
7.  GENERALIZED LEAST SQUARES (GLS) 

 

[1] ASSUMPTIONS: 

• Assume SIC except that Cov(ε) = E(εε′) = σ2Ω where Ω ≠ IT. Assume 

that E(ε) = 0T×1, and that X′Ω-1X and X′ΩX are all positive definite. 

 

Examples: 

• Autocorrelation:  The εt are serially correlated.  (Ω is not diagonal.) 

• Heteroskedasticity: Ω is diagonal, but diagonals are not identical. 

 

[2] PROPERTIES OF OLS 

Theorem:  β̂  is unbiased (and consistent). 

Proof: 1ˆ ( )X X Xβ β ε−′ ′= +   → ˆ( )E β β= . 

 

Theorem: 1 2ˆ( ) ( ) ( )Cov X X X X X Xβ σ 1− −′ ′ ′= Ω . 

Proof: 

  ( )( ) ( )1 1

1 1 1 2

ˆ ˆ ˆ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

Cov E E X X X X X X

X X X E X X X X X X X X X

β β β β β εε

εε σ

− −

− − −

⎛ ⎞′ ′ ′ ′ ′= − − =⎜ ⎟
⎝ ⎠
′ ′ ′ ′ ′ ′ ′= = 1.−Ω

Comment: All the usual t and F tests are invalid.  This is because s2(X′X)-1 

is no longer an unbiased estimator of ˆ( )Cov β . 
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[3] GLS ESTIMATOR 

 

(3.1) CASE I: Ω is known 

Theorem: 

 Assume that Ω is positive definite.  Then, there exist a T×T nonsingular 

matrix V, such that V′V = Ω-1. 

 

Comment: 

 For GLS, it is sufficient to find V such that V′V = aΩ-1, where a is some 

positive constant. 

 

Theorem: 

 VΩV′ = IT 

Proof: 

 VΩV′ = V(V′V)-1V′ = VV-1(V′)-1V′ = IT •IT = IT. 

 

Theorem: 

 Assume that X′Ω-1X is positive definite.  Then, Vy = VXβ + Vε 

satisfies ideal conditions. 

Proof: 

 1( ) ( ) 0TE V VEε ε ×= = . 

 . 2 2( ) ( ) TCov V VCov V V V Iε ε σ′ ′= = Ω =σ
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Theorem: (Aitken) 
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y The BLUE of β is the GLS estimator . 1 1 1( )X X Xβ − − −′ ′= Ω Ω

Proof: 

 Since Vy = VXβ + Vε (***) satisfies ideal conditions, the BLUE must 

be OLS on (***).  But, 

   (X′V′VX)-1X′V′Vy = (X′Ω-1X)-1X′Ω-1y = β . 

Comment: 

 β  is unbiased (consistent) and BLUE.  It is also efficient 

(asymptotically efficient) if ε is normal. 

 

Theorem: 

 . 2 1( ) ( )Cov X Xβ σ − −′= Ω 1

Proof: 

 ( ) 11 1X X Xβ β ε
−− −′ ′= + Ω Ω .

  

( )( )
( )1 1 1 1 1 1

1 1 1 1 1

1 1 1 2 1 1 1

2 1 1

( )

( ) ( )

( ) ( ) ( )
( ) ( )

( ) .

Cov E

E X X X X X X

X X X E X X X
X X X X X X

X X

β β β β β

εε

εε

σ

σ

− − − − − −

− − − − −

− − − − − −

− −

⎛ ⎞′= − −⎜ ⎟
⎝ ⎠

′ ′ ′= Ω Ω Ω Ω

′ ′ ′ ′= Ω Ω Ω Ω

′ ′ ′= Ω Ω ΩΩ Ω

′= Ω

1−



Theorem: 

 β  is efficient relative to β̂ . 

Proof: 

 • . 2 1ˆ( ) ( ) ( )Cov X X X X X Xβ σ − −′ ′ ′= Ω 1

1 • . 2 1( ) ( )Cov X Xβ σ − −′= Ω

 • It is enough to show that (X′X)-1X′ΩX(X′X)-1 - (X′Ω-1X)-1 is 

positive semidefinite.  But showing this is equivalent to showing 

that X′Ω-1X - (X′X)(X′ΩX)-1(X′X) is positive semidefinite. 

 • Define P = X′Ω-1 - (X′X)(X′ΩX)-1X′.  Then, it can be shown that 

 X′Ω-1X - (X′X)(X′ΩX)-1(X′X) = PΩP′,  

  which is positive semidefinite. 

