[5] Solving Multiple Linear Equations

- A system of m linear equations and n unknown variables:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
: \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{m}
\end{gathered}
$$

- $A x=b$, where $A=\left(\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ : & : & & : \\ a_{m 1} & a_{m 2} & \ldots & a_{m n}\end{array}\right), x=\left(\begin{array}{c}x_{1} \\ x_{2} \\ : \\ x_{n}\end{array}\right)$ and $b=\left(\begin{array}{c}b_{1} \\ b_{2} \\ : \\ b_{n}\end{array}\right)$.
- $A=\left[\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ : & : & & : \\ a_{m 1} & a_{m 2} & \ldots & a_{m n}\end{array}\right]=\left(\begin{array}{c}a_{1 \bullet} \\ a_{2 \bullet} \\ : \\ a_{m \bullet}\end{array}\right)=\left(\begin{array}{llll}a_{\bullet 1} & a_{\bullet 2} & \ldots & a_{\bullet n}\end{array}\right)$,
where,

$$
a_{i \bullet}=\left(\begin{array}{llll}
a_{i 1} & a_{i 2} & \ldots & a_{i n}
\end{array}\right) ; a_{\bullet j}=\left(\begin{array}{c}
a_{1 j} \\
a_{2 j} \\
\vdots \\
a_{m j}
\end{array}\right) .
$$

- Question:
- Let $\bar{x}=\left(\bar{x}_{1}, \bar{x}_{2}, \ldots \bar{x}_{n}\right)^{t}$ be a solution vector.
- Solution exists? Is the solution unique? When? Why?

Definition: Vector

Any $m \times 1$ matrix is called a column vector. Any $1 \times n$ matrix is called a row vector. Vectors are normally denoted by lower cases (e.g., x, y, $a, b)$.

Note:

- When people talk about vectors, they are usually column vectors.

Definition: Orthogonality

Two $\mathrm{m} \times 1$ vectors $u=\left(u_{1}, \ldots, u_{m}\right)^{t}$ and $v=\left(v_{1}, \ldots, v_{m}\right)^{t}$ are said to be orthogonal iff $u^{t} v=u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{m} v_{m}=0$.

EX: $m=2$.

Definition: Norm (Length) of Vector

Norm (length) of $v=\left(v_{1}, \ldots, v_{m}\right)^{t} \equiv\|v\|=\sqrt{v_{1}^{2}+\ldots+v_{m}^{2}}$.

EX: $v=\left(x_{1}, x_{2}\right)^{t}$.

$$
a^{2}=x_{1}^{2}+x_{2}^{2}(\text { by Pythagoras' Theorem }) \rightarrow a=\sqrt{x_{1}^{2}+x_{2}^{2}} .
$$

EX: $v=(1,3,4)^{t} \rightarrow\|v\|=\sqrt{1^{2}+3^{2}+4^{2}}=\sqrt{26}$.

Definition: Distance between Two Vectors

For $u=\left(u_{1}, \ldots, u_{m}\right)^{t}$ and $v=\left(v_{1}, \ldots, v_{m}\right)^{t}$,

$$
d(u, v)=\|u-v\|=\sqrt{\left(u_{1}-v_{1}\right)^{2}+\left(u_{2}-v_{2}\right)^{2}+\ldots+\left(u_{m}-v_{m}\right)^{2}} .
$$

Definition: m-dimensional Euclidean Space:

$$
\mathbb{R}^{m}=\left\{\left(h_{1}, h_{2}, \ldots, h_{m}\right)^{t} \mid h_{1}, \ldots, h_{m} \in \mathbb{R}\right\} .
$$

Definition: Linear Combination

Let $b, a_{\bullet 1}, a_{\bullet 2}, \ldots, a_{\bullet n} \in \mathbb{R}^{m}$. Suppose that $\exists x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R} \ni$
$b=x_{1} a_{\bullet 1}+x_{2} a_{\bullet 2}+\ldots+x_{n} a_{\bullet n}$. Then, b is said to be a linear combination of $a_{\bullet 1}, a_{\bullet 2}, \ldots, a_{\bullet n}$.

Note:

- $\left(\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{2 x_{1}+3 x_{2}}{4 x_{1}+5 x_{2}}=x_{1}\binom{2}{4}+x_{2}\binom{3}{5}$.
- $A x=\left(a_{\bullet 1}, a_{\bullet 2}, \ldots, a_{\bullet n}\right)\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)=x_{1} a_{\bullet 1}+x_{2} a_{\bullet 2}+\ldots+x_{n} a_{\bullet n}$.
- $b=x_{1} a_{\bullet 1}+x_{2} a_{\bullet 2}+\ldots+x_{n} a_{\bullet n}=A x$
- Saying that b is a linear combination of $a_{\bullet 1}, \ldots, a_{\bullet n}$ is equivalent to saying that $A x=b$ has a solution.

Definition: Linear Independence

The r vectors $a_{\bullet 1}, \ldots, a_{\bullet r} \in \mathbb{R}^{m}$ are said to be linearly independent iff

$$
\bar{x}_{1}=\bar{x}_{2}=\ldots=\bar{x}_{r}=0 \text { whenever } x_{1} a_{\bullet 1}+x_{2} a_{\bullet 2}+\ldots+x_{r} a_{\bullet r}=0_{m \times 1} .
$$

Note:

- This means that none of $a_{\bullet 1}, \ldots, a_{\bullet r}$ are linear combinations of the others.
- Suppose $\bar{X}_{1} \neq 0$ (so the condition for linear independent violated).

