BOOTSTRAP FOR SAMPLE MEAN

- (1) Basic References:
- Horowitz, J. (1998), Journal of Human Reseources.
- (2) Bootstrap for sample mean
- $\{x_1, ..., x_T\}$ is a random sample from a population with μ .
- Wish to estimate μ and test H₀: $\mu = 5$ Vs H_a: $\mu \neq 5$.

Asymptotic Procedure:

- Use $\overline{X} = T^{-1} \Sigma_{t=1}^{T} X_{t}$ as a point estimator of μ .
- Let $s_X^2 = T^{-1} \Sigma_{t=1}^T (X_t \overline{X})^2$ which is a consistent estimator of σ^2 .
- Estimated $\operatorname{var}(\overline{X}) = s_X^2 / T$.

• Under H₀:
$$\mu = 5$$
, $t = \left| \frac{\overline{X} - 5}{\sqrt{s_X^2 / T}} \right| \approx N(0, 1)$.

• If you choose α (significance level) = 5%, $|z_{\alpha/2}| = 1.96$. Reject H₀ if $|t| > |z_{\alpha 2}|$.

Motivation of Bootstrap:

- The above method is relevant for large T. But, if T is small, \overline{X} may deviate a lot from μ and the test may generate wrong inferences.
- Wish to correct the possible bias in \overline{X} and find the better critical value.

Bootstrap Procedure:

- Treat $S = \{x_1, ..., x_T\}$ like a population with $f^*(x_t) = 1/T$.
- Draw a random sample of size T from S: say,
 - $S^{[1]} = \{x_1^{[1]}, ..., x_T^{[1]}\}$ (called a bootstrap sample)
 - How can we do this? (***) Explained later.
- Compute $\overline{X}^{[1]} = T^{-1} \Sigma_{t=1}^T X_t^{[1]}$ and $s_X^{2[1]} = T^{-1} \Sigma_{t=1}^T (X_t^{[1]} \overline{X}^{[1]})^2$, and

$$|t^{[1]}| = \left| \frac{\overline{X}^{[1]} - \overline{X}}{\sqrt{s_X^{2[1]} / T}} \right|.$$

- Draw another random sample of size T from S: say
 - $S^{[2]} = \{x_1^{[2]}, ..., x_T^{[2]}\}$ (called a bootstrap sample).
 - Compute $\overline{X}^{[2]} = T^{-1} \Sigma_{t=1}^{T} X_{t}^{[2]}$ and $s_{X}^{2[2]} = T^{-1} \Sigma_{t=1}^{T} (X_{t}^{[2]} \overline{X}^{[2]})^{2}$, and

$$|t^{[2]}| = \left| \frac{\overline{X}^{[2]} - \overline{X}}{\sqrt{s_X^{2[2]} / T}} \right|.$$

- Repeat this procedure b times:
 - Greater b is always better.
 - My guess is that b =1000 would be enough.
- Define $\hat{B} = b^{-1} \Sigma_{i=1}^{b} \overline{X}^{[i]} \overline{X}$ (Bootstrap estimate of bias in \overline{X}).
- $\overline{X}_B = \overline{X} \hat{B}$ (Bias-corrected bootstrap point estimate of μ).
- Order $|t^{[i]}|$ in the ascending order (let $\{|t^{(1)}|, ..., |t^{(b)}|\}$ be this ordered set), and choose $|t_{B,\alpha}| \equiv$ the (1- α) quantile of $\{|t^{(1)}|, ..., t^{(b)}\}$.
- If $|t| > |t_{B,\alpha}|$, reject H₀.

Digression --- Answer to (***)

- Let $X = [x_1, ..., x_T]'$.
- Let $[[x_t]]$ = the smallest integer which is bigger than x_t .
- Generate a T×1 vector of uniform numbers, $U = [u_1, ..., u_T]'$, where $0 < u_t < 1$ (in GAUSS, rndu(tt,1)).
- Let UU = [uu₁, ... uu_T]' = [[[T×u₁]], ..., [[T×u_T]]]'. Note that [[T×u_t]] is an integer between 1 and T. Some numbers in UU can be repeated.
 - In GAUSS, uu = ceil(tt*rndu(tt,1)).
- Choose $x_1^{[1]} = uu_1$ 'th element of the original sample S. $x_2^{[1]} = uu_2$ 'th element of S, etc.
 - In GAUSS, x[uu,.].

• EX:
$$x = \begin{pmatrix} 1.5 \\ 2.5 \\ 3.5 \\ 4.5 \end{pmatrix}; uu = \begin{pmatrix} 1 \\ 3 \\ 2 \\ 2 \end{pmatrix} \rightarrow x[uu,.] = \begin{pmatrix} 1.5 \\ 3.5 \\ 2.5 \\ 2.5 \end{pmatrix}.$$

End of Digression

Question:

- Why bootstraps generate better statistical inferences?
 - For technical details, see Hall and Horowitz (1996, Econometrica).
 - The bootstrap test is asymptotically equivalent to the usual asymptotic test. It can be shown that

 $E^*(X_t^{[1]}) = \overline{X}$ and $var^*(X_t^{[1]}) = s_X^2$.

 $E^*(\overline{X}^{[i]}) = \overline{X}$ and $E^*(s_X^{2[i]}) \approx s_X^2$.

Accordingly, by CLT, $\{t^{[1]}, ..., t^{[b]}\}$ will be roughly distributed with N(0,1) if T is large. Thus, the (1- α) quantile point of $\{|t^{[1]}|, ..., t^{[b]}|\}$ would be close to $|z_{\alpha/2}|$.

• As T increases, the gain by boostrapping decreases.

(3) In the program **bmeanmon.prg** and **bmean.prg**:

- Uses t^2 which is asymptotically $\chi^2(1)$.
- Accordingly, use $\{t^{[1]2}, \ldots, t^{[b]2}\}$ to compute bootstrap critical values.