1. LINEAR REGRESSION UNDER IDEAL CONDITIONS

[1] What is "Regression Model"?

Example:

- Suppose you are interested in the average relationship between income (y) and education (x).
- For the people with 12 years of schooling $(x=12)$, what is the average income $(\mathrm{E}(\mathrm{y} \mid \mathrm{x}=12))$?
- For the people with x years of schooling, what is the average income ($\mathrm{E}(\mathrm{y} \mid \mathrm{x})$)?
- Regression model:

$$
y=E(y \mid x)+\varepsilon,
$$

where ε is a disturbance (error) term with $E(\varepsilon \mid x)=0$.

- Regression analysis is aimed to estimate $E(y \mid x)$.

Digression to Probability Theory

(1) Bivariate Distributions

- Consider two random variables (RV), X and Y with a joint probability density function (pdf): $f(x, y)=\operatorname{Pr}(X=x, Y=y)$.
- Marginal (unconditional) pdf:

$$
\begin{aligned}
& f_{x}(x)=\Sigma_{y} f(x, y)=\operatorname{Pr}(X=x) \text { regardless of } Y \\
& f_{y}(y)=\Sigma_{x} f(x, y)=\operatorname{Pr}(Y=y) \text { regardless of } X .
\end{aligned}
$$

- Conditional pdf:

$$
f(y \mid x)=\operatorname{Pr}(Y=y, \text { given } X=x)=f(x, y) / f_{x}(x)
$$

- Stochastic independence:
- X and Y are stochastically independent iff $f(x, y)=f_{x}(x) f_{y}(y)$, for all x, y.
- Under this condition, $\mathrm{f}(\mathrm{y} \mid \mathrm{x})=\mathrm{f}(\mathrm{x}, \mathrm{y}) / \mathrm{f}_{\mathrm{x}}(\mathrm{x})=\left[\mathrm{f}_{\mathrm{x}}(\mathrm{x}) \mathrm{f}_{\mathrm{y}}(\mathrm{y})\right] / \mathrm{f}_{\mathrm{x}}(\mathrm{x})=\mathrm{f}_{\mathrm{y}}(\mathrm{y})$.

EX:

- Toss two coins, A and B.
- $\mathrm{X}=1$ if head from $\mathrm{A} ;=0$ if tail from A .
$Y=1$ if head from $B ;=0$ if tail from B.

$$
f(x, y)=1 / 4 \text { for any } x, y=0,1 .(4 \text { possible cases })
$$

- Marginal pdf of x :

$$
\begin{aligned}
& f_{x}(0)=\operatorname{Pr}(X=0) \text { regardless of } y=f(0,1)+f(0,0)=1 / 4+1 / 4=1 / 2 \\
& f_{x}(1)=\operatorname{Pr}(X=1) \text { regardless of } y=f(1,1)+f(1,0)=1 / 4+1 / 4=1 / 2 \\
& f_{x}(x)=1 / 2, \text { for } x=0,1
\end{aligned}
$$

Similarly, $\mathrm{f}_{\mathrm{y}}(\mathrm{y})=1 / 2$, for $\mathrm{y}=0,1$.

- Conditional pdf:

$$
\begin{aligned}
& \mathrm{f}(\mathrm{y}=1 \mid \mathrm{x}=1)=\mathrm{f}(1,1) / \mathrm{f}_{\mathrm{x}}(1)=(1 / 4) /(1 / 2)=1 / 2 \\
& \mathrm{f}(\mathrm{y}=0 \mid \mathrm{x}=1)=\mathrm{f}(0,1) / \mathrm{f}_{\mathrm{x}}(1)=1 / 2 \\
& \rightarrow \quad \mathrm{f}(\mathrm{y} \mid \mathrm{x}=1)=1 / 2, \text { for } \mathrm{y}=0,1
\end{aligned}
$$

- Find $\mathrm{f}(\mathrm{y} \mid \mathrm{x}=0)$ by yourself.
- Stochastic independence:

$$
f_{x}(x)=f_{y}(y)=1 / 2 ; f_{x}(x) f_{y}(y)=1 / 4=f(x, y) \text {, for any } x \text { and } y .
$$

Thus, x and y are stochastically independent.

