7. GENERALIZED LEAST SQUARES (GLS)

[1] ASSUMPTIONS:

• Assume SIC except that $Cov(\varepsilon) = E(\varepsilon\varepsilon') = \sigma^2 \Omega$ where $\Omega \neq I_T$. Assume that $E(\varepsilon) = 0_{T \times 1}$, and that $X'\Omega^{-1}X$ and $X'\Omega X$ are all positive definite.

Examples:

- Autocorrelation: The ε_t are serially correlated. (Ω is not diagonal.)
- Heteroskedasticity: Ω is diagonal, but diagonals are not identical.

[2] PROPERTIES OF OLS

Theorem: $\hat{\beta}$ is unbiased (and consistent).

Proof:
$$\hat{\beta} = \beta + (X'X)^{-1}X'\varepsilon \rightarrow E(\hat{\beta}) = \beta$$
.

Theorem: $Cov(\hat{\beta}) = (XX)^{-1}X'\sigma^2\Omega X(XX)^{-1}$.

Proof:

$$Cov(\hat{\beta}) = E\left(\left(\hat{\beta} - \beta\right)\left(\hat{\beta} - \beta\right)'\right) = E\left(\left(X'X\right)^{-1}X'\varepsilon\varepsilon'X(X'X)^{-1}\right)$$
$$= (X'X)^{-1}X'E(\varepsilon\varepsilon')X(X'X)^{-1} = (X'X)^{-1}X'\sigma^2\Omega X(X'X)^{-1}.$$

Comment: All the usual t and F tests are invalid. This is because $s^2(X'X)^{-1}$ is no longer an unbiased estimator of $Cov(\hat{\beta})$.

[3] GLS ESTIMATOR

(3.1) CASE I: Ω is known

Theorem:

Assume that Ω is positive definite. Then, there exist a T×T nonsingular matrix V, such that V'V = Ω^{-1} .

Comment:

For GLS, it is sufficient to find V such that $V'V = a\Omega^{-1}$, where a is some positive constant.

Theorem:

 $V\Omega V' = I_T$

Proof:

$$V\Omega V' = V(V'V)^{-1}V' = VV^{-1}(V')^{-1}V' = I_T \bullet I_T = I_T.$$

Theorem:

Assume that $X'\Omega^{-1}X$ is positive definite. Then, $Vy = VX\beta + V\varepsilon$ satisfies ideal conditions.

Proof:

$$E(V\varepsilon) = VE(\varepsilon) = 0_{T\times 1}.$$
$$Cov(V\varepsilon) = VCov(\varepsilon)V' = V\sigma^2 \Omega V' = \sigma^2 I_T.$$

Theorem: (Aitken)

The BLUE of β is the GLS estimator $\tilde{\beta} = (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}y$.

Proof:

Since $Vy = VX\beta + V\varepsilon$ (***) satisfies ideal conditions, the BLUE must be OLS on (***). But,

$$(\mathbf{X}'\mathbf{V}'\mathbf{V}\mathbf{X})^{-1}\mathbf{X}'\mathbf{V}'\mathbf{V}\mathbf{y} = (\mathbf{X}'\Omega^{-1}\mathbf{X})^{-1}\mathbf{X}'\Omega^{-1}\mathbf{y} = \tilde{\boldsymbol{\beta}}.$$

Comment:

 $\tilde{\beta}$ is unbiased (consistent) and BLUE. It is also efficient (asymptotically efficient) if ε is normal.

Theorem:

 $Cov(\tilde{\beta}) = \sigma^2 (X'\Omega^{-1}X)^{-1}.$

Proof:

$$\begin{split} \tilde{\beta} &= \beta + \left(X'\Omega^{-1}X\right)^{-1}X'\Omega^{-1}\varepsilon \,.\\ Cov(\tilde{\beta}) &= E\left(\left(\tilde{\beta} - \beta\right)\left(\tilde{\beta} - \beta\right)'\right) \\ &= E\left((X'\Omega^{-1}X)^{-1}X'\Omega^{-1}\varepsilon\varepsilon\Omega^{-1}X(X'\Omega^{-1}X)^{-1}\right) \\ &= (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}E(\varepsilon\varepsilon')\Omega^{-1}X(X'\Omega^{-1}X)^{-1} \\ &= (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}\sigma^{2}\Omega\Omega^{-1}X(X'\Omega^{-1}X)^{-1} \\ &= \sigma^{2}(X'\Omega^{-1}X)^{-1}. \end{split}$$

Theorem:

 $\tilde{\beta}$ is efficient relative to $\hat{\beta}$.

Proof:

- $Cov(\hat{\beta}) = \sigma^2 (X'X)^{-1} X' \Omega X (X'X)^{-1}.$
- $Cov(\tilde{\beta}) = \sigma^2 (X'\Omega^{-1}X)^{-1}$.
- It is enough to show that (X'X)⁻¹X'ΩX(X'X)⁻¹ (X'Ω⁻¹X)⁻¹ is positive semidefinite. But showing this is equivalent to showing that X'Ω⁻¹X (X'X)(X'ΩX)⁻¹(X'X) is positive semidefinite.
- Define $P = X'\Omega^{-1} (X'X)(X'\Omega X)^{-1}X'$. Then, it can be shown that $X'\Omega^{-1}X - (X'X)(X'\Omega X)^{-1}(X'X) = P\Omega P'$,

which is positive semidefinite.

