2. MULTICOLLINEARITY AND MISSING OBS

[1] MULTICOLLINEARITY

(1) Perfect Collinearity:

- When regressors are perfectly linearly related: The X matrix is less than full $\operatorname{rank}(\operatorname{Rank}(X)<k)$.

Example 1:

$$
\begin{aligned}
& \mathrm{GDP}_{\mathrm{t}}=\beta_{1}+\beta_{2} \mathrm{G}_{\mathrm{t}}+\beta_{3} \mathrm{~T}_{\mathrm{t}}+\beta_{4} \mathrm{DEF}_{\mathrm{t}}+\varepsilon_{\mathrm{t}} . \\
& \quad \rightarrow \mathrm{DEF}_{\mathrm{t}}=\mathrm{G}_{\mathrm{t}}-\mathrm{T}_{\mathrm{t}} \text { for any } \mathrm{t} \\
& \quad \rightarrow \operatorname{Rank}(\mathrm{X})=3
\end{aligned}
$$

Example 2: Dummy variable trap

$$
\log \left(\mathrm{w}_{\mathrm{t}}\right)=\beta_{1}+\beta_{2} \mathrm{age}_{\mathrm{t}}+\beta_{3} \mathrm{~d}_{\mathrm{t} 1}+\beta_{4} \mathrm{~d}_{\mathrm{t} 2}+\beta_{5} \mathrm{~d}_{\mathrm{t} 3}+\varepsilon_{\mathrm{t}}
$$

where $\mathrm{d}_{\mathrm{t} 1}=1$ iff t 's education level is lower than high school graduation $\left(\mathrm{d}_{\mathrm{t} 1}=0\right.$, otherwise $) ; \mathrm{d}_{\mathrm{t} 2}=1$ iff person t is a high school graduate but not college graduate $\left(\mathrm{d}_{\mathrm{t} 2}=0\right.$, otherwise $) ; \mathrm{d}_{\mathrm{t} 3}=1$ if person t is a college graduate $\left(\mathrm{d}_{\mathrm{t} 3}=0\right.$, otherwise $)$.

$$
\rightarrow \mathrm{d}_{\mathrm{t} 1}+\mathrm{d}_{\mathrm{t} 2}+\mathrm{d}_{\mathrm{t} 3}=1
$$

- Consequence of perfect multicollinearity:
- Cannot compute OLS estimates.
(2) Near Multicollinearity
- When regressors are highly (not perfectly) correlated.

1) Consequences of near multicollinearity on OLS estimators:

- Under SIC, OLS estimators are unbiased, consistent and efficient.
- Under WIC, OLS estimators are consistent and asymptotically normal and efficient.
- Then, what is the problem?
\rightarrow Individual estimates are unreliable.

2) Symptoms of near multicollinearity:

- Small changes in sample lead to large changes in estimates.
- High R^{2}, but low t statistics.
- High $\mathrm{R}_{\mathrm{j}}^{2}$'s $\left(\mathrm{R}_{\mathrm{j}}^{2}\right.$ is R^{2} from OLS of x_{tj} on $\left.\mathrm{x}_{\mathrm{t} 1}, \ldots, \mathrm{x}_{\mathrm{t}, \mathrm{j}-1}, \mathrm{x}_{\mathrm{t}, \mathrm{j}+1}, \ldots, \mathrm{x}_{\mathrm{tk}}\right)$.
- High value for $\left[\lambda_{\max } / \lambda_{\min }\right]^{1 / 2}$, where $\lambda^{\prime} \mathrm{s}$ are eigenvalues of $\mathrm{X}^{\prime} \mathrm{X}$. (See Greene)
- Estimates may be wildly different from those suggested by theory.
- Think about a regression of consumption on one, income and wealth.

Question: Why does multicollinearity make values of t-statistic low?

