2. MULTICOLLINEARITY AND MISSING OBS

[1] MULTICOLLINEARITY
(1) Perfect Collinearity:

e When regressors are perfectly linearly related: The X matrix is less than

full rank (Rank(X) < k).

Example 1:
GDP, = B; + B,G; + B3T; + B4DEF, + &..
— DEF, = G; - T, for any t.
— Rank(X) = 3.

Example 2: Dummy variable trap
log(w ) =P + Prage; + P3dy + Padp + Psdis + &,
where d;; = 1 iff t’s education level is lower than high school
graduation (d;; = 0, otherwise); dp, =1 iff person t is a high school
graduate but not college graduate (d,, = 0, otherwise); dz = 1 if person t

is a college graduate (di; = 0, otherwise).

—)dt1+dt2+dt3: 1.

e Consequence of perfect multicollinearity:

» (Cannot compute OLS estimates.
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(2) Near Multicollinearity

e When regressors are highly (not perfectly) correlated.

1) Consequences of near multicollinearity on OLS estimators:

Under SIC, OLS estimators are unbiased, consistent and efficient.
Under WIC, OLS estimators are consistent and asymptotically
normal and efficient.

Then, what is the problem?

— Individual estimates are unreliable.

2) Symptoms of near multicollinearity:

Small changes in sample lead to large changes in estimates.

High R®, but low t statistics.

High Rj2 's (Rj2 is R? from OLS of Xj ON X1,y wov s Xjols Xejtls o 5 Xtk)-

High value for [Xmax/kmin]l/ 2, where A's are eigenvalues of X'X.
(See Greene)

Estimates may be wildly different from those suggested by theory.

* Think about a regression of consumption on one, income and

wealth.

Question: Why does multicollinearity make values of t-statistic low?
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Theorem:
X;j = j'th column of X;
X; = X with j'th column deleted.

SSE; = SSE from a regression of x; on Xj*.

SST; = Zy(x4-X; ).

1 1
SSE, SST,(1-R?)

]

Then, the j'th diagonal of (X’X)'1 =

Implication:

2

5N o)
)T ST a-R Y

— As Rjo, Var(,@j )T,

[ ] 2 = 82 2 0
se( ;) \/ SST(-RY) — AsRT, se( )T

n

* (t statistic for Hy: B; = 0) = 'B‘; — As Rjo, It

se(f;)

3) Remedies

1. Drop some regressors highly correlated with others (?)

2. Collect a richer data set.

3. Use alternative estimators.
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(3) Alternative Estimators

1) Ridge regression estimator:

B = XX +1l)'Xy, r>0.

Biased but smaller MSE than OLS variances.

Cov(B.) =’ [X'X + tI, ] X'X[X'X + I, ]

This estimator solves multicollinearity problem?
No clear meaning to statistical inferences.

What is optimal choice of r?

2) Principal Component Estimator.

e Procedure:

Compute eigenvalues of X'X and sort them as A A, .... A

(and ¢y, such that X'Xc =Ac.)
Choose normalized eigenvectors, i.€., C j'C ;=L

Choose L largest A’s (A,A2,...,Ar ) and corresponding cy, ..., Cp.
Define C; = [cq, ..., cL].
Let Z=XC, and do OLS on y = Zy + error: § = (Z'2)"'Z'y.

Principal Component Estimator: ch =CL7.
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e Facts:

ch - CLCL’B (See Greene).

Biased unless L = k. (In fact, ﬁpc = BifL=k.)

Sensitive to the scale of measurement on regressors.

No clear meaning to statistical inferences.

3) Suggestion:
Ridge regression or PC estimators could be useful for prediction,

but may not be much helpful for statistical inferences.

(4) An ad hoc alternative (M is conquered?)

1)  Situation: Consider the following regression model:
Yi = ﬁl + ﬂzxtz + ﬁ3Xt3 + ﬂ4xt4 & .
Suppose that x; and x4 are so highly correlated that the t-tests for

B, and 35 indicate insignificance of the two parameters.
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<Example>

Dependent Variable: LWAGE

Sample: 1 935
Variable Coefficient Std. Error  t-Statistic Prob.
C 5.517432 0.124819 44.20360 0.0000
EDUC 0.077987 0.006624 11.77291 0.0000
EXPER 0.016256 0.013540 1.200595 0.2302
EXPER"2 0.000152 0.000567 0.268133 0.7887
R-squared 0.130926 Mean dependent var 6.779004

2)  Alternative regression:

Step 1: Regress x; on one and Xy, and residuals u.

Step 2: Regress y, on one, Xy, U; and Xy.

<Example>

Dependent Variable: LWAGE
Included observations: 935

Variable Coefficient Std. Error t-Statistic Prob.

C 5.604536 0.101658 55.13115 0.0000

EDUC 0.077987 0.006624 11.77291 0.0000

U 0.016256 0.013540 1.200595 0.2302
EXPER"2 0.000812 0.000138 5.869204 0.0000
R-squared 0.130926 Mean dependent var 6.779004

Observe that EXPER? is now significant!!!

MULTI-6



3)

3)

4)

2]

Logic of this treatment:

Let X, =9, +,X,, +U,. Substitute this into the original regression

model:

Y = 131 + ﬁzxtz + 133(51 + 52Xt4 + ut) + :B4Xt4 T &
= (IBI +ﬁ351)+ﬂ2xt2 +ﬂ3ut +(ﬂ4 +52183)Xt4 +gt'
Since u; and xy are uncorrelated, this alternative model does not
suffer from M.

Is it really?

Problems in this approach.
Your estimate of B4 is an estimate of (4+0,f33), not of B!
You can’t use real u,. Instead, you use the estimated u,, When you

estimated u,, the OLS covariance matrix is no longer of the form

o’ (XX)™'. This problem is called “generated regressor’” problem.

Conclusion: No magic! No solution!

MISSING OBSERVATIONS

Suppose that some values of y, X, ..., Xy are missing for some

people.

e s there any good way to fill up the missing values?

e There might be. But may better not to do so.
» See Greene Chapter 4.9.2.
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