Theorem:

Let $\tilde{\varepsilon}$ be the residual vector from OLS on Vy = VX β + V ϵ . Then,

 $\tilde{\sigma}^2 = \tilde{\varepsilon}'\tilde{\varepsilon}/(T-k)$ is an unbiased and consistent estimator of σ^2 .

Proof:

Note that $Vy = VX\beta + V\varepsilon$ satisfies ideal conditions. Therefore, the unbiased and efficient estimator of σ^2 is given by s² from OLS on Vy = $VX\beta + V\varepsilon$. That is,

$$SSE/(T-k) = (Vy - VX \,\tilde{\beta})'(Vy - VX \,\tilde{\beta})/(T-k) = \tilde{\varepsilon}'\tilde{\varepsilon}/(T-k).$$

Note:

1) All usual tests can be done directly to $Vy = VX\beta + V\epsilon$.

2)
$$\tilde{\beta} \sim N\left(\beta, \sigma^2 (X'\Omega^{-1}X)^{-1}\right); \frac{(T-k)\tilde{\sigma}^2}{\sigma^2} \sim \chi^2 (T-k);$$

and $\tilde{\beta}$ and $\tilde{\sigma}^2$ are stochastically independent.

3) Even if ε is not normal, 2) holds if T is large.

(3.2) Ω is not known

Assumption:

Let Ω (T×T) depend on a p×1 vector, θ (p < T): $\Omega = \Omega(\theta)$.

Examples:

- 1) AR(1): $\varepsilon_t = \rho \varepsilon_{t-1} + v_t$, v_t iid with N(0, σ^2). $\rightarrow \Omega$ depends on ρ .
- 2) ARCH: Autoregressive Conditional Heteroskedasticity.
 - 2.1) Let Ω_{t-1} be the set of information available at time t-1.

2.2)
$$\varepsilon_t \sim N(0,h_t)$$
, where $h_t = var(\varepsilon_t | \Omega_{t-1})$ and

$$h_{t} = \omega + \alpha_{1} \varepsilon_{t-1}^{2} + \alpha_{2} \varepsilon_{t-2}^{2} + \dots + \alpha_{p} \varepsilon_{t-p}^{2}$$

- \rightarrow Called ARCH(p) model.
- $\rightarrow \Omega$ depends on ω and $\alpha_1, \dots, \alpha_p$.

Theorem:

 $\hat{\Omega} = \Omega(\hat{\theta})$ is consistent for Ω if $\hat{\theta}$ is consistent for θ .

GLS-5

Definition:

A feasible GLS (FGLS) is given by $\tilde{\beta}_f = (X'\hat{\Omega}^{-1}X)^{-1}X'\hat{\Omega}^{-1}y$.

Comments:

- 1) No reason to believe that FGLS and GLS are always asymptotically equivalent even if T is large. [For example, See Schmidt.]
- 2) But, often if X is nonstochastic.

[4] Efficiency of GLS

- Maximum-Likelihood Estimator (MLE)
- Assume that $\varepsilon \sim N(0_{T\times 1}, \sigma^2 \Omega(\theta))$. Then, log-likelihood function is: $l_T(\beta, \sigma^2, \theta) = \text{constant} - (T/2) \ln(\sigma^2) - (1/2) \ln[\det(\Omega(\theta))]$ $- \{1/(2\sigma^2)\}(y-X\beta)'\Omega(\theta)^{-1}(y-X\beta).$
- MLE of β , σ^2 and θ are obtained by maximizing $l_T(\beta, \sigma^2, \theta)$. These MLEs are efficient when T is large.

Almost Theorem:

 $\tilde{\beta}_f \approx \tilde{\beta} \approx \hat{\beta}_{MLE}$, where T is large and X is nonstochastic (strictly exogenous).

[See Schmidt for a counterexample for this almost theorem.]

Comments:

- When $y = X\beta + \varepsilon$ satisfies SIC other than $\Omega \neq I_T$, $Vy = VX\beta + V\varepsilon$ satisfies all of SIC.
- When $y = X\beta + \varepsilon$ satisfies WIC other than $\Omega \neq I_T$, $Vy = VX\beta + V\varepsilon$ might violate WIC. It might be the case that

$$p \lim_{T \to \infty} \frac{1}{T} X' V' V \varepsilon = p \lim_{T \to \infty} \frac{1}{T} X' \Omega^{-1} \varepsilon \neq 0_{k \times 1}.$$

Definition:

- We say that the regressors x_t are weakly exogenous with respect to the ε_t if E(ε_t | x_t, x_{t-1}, ..., x₁) = 0 for any t.
- We say that the regressors $x_{t_{\bullet}}$ are strictly exogenous with respect to the ε_t if $E(\varepsilon_t | x_{T_{\bullet}}, x_{T-1, \bullet}, ..., x_{1_{\bullet}}) = 0$ for any t.
- Note that WIC only requires weakly exogenous regressors.
 - For cross-section data, the regressors are most likely to be strictly exogenous. But, strictly exogenous regressors are rare in time-series data models.
 - When regressors are weakly exogenous, GLS may be inconsistent.
 Even when GLS and FGLS are consistent, the asymptotic distributions of GLS and FGLS can be different for some cases.
- If we strengthen WIC with the assumption of strictly exogenous regressors, $Vy = VX\beta + V\varepsilon$ satisfies WIC.