Then,

$$
\begin{aligned}
& \bar{x}_{1} a_{\bullet 1}=-\bar{x}_{2} a_{\bullet 2}-\ldots-\bar{x}_{r} a_{\bullet r} . \\
& a_{\bullet 1}=\frac{-\bar{x}_{2}}{\bar{x}_{1}} a_{\bullet 2}+\frac{-\bar{x}_{3}}{\bar{x}_{1}} a_{\bullet 3}+\ldots+\frac{-\bar{x}_{r}}{\bar{x}_{1}} a_{\bullet r} .
\end{aligned}
$$

Theorem: Maximum Number of Linearly Independent Vectors

1) The maximum number of linearly independent vectors in \mathbb{R}^{m} is m.
2) The m vectors, $a_{1 \bullet}, \ldots, a_{m \bullet} \in \mathbb{R}^{m}$, are linearly independent, iff any $b \in \mathbb{R}^{m}$ is a linear combination of $a_{\bullet 1}, a_{\bullet 2}, \ldots, a_{\bullet m}$. (For this case, we say that $\left.a_{1 \bullet}, \ldots, a_{\bullet m} \operatorname{span} \mathbb{R}^{m}.\right)$

Definition: Rank of Matrix

Let $A_{m \times n}=\left(a_{\bullet 1}, a_{\bullet 2}, \ldots, a_{\bullet n}\right)$. Suppose that $r(\leq n)$ is the maximum number of the linearly independent columns of A. Then, $\operatorname{rank}(A)=r$.

Theorem:
For $A_{m \times n}, \operatorname{rank}(\mathrm{~A}) \leq m$ and $\operatorname{rank}(\mathrm{A}) \leq \mathrm{n}$.
Proof:
It is obvious that $\operatorname{rank}(A) \leq n$. Observe that all of the columns in A are in \mathbb{R}^{m}. But the maximum number of linearly independent vectors in \mathbb{R}^{m} is m. Thus, $\operatorname{rank}(A) \leq m$.

Definition: Echelon Form

The echelon form of a matrix A is obtained by applying elementary row and/or column operations to A to reduce A to a matrix $B=\left[b_{i j}\right]$ such that $b_{i j}=0$ for all $\mathrm{i}>\mathrm{j}$.

EX:

$$
\left(\begin{array}{ll}
1 & 4 \\
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{lllll}
1 & 1 & 0 & 1 & 3 \\
0 & 1 & 1 & 2 & 5 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Theorem:
The rank of a matrix A equals to the number of non-zero rows in its echelon form.
$\operatorname{EX} 1: \operatorname{rank}\left(\begin{array}{ll}1 & 4 \\ 0 & 1 \\ 0 & 0\end{array}\right)=, \operatorname{rank}\left(\begin{array}{lllll}1 & 1 & 0 & 1 & 3 \\ 0 & 1 & 1 & 2 & 5 \\ 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)=$
EX 2:

$$
\begin{aligned}
A & =\left(\begin{array}{ccc}
1 & 7 & 5 \\
3 & 21 & 15 \\
-2 & 8 & 15
\end{array}\right) \underset{3 \times \times 1+1+2}{\cong}\left(\begin{array}{ccc}
1 & 7 & 5 \\
0 & 0 & 0 \\
-2 & 8 & 15
\end{array}\right) \underset{r 24 \leftrightarrow r 3}{\cong}\left(\begin{array}{ccc}
1 & 7 & 5 \\
-2 & 8 & 15 \\
0 & 0 & 0
\end{array}\right) \\
& \cong\left(\begin{array}{ccc}
1 & 7 & 5 \\
0 & 22 & 25 \\
0 &
\end{array}\right)
\end{aligned}
$$

EX 3:

$$
\begin{aligned}
& A=\left(\begin{array}{cccc}
1 & -1 & 1 & 3 \\
2 & -2 & 2 & 1 \\
-2 & 2 & -2 & 2 \\
1 & 1 & 1 & 1
\end{array}\right) \underset{\substack{-2 \times r|+2,2,-r|+r 4}}{\cong}\left(\begin{array}{cccc}
1 & -1 & 1 & 3 \\
0 & 0 & 0 & -5 \\
0 & 0 & 0 & 8 \\
0 & 2 & 0 & -2
\end{array}\right) \underset{\substack{1 / 8 \times 3 \times+2}}{\cong}\left(\begin{array}{cccc}
1 & -1 & 1 & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 8 \\
0 & 2 & 0 & -2
\end{array}\right) \\
& \underset{r 2 \leftrightarrow r 4}{\cong}\left(\begin{array}{cccc}
1 & -1 & 1 & 3 \\
0 & 2 & 0 & -2 \\
0 & 0 & 0 & 8 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Theorem:

1) For any matrix $B_{m \times n}, \operatorname{rank}(B)=\operatorname{rank}\left(B^{t} B\right)=\operatorname{rank}\left(B B^{t}\right)$.
2) A square matrix $A_{n \times n}$ is invertible iff $\operatorname{rank}(A)=n$.

