2. MULTICOLLINEARITY AND MISSING OBS

[1] MULTICOLLINEARITY

- (1) Perfect Collinearity:
 - When regressors are perfectly linearly related: The X matrix is less than full rank (Rank(X) < k).

Example 1:

 $GDP_t = \beta_1 + \beta_2 G_t + \beta_3 T_t + \beta_4 DEF_t + \varepsilon_t.$ $\rightarrow DEF_t = G_t - T_t \text{ for any } t.$ $\rightarrow Rank(X) = 3.$

Example 2: Dummy variable trap $log(w_t) = \beta_1 + \beta_2 age_t + \beta_3 d_{t1} + \beta_4 d_{t2} + \beta_5 d_{t3} + \varepsilon_t ,$ where $d_{t1} = 1$ iff t's education level is lower than high school graduation ($d_{t1} = 0$, otherwise); $d_{t2} = 1$ iff person t is a high school graduate but not college graduate ($d_{t2} = 0$, otherwise); $d_{t3} = 1$ if person t is a college graduate ($d_{t3} = 0$, otherwise). $\rightarrow d_{t1} + d_{t2} + d_{t3} = 1$.

- Consequence of perfect multicollinearity:
 - Cannot compute OLS estimates.

- (2) Near Multicollinearity
 - When regressors are highly (not perfectly) correlated.
 - 1) Consequences of near multicollinearity on OLS estimators:
 - Under SIC, OLS estimators are unbiased, consistent and efficient.
 - Under WIC, OLS estimators are consistent and asymptotically normal and efficient.
 - Then, what is the problem?
 - \rightarrow Individual estimates are unreliable.
 - 2) Symptoms of near multicollinearity:
 - Small changes in sample lead to large changes in estimates.
 - High R², but low t statistics.
 - High R_j^2 's $(R_j^2$ is R^2 from OLS of x_{tj} on x_{t1} , ..., $x_{t,j-1}$, $x_{t,j+1}$, ..., x_{tk}).
 - High value for [λ_{max}/λ_{min}]^{1/2}, where λ's are eigenvalues of X'X.
 (See Greene)
 - Estimates may be wildly different from those suggested by theory.
 - Think about a regression of consumption on one, income and wealth.

Question: Why does multicollinearity make values of t-statistic low?

Theorem:

$$x_j = j$$
'th column of X;
 $X_j^* = X$ with j'th column deleted.
 $SSE_j = SSE$ from a regression of x_j on X_j^* .
 $SST_j = \Sigma_t (x_{tj} - \overline{x}_j)^2$.

Then, the j'th diagonal of $(X'X)^{-1} = \frac{1}{SSE_j} = \frac{1}{SST_j(1-R_j^2)}$.

Implication:

•
$$\operatorname{var}(\hat{\beta}_j) = \frac{\sigma^2}{SST_j(1-R_j^2)} \to \operatorname{As} R_j^2 \uparrow, \operatorname{var}(\hat{\beta}_j) \uparrow.$$

•
$$\operatorname{se}(\hat{\beta}_j) = \sqrt{\frac{s^2}{SST_j(1-R_j^2)}} \to \operatorname{As} R_j^2 \uparrow, \operatorname{se}(\hat{\beta}_j) \uparrow.$$

• (t statistic for H_o:
$$\beta_j = 0$$
) = $\frac{\hat{\beta}_j}{se(\hat{\beta}_j)} \rightarrow \text{As } R_j^2 \uparrow$, $|t| \downarrow$.

3) Remedies

- 1. Drop some regressors highly correlated with others (?)
- 2. Collect a richer data set.
- 3. Use alternative estimators.

- (3) Alternative Estimators
 - 1) Ridge regression estimator:

 $\hat{\beta}_r = (X'X + rI_k)^{-1}X'y, r > 0.$

• Biased but smaller MSE than OLS variances.

$$Cov(\hat{\beta}_r) = \sigma^2 [X'X + rI_k]^{-1} X'X [X'X + rI_k]^{-1}.$$

- This estimator solves multicollinearity problem?
- No clear meaning to statistical inferences.
- What is optimal choice of r?