Expectation:

$$
\mathrm{E}[\mathrm{~g}(\mathrm{x}, \mathrm{y})]=\Sigma_{\mathrm{x}} \Sigma_{\mathrm{y}} \mathrm{~g}(\mathrm{x}, \mathrm{y}) \mathrm{f}(\mathrm{x}, \mathrm{y})\left[\text { or } \int_{\Omega} g(x, y) f(x, y) d x d y\right] .
$$

Means:

$$
\begin{aligned}
& \mu_{x}=E(x)=\Sigma_{x} \Sigma_{y} x f(x, y)=\Sigma_{x} x f_{x}(x) . \\
& \mu_{y}=E(y)=\Sigma_{x} \Sigma_{y} y f(x, y)=\Sigma_{y} y f_{y}(y) .
\end{aligned}
$$

Variances:

$$
\begin{aligned}
\sigma_{x}^{2} & =E\left[\left(x-\mu_{x}\right)^{2}\right]=\Sigma_{x} \Sigma_{y}\left(x-\mu_{x}\right)^{2} f(x, y)=\Sigma_{x}\left(x-\mu_{x}\right)^{2} f_{x}(x) . \\
& =E\left(x^{2}\right)-[E(x)]^{2}=\Sigma_{x} x^{2} f_{x}(x)-\mu_{x}^{2} \\
\sigma_{y}^{2} & =\Sigma_{x} \Sigma_{y}\left(y-\mu_{y}\right)^{2} f(x, y)=\Sigma_{y}\left(y-\mu_{y}\right)^{2} f_{y}(y) \\
& =E\left(y^{2}\right)-[E(y)]^{2}=\Sigma_{y} y^{2} f_{y}(y)-\mu_{y}^{2}
\end{aligned}
$$

Covariance:

$$
\begin{aligned}
\sigma_{x y}=\operatorname{cov}(x, y) & =E\left[\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)\right]=\Sigma_{x} \Sigma_{y}\left(x-\mu_{x}\right)\left(y-\mu_{y}\right) f(x, y) \\
& =E(x y)-\mu_{x} \mu_{y}=\Sigma_{x} \Sigma_{y} x y f(x, y)-\mu_{x} \mu_{y}
\end{aligned}
$$

Note: $\quad \sigma_{\mathrm{xy}}>0 \rightarrow$ positively linearly related;
$\sigma_{\mathrm{xy}}<0 \rightarrow$ negatively linearly related;
$\sigma_{\mathrm{xy}}=0 \rightarrow$ no linear relation.

EX: $x, y=1,0$, with $f(x, y)=1 / 4$.

$$
\begin{aligned}
\mathrm{E}(\mathrm{xy}) & =\Sigma_{\mathrm{x}} \Sigma_{\mathrm{y}} \mathrm{xyf}(\mathrm{x}, \mathrm{y}) \\
& =0 \times 0 \times(1 / 4)+0 \times 1 \times(1 / 4)+1 \times 0 \times(1 / 4)+1 \times 1 \times(1 / 4)=1 / 4
\end{aligned}
$$

Correlation Coefficient:

The correlation coefficient between x and y is defined by:

$$
\rho_{x y}=\frac{\sigma_{x y}}{\sigma_{x} \sigma_{y}} .
$$

Theorem:
$-1 \leq \rho_{\mathrm{xy}} \leq 1$.

Note: $\quad \rho_{\mathrm{xy}} \rightarrow 1$: highly positively linearly related;
$\rho_{\mathrm{xy}} \rightarrow-1$; highly negatively linearly related;
$\rho_{\mathrm{xy}} \rightarrow 0$: no linear relation.

Theorem:
If X and Y are stochastically independent, then, $\sigma_{x y}=0$. But, not vice versa.

Conditioning in a Bivariate Distribution:

- $X, Y:$ RVs with $f(x, y)$. (e.g., $Y=$ income, $X=$ education)
- Population of billions and billions: $\left\{\left(\mathrm{x}^{(1)}, \mathrm{y}^{(1)}\right), \ldots .\left(\mathrm{x}^{(\mathrm{b})}, \mathrm{y}^{(\mathrm{b})}\right)\right\}$.
- Average of $\mathrm{y}^{(\mathrm{j})}=\mathrm{E}(\mathrm{y})$.
- For the people earning a specific education level x, what is the average of y ?

Conditional Mean and Variance:

- $E(y \mid x)=E(y \mid X=x)=\Sigma_{y} y f(y \mid x)$.
- $\operatorname{var}(y \mid x)=E\left[(y-E(y \mid x))^{2} \mid x\right]=\Sigma_{y}(y-E(y \mid x))^{2} f(y \mid x)$.

Regression model:

- Let $\varepsilon=\mathrm{y}-\mathrm{E}(\mathrm{y} \mid \mathrm{x})$ (deviation from conditional mean).
- $\mathrm{y}=\mathrm{E}(\mathrm{y} \mid \mathrm{x})+\mathrm{y}-\mathrm{E}(\mathrm{y} \mid \mathrm{x})=\mathrm{E}(\mathrm{y} \mid \mathrm{x})+\varepsilon$ (regression model).
- $E(y \mid x)=$ explained part of y by x.
$\varepsilon=$ unexplained part of y (called disturbance term).
$\mathrm{E}(\varepsilon \mid \mathrm{x})=0$ and $\operatorname{var}(\varepsilon \mid \mathrm{x})=\operatorname{var}(\mathrm{y} \mid \mathrm{x})$.