Theorem:
Consider a system of linear simultaneous equations, $A_{m \times n} x_{n \times 1}=b_{m \times 1}$, where m and n may be different (m equations and n unknowns).

Assume that $\operatorname{rank}(A)=m$. Then, the followings hold for a given b :

1) There is at least one solution for x.
2) If $\operatorname{rank}(A)=m<n$, then, there are infinitely many solutions for x.
3) If $\operatorname{rank}(A)=m=n$, then, there is one unique solution for x.

Proof:

1) Without loss of generality, assume that $a_{\bullet 1}, \ldots, a_{\bullet m}(m \leq n)$ are linearly independent. Since $a_{\bullet 1}, \ldots, a_{\bullet m} \operatorname{span} \mathbb{R}^{m}, \exists x_{1}, \ldots, x_{m} \in \mathbb{R}^{m} \ni$

$$
\begin{aligned}
& b=x_{1} a_{\bullet 1}+\ldots+x_{m} a_{\bullet m} . \text { Set } x_{m+1}=x_{m+2}=\ldots=x_{n}=0 . \text { Then, } \\
& \quad b=x_{1} a_{1 \bullet}+\ldots+x_{m} a_{m \bullet}+x_{m+1} a_{m+1}+\ldots+x_{n} a_{n \bullet}
\end{aligned}
$$

Thus, b is a linear combination of the columns of A.
2) $\exists z_{1}, \ldots, z_{m} \in \mathbb{R}^{m}$ э $a_{\bullet m+1}=z_{1} a_{\bullet 1}+\ldots+z_{m} a_{\bullet m}$. Choose an arbitrary $c \in \mathbb{R}^{m}$ and define

$$
\begin{aligned}
& x_{1}^{*}=x_{1}-c z_{1} ; \ldots ; x_{m}^{*}=x_{m}-c z_{m} ; x_{m+1}^{*}=c ; \\
& x_{m+2}^{*}=\ldots=x_{n}^{*}=0 .
\end{aligned}
$$

Then,

$$
\begin{aligned}
x_{1}^{*} a_{\bullet 1} & +\ldots+x_{m}^{*} a_{\bullet m}+x_{m+1}^{*} a_{\bullet m+1}+x_{m+2}^{*} a_{\bullet m+2} \ldots+x_{n}^{*} a_{\bullet n} \\
& =\left(x_{1}-c z_{1}\right) a_{\bullet \bullet}+\ldots+\left(x_{m}-c z_{m}\right) a_{\bullet m}+c a_{\bullet m+1} \\
& =x_{1} a_{1 \bullet}+\ldots+x_{m} a_{m \bullet}+c\left(a_{\bullet m+1}-z_{1} a_{\bullet 1}-\ldots,-z_{m} a_{\bullet m}\right) \\
& =b
\end{aligned}
$$

Thus, $x^{*}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)^{t}$ is also a solution. Since c is an arbitrary number, there are infinitely many solutions.
3) A is now square and invertible. Since $\operatorname{rank}(A)=m$, at least one solution exits. Suppose $\bar{x}=\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)^{\prime}$ and $\tilde{x}=\left(\tilde{x}_{1}, \ldots, \tilde{x}_{n}\right)^{\prime}$ are two solutions. Then,

$$
A \bar{x}=b=A \tilde{x} \rightarrow A^{-1} A \bar{x}=A^{-1} A \tilde{x} \rightarrow \bar{x}=\tilde{x}
$$

The unique solution is:

$$
A \bar{x}=b \rightarrow A^{-1} A \bar{x}=A^{-1} b \rightarrow \bar{x}=A^{-1} b .
$$

Note:

- If $\operatorname{rank}(A)<m$, the system may have no solution (inconsistency) or infinitely many or unique.

Theorem:
Consider a system of linear simultaneous equations, $A_{m \times n} x_{n \times 1}=b_{m \times 1}$.
Define $A_{m \times(n+1)}^{*}=(A, b)=\left(a_{\bullet 1}, a_{\bullet 2}, \ldots, a_{\bullet n}, b\right)$. Then, the following results hold:

1) If $\operatorname{rank}(A)<\operatorname{rank}\left(A^{*}\right)$, then, there is no solution for x. (In this case, we say that the system is inconsistent). If $\operatorname{rank}(A)=$ $\operatorname{rank}\left(A^{*}\right)$, there is at least one solution.
2) If $\operatorname{rank}(A)=\operatorname{rank}\left(A^{*}\right)<n$, then, there are infinitely many solutions for x.
3)If $\operatorname{rank}(A)=\operatorname{rank}\left(A^{*}\right)=n$, then, there is one unique solution for x. Proof:
3) Observe that $\operatorname{rank}\left(A^{*}\right)=\operatorname{rank}(A)$ means that b is a linear combination of the columns of A. That means that the system has at least one solution. $\operatorname{rank}(A)<\operatorname{rank}\left(A^{*}\right)$ means that b is not a linear combination.
4) Without loss of generality, assume that the first $\mathrm{r}(\mathrm{r}<\mathrm{m})$ columns of $A, a_{\bullet 1}, a_{\bullet 2}, \ldots, a_{\bullet r}$, are linearly independent. Since b is a linear combination of $a_{\bullet 1}, a_{\bullet 2}, \ldots, a_{\bullet r}$, there exist r real numbers, z_{1}, z_{2}, \ldots, $z_{r} \in \mathbb{R}$ such that $b=z_{1} a_{\bullet 1}+z_{2} a_{\bullet 2}+\ldots+z_{r} a_{\bullet r}$. In addition, there exists $c_{1}, c_{2}, \ldots, c_{r} \in \mathbb{R}$ such that $a_{\bullet r+1}=c_{1} a_{\bullet 1}+c_{2} a_{\bullet 2}+\ldots+c_{r} a_{\bullet r}$. Set $x_{j}=z_{j}-d c_{j}$ for $j=1, \ldots, r, x_{r+1}=d$ and $x_{r+2}=\ldots=x_{n}=0$, where d is an arbitrary real number. Then,