Theorem:
$\mathrm{x}_{\mathrm{j}}=\mathrm{j}$ 'th column of X ;
$X_{j}^{*}=X$ with j^{\prime} th column deleted.
$\mathrm{SSE}_{\mathrm{j}}=\mathrm{SSE}$ from a regression of x_{j} on $\mathrm{X}_{\mathrm{j}}{ }^{*}$.
$\mathrm{SST}_{\mathrm{j}}=\Sigma_{\mathrm{t}}\left(\mathrm{X}_{\mathrm{tj}}-\bar{x}_{j}\right)^{2}$.
Then, the j^{\prime} th diagonal of $\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1}=\frac{1}{\operatorname{SSE}_{j}}=\frac{1}{\operatorname{SST}_{j}\left(1-R_{j}{ }^{2}\right)}$.

Implication:
$\cdot \operatorname{var}\left(\hat{\beta}_{j}\right)=\frac{\sigma^{2}}{S S T_{j}\left(1-R_{j}{ }^{2}\right)} \rightarrow \operatorname{As~R}{ }_{j}{ }^{2} \uparrow, \operatorname{var}\left(\hat{\beta}_{j}\right) \uparrow$.

- $\operatorname{se}\left(\hat{\beta}_{j}\right)=\sqrt{\frac{s^{2}}{S S T_{j}\left(1-R_{j}{ }^{2}\right)}} \rightarrow \operatorname{As~} \mathrm{R}_{\mathrm{j}}{ }^{2} \uparrow, \operatorname{se}\left(\hat{\beta}_{j}\right) \uparrow$.
$\bullet\left(\mathrm{t}\right.$ statistic for $\left.\mathrm{H}_{0}: \beta_{\mathrm{j}}=0\right)=\frac{\hat{\beta}_{j}}{\operatorname{se}\left(\hat{\beta}_{j}\right)} \rightarrow \operatorname{As~} \mathrm{R}_{\mathrm{j}}{ }^{2} \uparrow,|\mathrm{t}| \downarrow$.

3) Remedies
1. Drop some regressors highly correlated with others (?)
2. Collect a richer data set.
3. Use alternative estimators.
(3) Alternative Estimators
1) Ridge regression estimator:

$$
\hat{\beta}_{r}=\left(\mathrm{X}^{\prime} \mathrm{X}+\mathrm{rI}_{\mathrm{k}}\right)^{-1} \mathrm{X}^{\prime} \mathrm{y}, \mathrm{r}>0 .
$$

- Biased but smaller MSE than OLS variances.

$$
\operatorname{Cov}\left(\hat{\beta}_{r}\right)=\sigma^{2}\left[\mathrm{X}^{\prime} \mathrm{X}+\mathrm{rI}_{\mathrm{k}}\right]^{-1} \mathrm{X}^{\prime} \mathrm{X}\left[\mathrm{X}^{\prime} \mathrm{X}+\mathrm{rI}_{\mathrm{k}}\right]^{-1} .
$$

- This estimator solves multicollinearity problem?
- No clear meaning to statistical inferences.
- What is optimal choice of r ?

2) Principal Component Estimator.

- Procedure:
- Compute eigenvalues of $\mathrm{X}^{\prime} \mathrm{X}$ and sort them as $\lambda_{1 .} \lambda_{2} . \ldots . \lambda_{\mathrm{k}}$. (and $\mathrm{c}_{\mathrm{k} \times 1}$ such that $\mathrm{X}^{\prime} \mathrm{Xc}=\lambda \mathrm{c}$.)
- Choose normalized eigenvectors, i.e., $c_{j}{ }^{\prime} c_{j}=1$.
- Choose L largest λ 's $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{L}\right)$ and corresponding c_{1}, \ldots, c_{L}.
- Define $\mathrm{C}_{\mathrm{L}}=\left[\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{L}}\right]$.
- Let $Z=X C_{L}$, and do OLS on $y=Z \gamma+$ error: $\hat{\gamma}=\left(Z^{\prime} Z\right)^{-1} Z^{\prime} y$.
- Principal Component Estimator: $\hat{\beta}_{\mathrm{pc}}=\mathrm{C}_{\mathrm{L}} \hat{\gamma}$.
- Facts:
- $\hat{\beta}_{p c}=C_{L} C_{L}^{\prime} \hat{\beta}$ (See Greene).
- Biased unless $L=k$. (In fact, $\hat{\beta}_{p c}=\hat{\beta}$ if $L=k$.)
- Sensitive to the scale of measurement on regressors.
- No clear meaning to statistical inferences.