 

Theorem: 

 Let ε  be the residual vector from OLS on Vy = VXβ + Vε.  Then,  

 is an unbiased and consistent estimator of σ2 /( )T kσ ε ε′= − 2. 

Proof: 

 Note that Vy = VXβ + Vε satisfies ideal conditions.  Therefore, the 

unbiased and efficient estimator of σ2 is given by s2 from OLS on Vy 

= VXβ + Vε.  That is, 

 . /( ) ( ) ( ) /( ) /( )SSE T k Vy VX Vy VX T k T kβ β ε ε′ ′− = − − − = −
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Note: 

1) All usual tests can be done directly to Vy = VXβ + Vε. 
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2) ( )2 1 1~ , ( )N X Xβ β σ − −′Ω ; 
2

2
2

( ) ~ ( )T k T kσ χ− ; −
σ

 and β  and 2σ  are stochastically independent. 

3) Even if ε is not normal, 2) holds if T is large. 

 

(3.2) Ω is not known 

Assumption: 

 Let Ω (T×T) depend on a p×1 vector, θ (p < T): Ω = Ω(θ). 

 

Examples: 

 1) AR(1): εt = ρεt-1 + vt, vt iid with N(0,σ 2). → Ω depends on ρ. 

 2) ARCH: Autoregressive Conditional Heteroskedasticity. 

 2.1) Let Ωt-1 be the set of information available at time t-1. 

 2.2) εt ~ N(0,ht), where ht = var(εt| Ωt-1) and, 

  ht = ω + α1εt-1
2 + α2εt-2

2 + .... + αpεt-p
2 . 

  → Called ARCH(p) model. 

  → Ω depends on ω and α1, ... , αp. 

 

Theorem: 

 ˆˆ ( )θΩ = Ω  is consistent for Ω if θ̂  is consistent for θ. 



Definition: 

 A feasible GLS (FGLS) is given by 1 1 1ˆ ˆ( )f X X X yβ − − −′ ′= Ω Ω . 

 

Comments: 

1) No reason to believe that FGLS and GLS are always asymptotically 

equivalent even if T is large.  [For example, See Schmidt.] 

2) But, often if X is nonstochastic. 

 

[4] Efficiency of GLS 

• Maximum-Likelihood Estimator (MLE) 

• Assume that ε ~  N(0T×1, σ2Ω(θ)).  Then, log-likelihood function is: 

 lT(β,σ2,θ) = constant - (T/2) ln(σ2) - (1/2)ln[det(Ω(θ))] 

    - {1/(2σ2)}(y-Xβ)′Ω(θ)-1(y-Xβ) . 

• MLE of β, σ2 and θ are obtained by maximizing lT(β,σ2,θ).  These 

MLEs are efficient when T is large. 

 

Almost Theorem: 

 ˆ
f MLEβ β β≈ ≈ , where T is large and X is nonstochastic (strictly 

exogenous). 

 [See Schmidt for a counterexample for this almost theorem.] 
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Comments: 

• When y = Xβ + ε satisfies SIC other than Ω ≠ IT, Vy = VXβ + Vε 

satisfies all of SIC. 

• When y = Xβ + ε satisfies WIC other than Ω ≠ IT, Vy = VXβ + Vε 

might violate WIC.  It might be the case that  

  1
1

1 1lim lim 0T Tp X V V p X
T T

ε ε−
→∞ →∞ ×′ ′ ′= Ω k≠ . 

Definition: 

 • We say that the regressors xt• are weakly exogenous with respect to 

the εt if 1, 1( | , ,..., ) 0t t tE x x xε • − • • =  for any t. 

 • We say that the regressors xt• are strictly exogenous with respect to 

the εt if 1, 1( | , ,..., ) 0t T TE x x xε • − • • =  for any t. 

 

• Note that WIC only requires weakly exogenous regressors. 

 • For cross-section data, the regressors are most likely to be strictly 

exogenous.  But, strictly exogenous regressors are rare in 

time-series data models.  

 • When regressors are weakly exogenous, GLS may be inconsistent.  

Even when GLS and FGLS are consistent, the asymptotic 

distributions of GLS and FGLS can be different for some cases.  

• If we strengthen WIC with the assumption of strictly exogenous 

regressors, Vy = VXβ + Vε satisfies WIC. 

 
 GLS-7 