$$
\begin{aligned}
x_{1} a_{\bullet 1} & +x_{2} a_{\bullet 2}+\ldots+x_{r} a_{\bullet r}+x_{r+1} a_{\bullet r+1}+x_{r+2} a_{\bullet r+2}+\ldots+x_{n} a_{\bullet n} \\
& =z_{1} a_{\bullet 1}+\ldots+z_{r} a_{\bullet r}+d\left(a_{\bullet r+1}-c_{1} a_{\bullet 1}-\ldots-c_{r} a_{\bullet r}\right)=b
\end{aligned}
$$

Since d is an arbitrary number, there are infinitely many $n \times 1$ vectors $x=\left(x_{1}, \ldots, x_{n}\right)^{t}$ that satisfy $A x=b$.
3) Since $\operatorname{rank}(A)=\operatorname{rank}\left(A^{*}\right)$, there is at least one solution. Observe that $A^{t} A$ is an $n \times n$ matrix with $\operatorname{rank}\left(A^{t} A\right)=\operatorname{rank}(A)=n$. Thus, $A^{t} A$ is invertible. Let $\bar{x}=\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)^{\prime}$ and $\tilde{x}=\left(\tilde{x}_{1}, \ldots, \tilde{x}_{n}\right)^{\prime}$ be two solutions. Then,

$$
\begin{aligned}
A \bar{x}=b=A \tilde{x} & \rightarrow A^{t} A \bar{x}=A^{t} A \tilde{x} \rightarrow\left(A^{t} A\right)^{-1} A^{t} A \bar{x}=\left(A^{t} A\right)^{-1} A^{t} A \tilde{x} \\
& \rightarrow \bar{x}=\tilde{x} .
\end{aligned}
$$

Note:

- The unique solution for 3) is:

$$
A \bar{x}=b \rightarrow\left(A^{t} A\right)^{-1} A^{t} A \bar{x}=\left(A^{t} A\right)^{-1} A^{t} b \rightarrow \bar{x}=\left(A^{t} A\right)^{-1} A^{t} b .
$$

EX 1:
Check whether the following three vectors are linearly independent:

$$
\begin{aligned}
& v_{1}=(1,2,-1)^{t} ; v_{2}=(6,4,2)^{t} ; v_{3}=(9,2,7)^{t} . \\
& \text { • }\left(\begin{array}{ccc}
1 & 6 & 9 \\
2 & 4 & 2 \\
-1 & 2 & 7
\end{array}\right) \underset{\substack{-2 \times r 1+r 2,(\\
r+r 3}}{\cong}\left(\begin{array}{ccc}
1 & 6 & 9 \\
0 & -8 & -16 \\
0 & 8 & 16
\end{array}\right) \underset{r 2+r 3}{\cong}\left(\begin{array}{ccc}
1 & 6 & 9 \\
0 & -8 & -16 \\
0 & 0 & 0
\end{array}\right) \\
& -\operatorname{rank}\left(\begin{array}{ccc}
1 & 6 & 9 \\
2 & 4 & 2 \\
-1 & 2 & 7
\end{array}\right)=2 .
\end{aligned}
$$

- Linearly dependent.

EX 2:

Check whether $u=(4,-1,8)^{t}$ is a linear combination of v_{1} and v_{2}.

- $\left(\begin{array}{ccc}1 & 6 & 4 \\ 2 & 4 & -1 \\ -1 & 2 & 8\end{array}\right) \underset{\substack{-2 \times r 1+r 2, r 1+r 3}}{\cong}\left(\begin{array}{ccc}1 & 6 & 9 \\ 0 & -8 & -9 \\ 0 & 8 & 12\end{array}\right) \underset{r 2+r 3}{\cong}\left(\begin{array}{ccc}1 & 6 & 9 \\ 0 & -8 & -16 \\ 0 & 0 & 3\end{array}\right)$
- $\operatorname{rank}\left(\begin{array}{ccc}1 & 6 & 4 \\ 2 & 4 & -1 \\ -1 & 2 & 8\end{array}\right)=3$.
- The three vectors are linearly independent.
- u cannot be a linear combination of v_{1} and v_{2}.

EX 3:

$$
v_{1}=\binom{1}{1} ; v_{2}=\binom{2}{2} . \text { Do they span } \mathbb{R}^{2} ?
$$

- $v_{2}=2 v_{1}$.

