1. (10 pts .) Find the first three terms of the Taylor expansion of $1 /(1-\mathrm{x})$ at $\mathrm{x}=0$.
2. (20 pts. 4 pts. for each) Find the derivatives of:
(1) $y=x \cdot \exp (b x+1)$
(2) $y=x^{2} \cdot \exp (2 x)$
(3) $y=\ln \left[x(1-x)^{8}\right]$
(4) $y=\ln (\ln (x))$
3. (10 pts, 5 pts for each) Find the instantaneous rate of growth of y in each of the following.
(1) $\mathrm{y}=3^{2 \mathrm{t}}$ at $\mathrm{t}=1$.
(2) $\mathrm{y}=\exp \left(\mathrm{t}^{2}+\ln (\mathrm{t})\right)$ at $\mathrm{t}=1$.
4. (10 pts.) If the value of wine grows according to the function $\mathrm{V}=3 e^{2 \sqrt{t}}$. How long should a dealer store the wine? (Hint: The dealer wishes to maximize the present value of wine.)
5. (10 pts.) Given $y=w / z$, where $w=g(x)$ and $z=h(x)$, establish $\epsilon_{y x}=\epsilon_{w x}-\epsilon_{z x}$.
6. (10 pts.) Find the stationary value(s) of each of the following function, and determine whether they are local maxima or minima:

$$
\mathrm{z}=\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{\mathrm{y}}+\exp \left(\mathrm{w}^{2}\right)-2 \mathrm{e}^{\mathrm{w}}-(\mathrm{x}+\mathrm{y})
$$

7. (10 pts.) To answer this question, you need to study Example 2 (pp. 354-355) in the textbook. A two-product firm faces the demand and cost functions below:

$$
\begin{aligned}
& \mathrm{Q}_{1}=40-2 \mathrm{P}_{1}-\mathrm{P}_{2} ; \quad \mathrm{Q}_{2}=35-\mathrm{P}_{1}-\mathrm{P}_{2} \\
& \mathrm{C}=\mathrm{Q}_{1}{ }^{2}+2 \mathrm{Q}_{2}{ }^{2}+10 .
\end{aligned}
$$

Find the output levels that satisfy the first-order condition for maximum profit.
8. (10 pts.) Show that $\mathrm{z}=\mathrm{x}^{1 / 2} \mathrm{y}^{1 / 3}+\mathrm{y}^{1 / 2}(\mathrm{x}, \mathrm{y}>0)$ is concave.
9. (10 pts.) Consider a profit maximizing competitive firm with a profit function given by:

$$
\pi=\mathrm{pf}(\mathrm{~L}, \mathrm{~K})-\mathrm{wL}-\mathrm{rK}-\mathrm{F}
$$

where p is the output price, $f(\mathrm{~L}, \mathrm{~K})$ is the concave production function, w is the price of labor, r is the price of K , and F is fixed cost. (F is treated as an exogeneous variable.) Let L^{*} be the profitmaximizing labor input level. Determine $\partial \mathrm{L}^{*} / \partial \mathrm{F}$ and its sign.

