$ changes in demand when price changes by 1%

$$
=\frac{\frac{\Delta \mathrm{Q}_{\mathrm{d}}}{\mathrm{Q}_{\mathrm{d}}}}{\frac{\Delta \mathrm{P}}{\mathrm{P}}} \approx \frac{\frac{\mathrm{dQ}_{\mathrm{d}}}{\mathrm{Q}_{\mathrm{d}}}}{\frac{\mathrm{dP}}{\mathrm{P}}}=\frac{\mathrm{dQ}}{\mathrm{dP}} \cdot \frac{\mathrm{P}}{\mathrm{Q}_{\mathrm{d}}}
$$

EX) $\mathrm{Q}_{\mathrm{d}}=100-2 \mathrm{P}$

$$
\begin{aligned}
& \Rightarrow \frac{d Q_{d}}{d P}=-2 \\
& \Rightarrow \frac{P}{Q_{d}}=\frac{P}{100-2 P} \\
& \Rightarrow \varepsilon_{d}=(-2) \times \frac{P}{100-2 P}=\frac{P}{P-50} \\
& \Rightarrow \text { When } P=10, \varepsilon_{d}=\frac{10}{10-50}=-\frac{1}{4}=-0.25
\end{aligned}
$$

Total differentiation:

- $\mathrm{y}=\mathrm{f}\left(\mathrm{x}_{1}, \ldots \mathrm{x}_{\mathrm{n}}\right)$
- Denote $f_{j}=\frac{\partial y}{\partial x_{j}}$
- Then,
- $d y=f_{1} \mathrm{dx}_{1}+\mathrm{f}_{2} \mathrm{dx}_{2}+\ldots+\mathrm{f}_{\mathrm{n}} \mathrm{dx}_{\mathrm{n}}$
- $\left.d y\right|_{\mathrm{dx}_{2}=\cdots=d x_{\mathrm{n}}=0}=\mathrm{f}_{1} \mathrm{dx}_{1}$.

EX) $\mathrm{U}=\mathrm{U}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$
$\Rightarrow \mathrm{dU}=\frac{\partial \mathrm{U}}{\partial \mathrm{x}_{1}} \mathrm{dx}_{1}+\frac{\partial \mathrm{U}}{\partial \mathrm{x}_{2}} \mathrm{dx}_{2}=\mathrm{U}_{1} \mathrm{dx}_{1}+\mathrm{U}_{2} \mathrm{dx}_{2}$
\Rightarrow Suppose that $\mathrm{dU}=0$. Then, $\mathrm{U}_{1} \mathrm{dx}_{1}+\mathrm{U}_{2} \mathrm{dx}_{2}=0$
$\left.\Rightarrow \frac{\mathrm{dx}_{2}}{\mathrm{dx}_{1}}\right|_{\mathrm{dU}=0}=-\frac{\mathrm{U}_{1}}{\mathrm{U}_{2}}$ (slope of indifference curve)

EX) $\mathrm{y}=\mathrm{x}_{1}^{2}+2 \mathrm{x}_{1} \mathrm{x}_{2}+4 \mathrm{x}_{2}^{2}$
$\Rightarrow \mathrm{dy}=\left(2 \mathrm{x}_{1}+2 \mathrm{x}_{2}\right) \mathrm{dx}+\left(2 \mathrm{x}_{1}+8 \mathrm{x}_{2}\right) \mathrm{dx} 2$

[10] Total derivatives

- CASE I: $\mathrm{y}=\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) ; \mathrm{x}_{1}=\mathrm{g}(\mathrm{w}) ; \mathrm{x}_{2}=\mathrm{h}(\mathrm{w})$

- $\frac{d y}{d w}=\frac{\partial y}{\partial x_{1}} \frac{d x_{1}}{d w}+\frac{\partial y}{\partial x_{2}} \frac{d x_{2}}{d w}$

EX 1) $y=x_{1}^{2} x_{2}^{3} ; x_{1}=6 w+6 ; x_{2}=3 w^{2}+4 w$

$$
\begin{aligned}
\Rightarrow \frac{d y}{d w} & =\frac{\partial y}{\partial x_{1}} \frac{d x_{1}}{d w}+\frac{\partial y}{\partial x_{2}} \frac{d x_{2}}{d w} \\
& =\left(2 x_{1} x_{2}^{3}\right) 6+\left(3 x_{1}^{2} x_{2}^{2}\right)(6 w+4) \\
& =12(6 w+6)\left(3 w^{2}+4 w\right)+3(6 w+6)^{2}\left(3 w^{2}+4 w\right)^{2}(6 w+4) \\
& =72(w+1)\left(3 w^{2}+4 w\right)+108(w+1)^{2}\left(3 w^{2}+4 w\right)^{2}(6 w+4)
\end{aligned}
$$