EX 4:

How about $v_{1}=(1,0)^{t}$ and $v_{2}=(1,1)^{t}$?

EX 5:

$$
\begin{aligned}
& x_{1}+x_{2}=1 \\
& x_{1}+x_{2}=2
\end{aligned}
$$

Is there a solution?

- $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{1}{2} \rightarrow A x=b$.
- $\operatorname{rank}(A)=1 ; \operatorname{rank}\left(A^{*}\right)=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 2\end{array}\right)=\operatorname{rank}\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)=2$.
$\rightarrow \operatorname{rank}(A)<\operatorname{rank}\left(A^{*}\right)$.
\rightarrow No solution.

EX 6:

$$
\begin{aligned}
& x_{1}+x_{2}=b_{1} \\
& x_{1}+x_{2}=b_{2}
\end{aligned}
$$

For what values of b_{1} and b_{2} will the system have solution(s)?

- For at least one solution, it should be that $\operatorname{rank}\left(\begin{array}{lll}1 & 1 & b_{1} \\ 1 & 1 & b_{2}\end{array}\right)=1$. It happens only if $b_{1}=b_{2}$. With $b_{1}=b_{2}, \operatorname{rank}(A)=\operatorname{rank}\left(A^{*}\right)=1<2$
$=\mathrm{n}$. Thus, there are infinitely many solutions.

EX 7:
$x_{1}+3 x_{2}-2 x_{3}=11$
$2 x_{1}-5 x_{2}+7 x_{3}=-11$
$-x_{1}+2 x_{2}-3 x_{3}=4$
$x_{1}+2 x_{2}-x_{3}=8$
Solution exists? How many?

- $\left(\begin{array}{ccc}1 & 3 & -2 \\ 2 & -5 & 7 \\ -1 & 2 & -3 \\ 1 & 2 & -1\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{c}11 \\ -11 \\ 4 \\ 8\end{array}\right) \rightarrow A x=b$
- $\operatorname{rank}(A) \leq 3<4=m$.

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
1 & 3 & -2 \\
2 & -5 & 7 \\
-1 & 2 & -3 \\
1 & 2 & -1
\end{array}\right) \underset{\substack{-2 \times x|+r+2 \\
r| r 2 \\
-r 1+4}}{\cong}\left(\begin{array}{ccc}
1 & 3 & -2 \\
0 & -11 & 11 \\
0 & 5 & -5 \\
0 & -1 & 1
\end{array}\right) \underset{(r 2 / 11)}{\cong}\left(\begin{array}{ccc}
1 & 3 & -2 \\
0 & -1 & 1 \\
0 & 5 & -5 \\
0 & -1 & 1
\end{array}\right) \\
& \underset{\substack{5 \times 2+r+3 \\
-r 24}}{\cong}\left(\begin{array}{ccc}
1 & 3 & -2 \\
0 & -1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \rightarrow \operatorname{rank}(A)=2<m=4 \text {. }
\end{aligned}
$$

- Can show $A^{*}=\left(\begin{array}{cccc}1 & 3 & -2 & 11 \\ 2 & -5 & 7 & -11 \\ -1 & 2 & -3 & 4 \\ 1 & 2 & -1 & 8\end{array}\right) \cong\left(\begin{array}{cccc}1 & 3 & -2 & 11 \\ 0 & -1 & 1 & -3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$.
- Since $\operatorname{rank}(A)=\operatorname{rank}\left(A^{*}\right)=2<3=n$, there are infinitely many solutions.
- Finding solutions:

$$
\begin{aligned}
A^{*} \cong\left(\begin{array}{cccc}
1 & 3 & -2 & 11 \\
0 & -1 & 1 & -3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \text { implies that the solutions satisfy: } \\
\\
x_{1}+3 x_{2}-2 x_{3}=11 \\
-x_{2}+x_{3}=-3
\end{aligned}
$$

- $\operatorname{Set} \bar{X}_{3}=\lambda(\lambda \in \mathbb{R})$.
$x_{1}+3 x_{2}=2 \lambda+11$
$-x_{2}=-\lambda-3$
- $\left(\begin{array}{cc}1 & 3 \\ 0 & -1\end{array}\right)\binom{\bar{x}_{1}}{\bar{x}_{2}}=\binom{2 \lambda+11}{-\lambda-3} \rightarrow\binom{\bar{x}_{1}}{\bar{x}_{2}}=\left(\begin{array}{cc}1 & 3 \\ 0 & -1\end{array}\right)^{-1}\binom{2 \lambda+11}{-\lambda-3}$
- $\binom{\bar{x}_{1}}{\bar{x}_{2}}=\frac{1}{-1}\left(\begin{array}{cc}-1 & -3 \\ 0 & 1\end{array}\right)\binom{2 \lambda+11}{-\lambda-3}=\frac{-1}{1}\binom{\lambda-2}{-\lambda-3}=\binom{2-\lambda}{3+\lambda}$
- $\left(\begin{array}{c}\bar{x}_{1} \\ \bar{x}_{2} \\ \bar{x}_{3}\end{array}\right)=\left(\begin{array}{c}2-\lambda \\ 3+\lambda \\ \lambda\end{array}\right)$ for any $\lambda \in \mathbb{R}$.
- Can show that these solutions satisfy all of the four original equations.