Note:

- $E(y \mid x)$ may vary with x, i.e., $E(y \mid x)$ is a function of x.
- Thus, we can define $\mathrm{E}_{\mathrm{x}}[\mathrm{E}(\mathrm{y} \mid \mathrm{x})]$, where $\mathrm{E}_{\mathrm{x}}(\bullet)$ is the expectation over $\mathrm{x}=$ $\Sigma_{\mathrm{x}} \bullet \mathrm{f}_{\mathrm{x}}(\mathrm{x})$ or $\int_{\Omega} \bullet \mathrm{f}_{\mathrm{x}}(\mathrm{x}) \mathrm{dx}$.

Theorem: (Law of Iterative Expectations)
$\mathrm{E}(\mathrm{y})$ [unconditional mean $]=\mathrm{E}_{\mathrm{x}}[\mathrm{E}(\mathrm{y} \mid \mathrm{x})]$.
Proof:

$$
\mathrm{E}(\mathrm{y})=\Sigma_{\mathrm{x}} \Sigma_{\mathrm{y}} \mathrm{yf}(\mathrm{x}, \mathrm{y})=\Sigma_{\mathrm{x}} \Sigma_{\mathrm{y}} \mathrm{y} \mathrm{f}(\mathrm{y} \mid \mathrm{x}) \mathrm{f}_{\mathrm{x}}(\mathrm{x})=\Sigma_{\mathrm{x}}\left[\Sigma_{\mathrm{y}} \mathrm{yf}(\mathrm{y} \mid \mathrm{x})\right] \mathrm{f}_{\mathrm{x}}(\mathrm{x})
$$

Note:
For discrete RV, X with $\mathrm{x}=\mathrm{x}_{1}, \ldots$,

$$
E(y)=\Sigma_{x} E(y \mid x) f_{x}(x)=E\left(y \mid x=x_{1}\right) f_{x}\left(x_{1}\right)+E\left(y \mid x=x_{2}\right) f_{x}\left(x_{2}\right)+\ldots .
$$

Implication:
If you know the conditional mean of y and the marginal distribution of x, you can also find the unconditional mean of y, too.

EX 1: \quad Suppose $E(y \mid x)=0$, for all $x . ~ E(y)=E_{x}[E(y \mid x)]=E_{x}(0)=0$.
EX 2: $\quad E(y \mid x)=\beta_{1}+\beta_{2} x . \rightarrow E(y)=E_{x}(E(y \mid x))=E_{x}\left(\beta_{1}+\beta_{2} x\right)=\beta_{1}+\beta_{2} E(x)$.

Question: When can $\mathrm{E}(\mathrm{y} \mid \mathrm{x})$ be linear? Answered later.

Definition:
We say that y is homoskedastic if $\operatorname{var}(\mathrm{y} \mid \mathrm{x})$ is constant.

EX: $\mathrm{y}=\mathrm{E}(\mathrm{y} \mid \mathrm{x})+\varepsilon$ with $\operatorname{var}(\varepsilon \mid \mathrm{x})=\sigma^{2}$ for all $\mathrm{x}($ constant $)$.
$\rightarrow \operatorname{var}(\mathrm{y} \mid \mathrm{x})=\operatorname{var}[\mathrm{E}(\mathrm{y} \mid \mathrm{x})+\varepsilon \mid \mathrm{x}]=\operatorname{var}(\varepsilon \mid \mathrm{x})=\sigma^{2}$, for all x.
$\rightarrow \mathrm{y}$ is homoskedastic.

Graphical Interpretation of Conditional Means and Variances

- Consider the following population:

- $E\left(y \mid x=x_{1}\right)$ measures the average value of y for the group of $x=x_{1}$.
- $\operatorname{var}\left(\mathrm{y} \mid \mathrm{x}=\mathrm{x}_{1}\right)$ measures the dispersion of y given $\mathrm{x}=\mathrm{x}_{1}$.
- If $\operatorname{var}\left(y \mid x=x_{1}\right)=\operatorname{var}\left(y \mid x=x_{2}\right)=\ldots$, we say that y is homoskedastic.
- Law of iterative expectation:

$$
\mathrm{E}(\mathrm{y})=\sum_{\mathrm{x}} \mathrm{E}(\mathrm{y} \mid \mathrm{x}) \mathrm{f}_{\mathrm{x}}(\mathrm{x})=\mathrm{E}\left(\mathrm{y} \mid \mathrm{x}=\mathrm{x}_{1}\right) \operatorname{Pr}\left(\mathrm{x}=\mathrm{x}_{1}\right)+\mathrm{E}\left(\mathrm{y} \mid \mathrm{x}=\mathrm{x}_{2}\right) \operatorname{Pr}\left(\mathrm{x}=\mathrm{x}_{2}\right)+\ldots .
$$

Question: It is worth finding $\mathrm{E}(\mathrm{y} \mid \mathrm{x})$?