EX 2) $y=(6 w+6)^{2}\left(3 w^{2}+4 w\right)^{3}$

$$
\Rightarrow \text { Set } x_{1}=6 w+6 ; x_{2}=3 w^{2}+4 w .
$$

$$
\Rightarrow \frac{d y}{d w}=\frac{\partial y}{\partial x_{1}} \frac{d x_{1}}{d w}+\frac{\partial y}{\partial x_{2}} \frac{d x_{2}}{d w}
$$

- CASE II:

$$
\begin{aligned}
& \mathrm{y}=\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{w}\right)-(1) \\
& \mathrm{x}_{1}=\mathrm{g}(\mathrm{w})-\text { - } \\
& \mathrm{x}_{2}=\mathrm{h}(\mathrm{w})-\text { - }
\end{aligned}
$$

- $\frac{\mathrm{dy}}{\mathrm{dw}}=\frac{\partial \mathrm{f}}{\partial \mathrm{x}_{1}} \frac{\mathrm{dx}_{1}}{\mathrm{dw}}+\frac{\partial \mathrm{f}}{\partial \mathrm{x}_{2}} \frac{\mathrm{dx}}{2}+\frac{\partial \mathrm{f}}{\partial \mathrm{w}}$

Note:

- $d y / d w=$ total derivative.
- $\partial \mathrm{f} / \partial \mathrm{w}=$ partial derivative from ${ }^{(1)}$

EX 1) $y=x_{1}^{2}+x_{2}+w ; x_{1}=6 w ; x_{2}=3 w^{2}$

$$
\begin{aligned}
\Rightarrow \frac{d y}{d w} & =\frac{\partial y}{\partial x_{1}} \frac{d x_{1}}{d w}+\frac{\partial y}{\partial x_{2}} \frac{d x_{2}}{d w}+\frac{\partial y}{\partial w} \\
& =\left(2 x_{1}\right) \times 6+1 \times 6 w+1=12(6 w)+6 w+1=78 w+1
\end{aligned}
$$

EX 2) $y=3 x-w^{2} ; x=2 w^{2}+w+4$
Show that $\frac{d y}{d w}=10 w+3$.

Total Partial Derivatives:

$$
\begin{array}{ll}
\mathrm{y}=\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{z}_{1}, \mathrm{z}_{2}\right) & -(1) \\
\mathrm{x}_{1}=\mathrm{g}\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right) & -(2) \\
\mathrm{x}_{2}=\mathrm{h}\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right) & -(3)
\end{array}
$$

- Want to know $\left.\frac{d y}{d z_{1}}\right|_{d z_{2}=0}=\frac{\partial y}{\partial z_{1}}$ (in textbook, $\frac{\xi \mathrm{y}}{\xi_{\mathrm{z}_{1}}}$)
- $\frac{\partial \mathrm{y}}{\partial \mathrm{z}_{1}}=\frac{\partial \mathrm{f}}{\partial \mathrm{x}_{1}} \frac{\partial \mathrm{x}_{1}}{\partial \mathrm{z}_{1}}+\frac{\partial \mathrm{f}}{\partial \mathrm{x}_{2}} \frac{\partial \mathrm{x}_{2}}{\partial \mathrm{z}_{1}}+\frac{\partial \mathrm{f}}{\partial \mathrm{z}_{1}}$
fr.(1) fr. (2) fr.(1) fr.(3) fr.(1)

EX 3) $w=a x^{2}+b x y+c u ; x=\alpha u+\beta v ; y=\gamma u$

$$
\begin{aligned}
& \begin{aligned}
\frac{\partial \mathrm{w}}{\partial \mathrm{u}} & =\frac{\partial \mathrm{f}}{\partial \mathrm{x}} \frac{\partial \mathrm{x}}{\partial \mathrm{u}}+\frac{\partial \mathrm{f}}{\partial \mathrm{y}} \frac{\partial \mathrm{y}}{\partial \mathrm{u}}+\frac{\partial \mathrm{f}}{\partial \mathrm{u}} . \\
& =(2 \mathrm{ax}+\mathrm{by}) \alpha+(\mathrm{bx}) \gamma+\mathrm{c} \\
& =2 \mathrm{a} \alpha \mathrm{x}+\mathrm{b} \alpha \mathrm{y}+\mathrm{b} \gamma \mathrm{x}+\mathrm{c} \\
\frac{\partial \mathrm{w}}{\partial \mathrm{v}} & =\frac{\partial \mathrm{w}}{\partial \mathrm{x}} \frac{\partial \mathrm{x}}{\partial \mathrm{v}}=(2 \mathrm{ax}+\mathrm{by}) \cdot \beta \\
\mathrm{dw} & =\frac{\partial \mathrm{w}}{\partial \mathrm{u}} \mathrm{du}+\frac{\partial \mathrm{w}}{\partial \mathrm{v}} d \mathrm{v}
\end{aligned}
\end{aligned}
$$