Theorem:
Consider a system of linear equations, $A_{n \times n} x_{n \times 1}=b_{n \times 1}$ (n equations and n unknowns). Define $A^{*}=(A, b)=\left(a_{\bullet 1}, a_{\bullet 2}, \ldots, a_{\bullet n}, b\right)$. Then, the following results hold:

1) If $\operatorname{rank}(A)=n$, there is one unique solution for a given b : $\bar{x}=A^{-1} b$.
2) If $\operatorname{rank}(A)<n$ and $\operatorname{rank}(A)=\operatorname{rank}\left(A^{*}\right)$, there are infinitely many solutions for a given b.
3) If $\operatorname{rank}(A)<\operatorname{rank}\left(A^{*}\right)$, there is no solution.
[6] Linear Economic Models
(1) A Simple Keynesian Model

- Assumptions:
- No foreign trade: $\mathrm{X}($ expert $)=0$ and $\mathrm{M}($ import $)=0$.
- No tax.
- Firms' investments (I) and government spending (G) are fixed. (From now on, subscript " 0 " means fixed variables in a given system).
- The aggregate private consumption expenditure (C) is a linear function of aggregated income (Y)
- Model
- GDP identity: $Y=C+I_{o}+G_{o}$.
- Consumption: $C=a+b Y, a>0$ and $0<b<1$.
- An economic model consists of two types of equations:
- definitional equations which are true by definition (e.g, GDP identity);
- behavioral equations which describe economic agents' economic decisions (e.g., consumption function).
- An economic model consists of two types of variables and constants:
- exogenous variables whose values are not determined by the equations (I_{o} and G_{o});
- endogenous variables whose values are determined by solving the equations (C and Y);
- constants which are fixed intercepts or coefficients.
- The model can be written:

$$
\begin{aligned}
& Y-C=I_{o}+G_{o} \\
& -b Y+C=a
\end{aligned} \rightarrow \underbrace{\left(\begin{array}{cc}
1 & -1 \\
-b & 1
\end{array}\right)}_{A} \underbrace{\binom{Y}{C}}_{x}=\underbrace{\binom{I_{o}+G_{o}}{a}}_{b} .
$$

The matrix A and the vector b contain constants and exogenous variables. The vector x contains only endogenous variables.

- An economic model is called complete if the number of equations in it equals the number of endogenous variables and has a unique solution.
- The original form of an economic model is called structural form. The solution of the model is called reduced form:

Structural form: $A x=b$.
Reduced form: $\bar{x}=A^{-1} b$.

- The solution values of endogenous variables are called equilibrium values.

$$
\begin{aligned}
& \operatorname{det}(A)= \\
&-\operatorname{det}\left(A_{1}\right)=\left|\begin{array}{cc}
1 & -1 \\
-b & 1
\end{array}\right|=1-b ; \\
& \operatorname{det}\left(A_{2}\right)=\left|\begin{array}{cc}
1 & I_{o}+G_{o} \\
-b & a
\end{array}\right|=a+b\left(I_{o}+G_{o}\right) . \\
&\binom{\bar{Y}}{\bar{C}}=\frac{1}{1-b}\binom{a+I_{o}+G_{o}}{a+b\left(I_{o}+G_{o}\right)} .
\end{aligned}
$$

- Comparative static analysis concerns how equilibrium endogenous variables react to changes in exogenous variables.
- When G changes by ΔG, how much would \bar{Y} change?

$$
\begin{aligned}
& \binom{\Delta \bar{Y}}{\Delta \bar{C}}=\frac{1}{1-b}\binom{\Delta G}{b \Delta G} \\
& \binom{\partial \bar{Y} / \partial G}{\partial \bar{C} / \partial G}=\frac{1}{1-b}\binom{1}{b}
\end{aligned}
$$

(2) Another Simple Keynesian model

- Assumptions:
- No tax.
- Export (X) is exogenous.
- Firms' investments (I) and government spending (G) are exogenous.
- The aggregate private consumption expenditure (C) is a linear function of aggregated income (Y).
- Import is also a linear function of Y.
- Model
- $Y=C+I_{o}+G_{o}+X_{o}-M$.
- $C=a+b Y, a>0$ and $0<b<1$.
- $M=c+d Y, c>0$ and $d>0$.
- The model can be written:

$$
\begin{aligned}
& Y-C+M=I_{o}+G_{o}+X_{o} \\
& -b Y+C=a \\
& -d Y+M=c
\end{aligned} \rightarrow \underbrace{\left(\begin{array}{ccc}
1 & -1 & 1 \\
-b & 1 & 0 \\
-d & 0 & 1
\end{array}\right)}_{A} \underbrace{\left(\begin{array}{c}
Y \\
C \\
M
\end{array}\right)}_{x}=\underbrace{\left(\begin{array}{c}
I_{o}+G_{o}+X_{o} \\
a \\
c
\end{array}\right)}_{b} .
$$