2) Principal Component Estimator.

- Procedure:
 - Compute eigenvalues of X'X and sort them as λ_1 . λ_2, λ_k . (and $c_{k\times 1}$ such that X'Xc = λc .)
 - Choose normalized eigenvectors, i.e., $c_j'c_j = 1$.
 - Choose L largest λ 's $(\lambda_1, \lambda_2, ..., \lambda_L)$ and corresponding $c_1, ..., c_L$.
 - Define $C_L = [c_1, ..., c_L].$
 - Let $Z = XC_L$, and do OLS on $y = Z\gamma + \text{error}$: $\hat{\gamma} = (Z'Z)^{-1}Z'y$.
 - Principal Component Estimator: $\hat{\beta}_{pc} = C_L \hat{\gamma}$.

• Facts:

•
$$\hat{\beta}_{pc} = C_L C_L' \hat{\beta}$$
 (See Greene).

- Biased unless L = k. (In fact, $\hat{\beta}_{pc} = \hat{\beta}$ if L = k.)
- Sensitive to the scale of measurement on regressors.
- No clear meaning to statistical inferences.
- 3) Suggestion:

Ridge regression or PC estimators could be useful for prediction, but may not be much helpful for statistical inferences.

- (4) An ad hoc alternative (M is conquered?)
- 1) Situation: Consider the following regression model:

 $y_t = \beta_1 + \beta_2 x_{t2} + \beta_3 x_{t3} + \beta_4 x_{t4} + \varepsilon_t.$

Suppose that x_{t3} and x_{t4} are so highly correlated that the t-tests for β_2 and β_3 indicate insignificance of the two parameters.

<Example>

Dependent Variable: LWAGE Sample: 1 935

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C EDUC EXPER EXPER^2	5.517432 0.077987 0.016256 0.000152	0.124819 0.006624 0.013540 0.000567	44.20360 11.77291 1.200595 0.268133	0.0000 0.0000 0.2302 0.7887
R-squared	0.130926	Mean depe	endent var	6.779004

2) Alternative regression:

Step 1: Regress x_{t3} on one and x_{t4} , and residuals u_t .

Step 2: Regress y_t on one, x_{t2} , u_t and x_{t4} .

<Example>

Dependent Variable: LWAGE Included observations: 935

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C EDUC U EXPER^2	5.604536 0.077987 0.016256 0.000812	0.101658 0.006624 0.013540 0.000138	55.13115 11.77291 1.200595 5.869204	0.0000 0.0000 0.2302 0.0000
R-squared	0.130926	Mean depe	endent var	6.779004

Observe that EXPER² is now significant!!!

- 3) Logic of this treatment:
 - Let $x_{t3} = \delta_1 + \delta_2 x_{t4} + u_t$. Substitute this into the original regression model:

$$y_{t} = \beta_{1} + \beta_{2}x_{t2} + \beta_{3}(\delta_{1} + \delta_{2}x_{t4} + u_{t}) + \beta_{4}x_{t4} + \varepsilon_{t}$$

= $(\beta_{1} + \beta_{3}\delta_{1}) + \beta_{2}x_{t2} + \beta_{3}u_{t} + (\beta_{4} + \delta_{2}\beta_{3})x_{t4} + \varepsilon_{t}.$

Since u_t and x_{t4} are uncorrelated, this alternative model does not suffer from M.

- Is it really?
- 3) Problems in this approach.
 - Your estimate of β_4 is an estimate of $(\beta_4 + \delta_2 \beta_3)$, not of β_4 !
 - You can't use real u_t. Instead, you use the estimated u_t. When you estimated u_t, the OLS covariance matrix is no longer of the form σ²(XX)⁻¹. This problem is called "generated regressor" problem.
- 4) Conclusion: No magic! No solution!

[2] MISSING OBSERVATIONS

- Suppose that some values of y_t, x_{t1}, ..., x_{tk} are missing for some people.
- Is there any good way to fill up the missing values?
 - There might be. But may better not to do so.
 - See Greene Chapter 4.9.2.