3) Suggestion:

Ridge regression or PC estimators could be useful for prediction, but may not be much helpful for statistical inferences.
(4) An ad hoc alternative (M is conquered?)

1) Situation: Consider the following regression model:

$$
y_{t}=\beta_{1}+\beta_{2} x_{t 2}+\beta_{3} x_{t 3}+\beta_{4} x_{t 4}+\varepsilon_{t} .
$$

Suppose that $\mathrm{x}_{\mathrm{t} 3}$ and $\mathrm{x}_{\mathrm{t} 4}$ are so highly correlated that the t -tests for β_{2} and β_{3} indicate insignificance of the two parameters.
<Example>
Dependent Variable: LWAGE
Sample: 1935

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	5.517432	0.124819	44.20360	0.0000
EDUC	0.077987	0.006624	11.77291	0.0000
EXPER	0.016256	0.013540	1.200595	0.2302
EXPER^2	0.000152	0.000567	0.268133	0.7887
R-squared	0.130926	Mean dependent var	6.779004	

2) Alternative regression:

Step 1: Regress $\mathrm{x}_{\mathrm{t} 3}$ on one and $\mathrm{x}_{\mathrm{t} 4}$, and residuals u_{t}.
Step 2: Regress y_{t} on one, $\mathrm{x}_{\mathrm{t} 2}, \mathrm{u}_{\mathrm{t}}$ and $\mathrm{x}_{\mathrm{t} 4}$.

<Example>

Dependent Variable: LWAGE
Included observations: 935

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	5.604536	0.101658	55.13115	0.0000
EDUC	0.077987	0.006624	11.77291	0.0000
EXPER^2	0.016256	0.013540	1.200595	0.2302
	0.000812	0.000138	5.869204	0.0000
R-squared	0.130926	Mean dependent var	6.779004	

Observe that EXPER ${ }^{2}$ is now significant!!!
3) Logic of this treatment:

- Let $x_{t 3}=\delta_{1}+\delta_{2} x_{t 4}+u_{t}$. Substitute this into the original regression model:

$$
\begin{aligned}
y_{t} & =\beta_{1}+\beta_{2} x_{t 2}+\beta_{3}\left(\delta_{1}+\delta_{2} x_{t 4}+u_{t}\right)+\beta_{4} x_{t 4}+\varepsilon_{t} \\
& =\left(\beta_{1}+\beta_{3} \delta_{1}\right)+\beta_{2} x_{t 2}+\beta_{3} u_{t}+\left(\beta_{4}+\delta_{2} \beta_{3}\right) x_{t 4}+\varepsilon_{t} .
\end{aligned}
$$

Since u_{t} and $x_{t 4}$ are uncorrelated, this alternative model does not suffer from M.

- Is it really?

3) Problems in this approach.

- Your estimate of β_{4} is an estimate of $\left(\beta_{4}+\delta_{2} \beta_{3}\right)$, not of β_{4} !
- You can't use real u_{t}. Instead, you use the estimated u_{t}. When you estimated u_{t}, the OLS covariance matrix is no longer of the form $\sigma^{2}\left(X^{\prime} X\right)^{-1}$. This problem is called "generated regressor" problem.

4) Conclusion: No magic! No solution!

[2] MISSING OBSERVATIONS

- Suppose that some values of $y_{t}, x_{t 1}, \ldots, x_{t k}$ are missing for some people.
- Is there any good way to fill up the missing values?
- There might be. But may better not to do so.
- See Greene Chapter 4.9.2.