- The solution values of endogenous variables:

$$
\begin{aligned}
\operatorname{det}(A) & =\left|\begin{array}{ccc}
1 & -1 & 1 \\
-b & 1 & 0 \\
-d & 0 & 1
\end{array}\right|=1-b+d ; \\
\operatorname{det}\left(A_{1}\right) & =\left|\begin{array}{rrr}
I_{o}+G_{o}+X_{o} & -1 & 1 \\
a & 1 & 0 \\
c & 0 & 1
\end{array}\right|=I_{o}+G_{o}+X_{o}+a-c ; \\
\operatorname{det}\left(A_{2}\right) & =\left|\begin{array}{ccc}
1 & I_{o}+G_{o}+X_{o} & 1 \\
-b & a & 0 \\
-d & c & 1
\end{array}\right|=a-b c+a d+b\left(I_{o}+G_{o}+X_{o}\right) ; \\
\operatorname{det}\left(A_{3}\right) & =\left|\begin{array}{ccc}
1 & -1 & I_{o}+G_{o}+X_{o} \\
-b & 1 & a \\
-d & 0 & c
\end{array}\right|=c+a d-b c+d\left(I_{o}+G_{o}+X_{o}\right) \\
\left(\begin{array}{l}
\bar{Y} \\
\bar{C} \\
\bar{M}
\end{array}\right)= & \frac{1}{1-b+d}\left(\begin{array}{r}
I_{o}+G_{o}+X_{o}+a-c \\
a-b c+a d+b\left(I_{o}+G_{o}+X_{o}\right) \\
c+a d-b c+d\left(I_{o}+G_{o}+X_{o}\right)
\end{array}\right)
\end{aligned}
$$

- When G changes by ΔG, how much would \bar{Y} change?

$$
\left(\begin{array}{c}
\Delta \bar{Y} \\
\Delta \bar{C} \\
\Delta \bar{M}
\end{array}\right)=\frac{1}{1-b+d}\left(\begin{array}{c}
\Delta G \\
b \Delta G \\
d \Delta G
\end{array}\right)
$$

(3) Effect of subsidy on equilibrium price and quantity

- Assumption:
- Perfectly competitive cell phone market.
- Exogenous subsidy (S) per cell phone.
- $Q_{d}=a+b P, a>0$ and $b<0$,
$Q_{s}=c+d\left(P+S_{o}\right), c \leq 0$ and $d>0$.
$Q_{d}=Q_{s}, b c-a d<0$.

$$
\begin{aligned}
& \underbrace{\left(\begin{array}{cc}
1 & -b \\
1 & -d
\end{array}\right)}_{A} \underbrace{\binom{\bar{Q}}{\bar{P}}}_{x}=\underbrace{\binom{a}{c+d S_{o}}}_{b} \\
& \rightarrow \operatorname{det}(A)=\left|\begin{array}{cc}
1 & -b \\
1 & -d
\end{array}\right|=b-d ; \\
& \operatorname{det}\left(A_{1}\right)=\left|\begin{array}{cc}
a & -b \\
c+d S_{o} & -d
\end{array}\right|=b\left(c+d S_{o}\right)-a d ; \\
& \quad \operatorname{det}\left(A_{2}\right)=\left|\begin{array}{cc}
1 & a \\
1 & c+d S_{o}
\end{array}\right|=c+d S_{o}-a . \\
& -\binom{\bar{Q}}{\bar{P}}=\frac{1}{b-d}\binom{b c-a d+b d S_{o}}{c-a+d S_{o}} \cdot \rightarrow\binom{\Delta \bar{Q}}{\Delta \bar{P}}=\frac{1}{b-d}\binom{b d \Delta S}{d \Delta S} . \\
& \Delta \bar{P}=\frac{d \Delta S}{b-d} ; \Delta(\bar{P}+S)=\frac{d \Delta S}{b-d}+\Delta S=\frac{b \Delta S}{b-d} .
\end{aligned}
$$

(4) Wage Gaps and International Trade (From Klein, p. 109)

- Trade with developing countries will widen the wage gap between skilled and unskilled workers?
- Assumptions:
- Two sectors: Textile (T) and Computer (C).
- Two inputs: Skilled (S) and unskilled workers (U)
- Technologies:
- $a_{S T}=S_{T} / T$ and $a_{U T}=U_{T} / T$ are fixed.
- $a_{S C}=S_{C} / C$ and $a_{U C}=U_{C} / C$ are fixed.
- $a_{S T}<a_{S C}$ and $a_{U T}>a_{U C}$.
- The two output markets are perfectly competitive in the long run so that long-run profits $=0$. The two labor markets are also perfectly competitive so that one wage $\left(\mathrm{w}_{\mathrm{S}}\right)$ for skilled workers and one wage $\left(\mathrm{w}_{\mathrm{U}}\right)$ for unskilled workers:
- $w_{S} S_{T}+w_{U} U_{T}=p_{T} T \rightarrow\left(S_{T} / T\right) w_{S}+\left(U_{T} / T\right) w_{U}=p_{T}$ $w_{S} S_{C}+w_{u} U_{C}=p_{C} C \rightarrow\left(S_{C} / C\right) w_{s}+\left(U_{C} / C\right) w_{U}=p_{C}$ where p_{T} and p_{C} are prices.
- The output prices are exogenous to US economy (because they are determined by perfectly competitive world markets).
- Zero Profits imply

$$
\begin{aligned}
& w_{S} S_{T}+w_{U} U_{T}=p_{T} T \text { and } w_{S} S_{C}+w_{U} U_{C}=p_{C} C \\
& \rightarrow \underbrace{\frac{S_{T}}{T}}_{a_{S T}} w_{S}+\underbrace{\frac{U_{T}}{T}}_{a_{U T}} w_{U}=p_{T} \text { and } \underbrace{\frac{S_{C}}{C}}_{a_{S C}} w_{S}+\underbrace{\frac{U_{C}}{C}}_{a_{U C}} w_{U}=p_{C} .
\end{aligned}
$$

