1. ($30 \mathrm{pts}, 6 \mathrm{pts}$. on each.) Let

$$
\mathrm{u}=\left[\begin{array}{c}
2 \\
0 \\
-1 \\
3
\end{array}\right] ; \mathrm{v}=\left[\begin{array}{c}
5 \\
4 \\
7 \\
-1
\end{array}\right] ; \mathrm{w}=\left[\begin{array}{l}
6 \\
2 \\
0 \\
9
\end{array}\right]
$$

(a) Find $7 u+3 w$
(b) Find $2 u-(v+w)$
(c) Find u 'v
(d) Can u, v and w span \mathbb{R}^{4} ? Why or Why not? Explain it.
(e) Check whether w can be a linear combination of u and v.
2. (10 pts.) Show that there do not exist scalars a, b, c such that $a v_{1}+b v_{2}+c v_{3}=w$, where

$$
\mathrm{v}_{1}=\left[\begin{array}{c}
0 \\
1 \\
-2 \\
1
\end{array}\right] ; \mathrm{v}_{2}=\left[\begin{array}{l}
0 \\
2 \\
1 \\
2
\end{array}\right] ; \mathrm{v}_{3}=\left[\begin{array}{c}
-2 \\
1 \\
4 \\
1
\end{array}\right] ; \mathrm{w}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right] .
$$

(Hint: Think about the link between a matrix and its column vectors.)
3. (10 pts.) Answer the following questions.
(a) Find $\lim _{x-1}\left(x^{3}-7 x^{2}+15 x-9\right) /\left(x^{2}+2 x-3\right)$.
(b) Find $\lim _{x \rightarrow \infty}\left(2-3 x+x^{2}\right) /\left(7+4 x-5 x^{2}\right)$.
4. (20 pts.) Find dy/dx for each case.
(a) $y=\{(x-1) /(x+1)\}^{2}$
(b) $y=3\left(2 x^{3}+2\right)^{4}$
(c) $y=x^{2} e^{4 x}$.
(d) $y=4 \cdot \ln \left(x^{4}+3 x^{3}+1\right)$.
5. (10 pts.) Consider the following functions:

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=6 \mathrm{x}_{1}^{2}+2 \mathrm{x}_{2}+1 \\
& \mathrm{~g}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=3 \mathrm{x}_{1}-\mathrm{x}_{2}^{3}+\mathrm{x}_{1} \mathrm{x}_{2}
\end{aligned}
$$

(a) Find $\partial\left\{f\left(x_{1}, x_{2}\right) g\left(x_{1}, x_{2}\right)\right\} / \partial x_{1}$ at $\left(x_{1}, x_{2}\right)=(1,1)$.
(b) Find $\partial\left\{f\left(x_{1}, x_{2}\right) / g\left(x_{1}, x_{2}\right)\right\} / \partial x_{2}$ at $\left(x_{1}, x_{2}\right)=(1,1)$.
6. (10 pts.) Answer the following questions.
(a) Given $z=2 x+x y-y^{2}$ and $x=3 y^{2}$, find dz/dy at $y=1$.
(b) Let $\mathrm{z}=\mathrm{x}_{1} / \mathrm{x}_{2}+\mathrm{uv}, \mathrm{x}_{1}=\mathrm{u}^{2}+\mathrm{uv}$, and $\mathrm{x}_{2}=\mathrm{u}+\mathrm{v}$. Find $\partial \mathrm{z} / \partial \mathrm{u}$ at $(\mathrm{u}, \mathrm{v})=(1,1)$.
7. (10 pts.) Consider the production function: $\mathrm{Q}=\mathrm{AK}^{\mathrm{a}} \mathrm{L}^{\mathrm{b}}$, where A , a and b are positive constants. Here, K and L denote amounts of capital and labor, respectively. Assume that $\mathrm{K}>0$ and $\mathrm{L}>0$.
(a) For what restriction on the values of a and b does the equality $\mathrm{MP}_{\mathrm{K}} \mathrm{K}+\mathrm{MP}_{\mathrm{L}} \mathrm{L}=\mathrm{Q}$ hold?
(b) Assuming K is constant, show that b equals the elasticity of Q with respect to L .

