1. (10 pts.) Let $S_{1}=\{3,6,9\}$ and $S_{2}=\{a, b\}$. Is $\{(3, a),(6 a),(9, a)\}$ a function from S_{1} to S_{2}. Why or why not? Explain.
2. (10 pts.) Suppose that the domain of the function $y=x^{2}-x+1$ is the set $\{x \mid 0 \leq x \leq 1\}$. Find the range of the function and express it as a set.
3. (10 pts.) Solve $x^{3}+3 x^{2}-x-3=0$.
4. (20 pts.) A national-income model is given:
```
\(\mathrm{Y}=\mathrm{C}+\mathrm{I}_{\mathrm{o}}+\mathrm{G}_{\mathrm{o}}\)
\(\mathrm{C}=\mathrm{a}+\mathrm{b}(\mathrm{Y}-\mathrm{T}) \quad(\mathrm{a}>0,0<\mathrm{b}<1)\)
\(\mathrm{T}=\mathrm{t}_{\mathrm{o}} \mathrm{C} \quad\left(0<\mathrm{t}_{\mathrm{o}}<1\right)\)
```

Here, Y, C and T are endogenous; and I_{o}, G_{o} and t_{o} are exogenous.

1) Find the equilibrium national income.
2) In this model, is the multiplier always greater than one? Why or why not?
5. (10 pts .) A company earns before-tax profits of $\$ 100,000$. It has agreed to contribute 10 percent of its after-tax profits to the Red Cross Relief Fund. It must pay a state tax of 5 percent of its profit (after the Red Cross donation) and a federal tax of 40 percent of its profits (after the donation and state taxes are paid). How much does the company pay in state taxes?
6. (10 pts.) Let $X=(1,1)^{\prime}$. Find $A=I_{2}-X\left(X^{\prime} X\right)^{-1} X^{\prime}$. Show that A is not invertible.
7. (10 pts) For which value of k does $A=\left[\begin{array}{lll}1 & 2 & 4 \\ 3 & 1 & 6 \\ \mathrm{k} & 3 & 2\end{array}\right]$ fail to be invertible?
8. (10 pts.) Assume $\operatorname{det}\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=5$. Find $\operatorname{det}\left[\begin{array}{ccc}-a & -b & -c \\ 2 d & 2 \mathrm{e} & 2 \mathrm{f} \\ -\mathrm{g} & -\mathrm{h} & -\mathrm{i}\end{array}\right]$.
9. (10 pts.) Evaluate $\operatorname{det}(A)$, where $A=\left[\begin{array}{cccc}1 & 2 & 0 & 9 \\ 2 & 3 & 4 & 6 \\ 1 & 6 & 0 & -1 \\ 0 & -5 & 0 & 8\end{array}\right]$.
