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 2. MULTICOLLINEARITY AND MISSING OBS 
 
[1] MULTICOLLINEARITY 

(1) Perfect Collinearity: 

• When regressors are perfectly linearly related: The X matrix is less than 

full rank (Rank(X) < k). 

 

Example 1: 

GDPt = β1 + β2Gt + β3Tt + β4DEFt + εt. 

→ DEFt = Gt - Tt for any t. 

→ Rank(X) = 3. 

 

Example 2: Dummy variable trap 

log(wt ) = β1 + β2aget + β3dt1 + β4dt2 + β5dt3 + εt , 

where dt1 = 1 iff t’s education level is lower than high school 

graduation (dt1 = 0, otherwise); dt2  = 1 iff person t is a high school 

graduate but not college graduate (dt2 = 0, otherwise); dt3 = 1 if person t 

is a college graduate (dt3 = 0, otherwise). 

 → dt1 + dt2 + dt3 = 1. 

 

• Consequence of perfect multicollinearity: 

• Cannot compute OLS estimates. 
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(2) Near Multicollinearity 

• When regressors are highly (not perfectly) correlated. 

 

1) Consequences of near multicollinearity on OLS estimators: 

 • Under SIC, OLS estimators are unbiased, consistent and efficient. 

 • Under WIC, OLS estimators are consistent and asymptotically 

normal and efficient. 

• Then, what is the problem?  

  → Individual estimates are unreliable. 

 

2) Symptoms of near multicollinearity: 

• Small changes in sample lead to large changes in estimates. 

• High R2, but low t statistics. 

• High Rj
2 's (Rj

2 is R2 from OLS of xtj on xt1, ... , xt,j-1, xt,j+1, ... , xtk). 

• High value for [λmax/λmin]1/2, where λ's are eigenvalues of X′X.   

   (See Greene) 

• Estimates may be wildly different from those suggested by theory. 

• Think about a regression of consumption on one, income and 

wealth. 

 

 Question: Why does multicollinearity make values of t-statistic low? 

 



Theorem: 

xj = j'th column of X; 

Xj
* = X with j'th column deleted. 

SSEj = SSE from a regression of xj on Xj
*. 

SSTj = Σt(xtj- jx )2. 

Then, the j'th diagonal of (X′X)-1 = 1

jSSE
 = 2

1
(1 )j jSST R−

. 

 

Implication: 

• var( ˆ
jβ ) = 

2

2(1 )j jSST R
σ

−
 → As Rj

2↑, var( ˆ
jβ )↑. 

• se( ˆ
jβ ) = 

2

2(1 )j j

s
SST R−

 → As Rj
2↑, se( ˆ

jβ )↑. 

• (t statistic for Ho: βj = 0) = 
ˆ
ˆ( )
j

jse
β
β

 → As Rj
2↑, |t|↓. 

 

 3) Remedies 

 1. Drop some regressors highly correlated with others (?) 

 2. Collect a richer data set. 

 3. Use alternative estimators. 
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(3) Alternative Estimators 

 1) Ridge regression estimator: 

  ˆ
rβ  = (X′X + rIk)-1X′y, r > 0. 

• Biased but smaller MSE than OLS variances. 

  Cov( ˆ
rβ ) = σ2[X′X + rIk]-1X′X[X′X + rIk]-1. 

 • This estimator solves multicollinearity problem? 

 • No clear meaning to statistical inferences. 

 • What is optimal choice of r? 

 

 2) Principal Component Estimator. 

  • Procedure: 

   • Compute eigenvalues of X′X and sort them as λ1  λ2  ...  λk.  

(and ck×1 such that X′Xc = λc.) 

  • Choose normalized eigenvectors, i.e., 1j jc c′ = . 

  • Choose L largest λ’s (λ1,λ2,...,λL) and corresponding c1, ..., cL. 

  • Define CL = [c1, ... , cL]. 

  • Let Z = XCL, and do OLS on y = Zγ + error: γ̂  = (Z′Z)-1Z′y. 

  • Principal Component Estimator: 
pcβ̂  = CLγ̂ .  
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 • Facts: 
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ˆ  • ˆ  = pc L LC Cβ β′  (See Greene). 

  • Biased unless L = k. (In fact, ˆ
pcβ  = β̂  if L = k.) 

  • Sensitive to the scale of measurement on regressors. 

  • No clear meaning to statistical inferences. 

 

 3) Suggestion: 

 Ridge regression or PC estimators could be useful for prediction, 

but may not be much helpful for statistical inferences. 

 

(4) An ad hoc alternative (M is conquered?) 

1)  Situation:  Consider the following regression model: 

 1 2 2 3 3 4 4t t t ty x x x tβ β β β= + + + + ε . 

  Suppose that xt3 and xt4 are so highly correlated that the t-tests for 

β2 and β3 indicate insignificance of the two parameters. 
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<Example> 
Dependent Variable: LWAGE 
Sample: 1 935 

     
Variable Coefficient Std. Error t-Statistic Prob. 

     
C 5.517432 0.124819 44.20360 0.0000

EDUC 0.077987 0.006624 11.77291 0.0000
EXPER 0.016256 0.013540 1.200595 0.2302

EXPER^2 0.000152 0.000567 0.268133 0.7887
     

R-squared 0.130926     Mean dependent var 6.779004
     

 

2)  Alternative regression: 

 Step 1: Regress xt3 on one and xt4, and residuals ut. 

 Step 2: Regress yt on one, xt2, ut and xt4. 

  

<Example> 
Dependent Variable: LWAGE 
Included observations: 935 

     
Variable Coefficient Std. Error t-Statistic Prob. 

     
C 5.604536 0.101658 55.13115 0.0000

EDUC 0.077987 0.006624 11.77291 0.0000
U 0.016256 0.013540 1.200595 0.2302

EXPER^2 0.000812 0.000138 5.869204 0.0000
     

R-squared 0.130926     Mean dependent var 6.779004
     

 

 Observe that EXPER2 is now significant!!!  



3)  Logic of this treatment: 
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t • Let 3 1 2 4t tx x uδ δ= + + .  Substitute this into the original regression 

model: 

   1 2 2 3 1 2 4 4 4

1 3 1 2 2 3 4 2 3 4

( )
( ) ( )

t t t t t t

t t t

y x x u x
x u x .t

β β β δ δ β ε
β β δ β β β δ β ε

= + + + + + +
= + + + + + +

 

  Since ut and xt4 are uncorrelated, this alternative model does not 

suffer from M.  

 • Is it really? 

 

3)  Problems in this approach. 

 • Your estimate of β4 is an estimate of (β4+δ2β3), not of β4! 

 • You can’t use real ut.  Instead, you use the estimated ut.  When you 

estimated ut, the OLS covariance matrix is no longer of the form 

.  This problem is called “generated regressor” problem.  2 ( )X Xσ −′ 1

 

4)  Conclusion:  No magic!  No solution! 

  

[2] MISSING OBSERVATIONS 

 • Suppose that some values of yt, xt1, ..., xtk are missing for some 

people. 

 • Is there any good way to fill up the missing values? 

  • There might be.  But may better not to do so. 

  • See Greene Chapter 4.9.2. 