- $\underbrace{\left(\begin{array}{ll}a_{S T} & a_{U T} \\ a_{S C} & a_{U C}\end{array}\right)}_{A} \underbrace{\binom{w_{S}}{w_{U}}}_{x}=\underbrace{\binom{p_{T}}{p_{C}}}_{b}$.

$$
\rightarrow \quad \operatorname{det}(A)=a_{S T} a_{U C}-a_{S C} a_{U T}
$$

$$
\operatorname{det}\left(A_{1}\right)=\left|\begin{array}{ll}
p_{T} & a_{U T} \\
p_{C} & a_{U C}
\end{array}\right|=a_{U C} p_{T}-a_{U T} p_{C} ;
$$

$$
\operatorname{det}\left(A_{2}\right)=\left|\begin{array}{ll}
a_{S T} & p_{T} \\
a_{S C} & p_{C}
\end{array}\right|=a_{S T} p_{C}-a_{S C} p_{T}
$$

- $\binom{\bar{w}_{S}}{\bar{w}_{U}}=\frac{1}{\operatorname{det}(A)}\binom{a_{U C} p_{T}-a_{U T} p_{C}}{a_{S T} p_{C}-a_{S C} p_{T}}$.
- If US trade with developing countries, $\Delta p_{T}<0$ (and $\left.\Delta p_{C} \approx 0\right)$:

$$
\binom{\Delta \bar{w}_{S}}{\Delta \bar{w}_{U}} \approx \frac{1}{\operatorname{det}(A)}\binom{a_{U C} \Delta p_{T}}{-a_{S C} \Delta p_{T}}
$$

(5) Ordinary Least Squares (OLS)

- Wish to explain $y_{i}=$ hwage $_{i}$, using $x_{i 1}=y r s c h o o l_{i}, x_{i 2}=y r \exp _{i}$,

$$
x_{i 3}=\text { gender }_{i}, \text { and etc }(\mathrm{i}=1,2, \ldots, \mathrm{~m} .)
$$

- Regression model:
- $y_{i}=\beta_{o}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\ldots+\beta_{n-1} x_{i, n-1}+u_{i}$,
where u_{i} is an error term that is not related to $x_{i 1}, . ., x_{i, n-1}$
- For all m people $(m>n)$,

$$
\begin{aligned}
y_{m \times 1} \equiv\left(\begin{array}{c}
y_{1} \\
y_{2} \\
: \\
y_{m}
\end{array}\right) & =\left(\begin{array}{cccc}
1 & x_{11} & \ldots & x_{1, n-1} \\
1 & x_{21} & \ldots & x_{2, n-1} \\
: & : & & : \\
1 & x_{m 1} & \ldots & x_{m, n-1}
\end{array}\right)\left(\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
: \\
\beta_{n-1}
\end{array}\right)+\left(\begin{array}{c}
u_{1} \\
u_{2} \\
: \\
u_{m}
\end{array}\right) \\
& \equiv X_{m \times n} \beta_{n \times 1}+u_{m \times 1}
\end{aligned}
$$

- Assume that all columns of X are linearly independent. [This is called the assumption of no perfect multicollinearity.]

$$
\rightarrow \operatorname{rank}(X)=\operatorname{rank}\left(X^{t} X\right)=n .
$$

- Ideally, wish to find $\bar{\beta}$ such that $y=X \beta$ and $u=0_{m \times 1}$.
- But such β generally does not exist unless accidentally the columns of X span y: Since $\operatorname{rank}(X)=n<m$, not all $y \in \mathbb{R}^{m}$ (in fact, very few) are linear combinations of the column of X.
- If $\bar{\beta}$ exists, it should be that $\bar{\beta}=\left(X^{t} X\right)^{-1} X^{t} y \equiv \hat{\beta}$. Since $X^{t} X$ is an $\mathrm{n} \times \mathrm{n}$ matrix and $\operatorname{rank}\left(X^{t} X\right)=n$, it is invertible.
- Ordinary Least Squares (OLS) estimator: $\hat{\beta}=\left(X^{t} X\right)^{-1} X^{t} y$.
- Vector of residuals: $\hat{u}=y-X \hat{\beta}$.

$$
\hat{u}=I_{m} y-X\left(X^{t} X\right)^{-1} X^{t} y=\left(I_{m}-X\left(X^{t} X\right)^{-1} X^{t}\right) y \equiv N y
$$

which is not zero matrix.

- The matrix $N_{m \times m}$ is a symmetric and idempotent matrix.
- $N X=\left[I_{m}-X\left(X^{t} X\right)^{-1} X^{t}\right] X=0_{m \times m}$.
$\rightarrow X^{t} \hat{u}=X^{t} N y=0_{m \times 1}$.
- All columns of X are orthogonal to \hat{u}.