Theorem: (Decomposition of Variance)

$$
\operatorname{var}(\mathrm{y})=\operatorname{var}_{\mathrm{x}}[\mathrm{E}(\mathrm{y} \mid \mathrm{x})]+\mathrm{E}_{\mathrm{x}}[\operatorname{var}(\mathrm{y} \mid \mathrm{x})] .
$$

Note:

- $\operatorname{var}_{\mathrm{x}}[\mathrm{E}(\mathrm{y} \mid \mathrm{x})] \leq \operatorname{var}(\mathrm{y})$, since $\mathrm{E}_{\mathrm{x}}[\operatorname{var}(\mathrm{y} \mid \mathrm{x})] \geq 0$.
- $\operatorname{var}(\mathrm{y}) \quad=\mathrm{E}\left[(\mathrm{y}-\mathrm{E}(\mathrm{y}))^{2}\right]$
$=$ total variation of y.
$\operatorname{var}_{x}[E(y \mid x)]=E_{x}\left[(E(y \mid x)-E(y))^{2}\right]$
$=$ a part of variation in y due to variation in $E(y \mid x)$
$=$ variation in y explained by $E(y \mid x)$.

Coefficient of Determination:

$$
\boldsymbol{R}^{2}=\operatorname{var}_{\mathrm{x}}[\mathrm{E}(\mathrm{y} \mid \mathrm{x})] / \operatorname{var}(\mathrm{y})
$$

\rightarrow Measure of worthiness of knowing $\mathrm{E}(\mathrm{y} \mid \mathrm{x})$.
$\rightarrow 0 \leq \boldsymbol{R}^{2} \leq 1$.
Note:

- $\boldsymbol{R}^{2}=$ variation in y explained by $\mathrm{E}(\mathrm{y} \mid \mathrm{x}) /$ total variation of y .
- Wish \boldsymbol{R}^{2} close to 1.

Summarizing Exercise:

- A population with X (income $=\$ 10,000)$ and $Y($ consumption $=\$ 10,000)$.
- Joint pdf:

$\mathrm{Y} \backslash \mathrm{X}$	4	8
1	$1 / 2$	0
2	$1 / 4$	$1 / 4$

- Graph for this population:

- Marginal pdf:

$\mathrm{Y} \backslash \mathrm{X}$	4	8	$\mathrm{f}_{\mathrm{y}}(\mathrm{y})$
1	$1 / 2$	0	$1 / 2$
2	$1 / 4$	$1 / 4$	$1 / 2$
$\mathrm{f}_{\mathrm{x}}(\mathrm{x})$	$3 / 4$	$1 / 4$	

- Means of X and Y:
- $\mathrm{E}(\mathrm{x})=\mu_{\mathrm{x}}=\sum_{\mathrm{x}} \mathrm{x} \mathrm{f}_{\mathrm{x}}(\mathrm{x})=4 \times \mathrm{f}_{\mathrm{x}}(4)+8 \times \mathrm{f}_{\mathrm{x}}(8)=4 \times(3 / 4)+8 \times(1 / 4)=5$.
- $\mathrm{E}(\mathrm{y})=\mu_{\mathrm{y}}=\Sigma_{\mathrm{y}} \mathrm{y} \mathrm{f}_{\mathrm{y}}(\mathrm{y})=1.5$.
- Variances of X and Y :
- $\operatorname{var}(\mathrm{x})=\sigma_{\mathrm{x}}^{2}=\Sigma_{\mathrm{x}}\left(\mathrm{x}-\mu_{\mathrm{x}}\right)^{2} \mathrm{f}_{\mathrm{x}}(\mathrm{x})$

$$
=(4-5)^{2} f_{x}(4)+(8-5)^{2} f_{x}(8)=1 \times(3 / 4)+9 \times(1 / 4)=3 .
$$

- $\operatorname{var}(\mathrm{y})=\sigma_{\mathrm{y}}{ }^{2}=1 / 4$.
- Covariance between X and Y :
- $\sigma_{x y}=E\left[\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)\right]=E(x y)-\mu_{x} \mu_{y}=\Sigma_{x} \Sigma_{y} x y f(x, y)-\mu_{x} \mu_{y}$

$$
=4 \times 1 \times \mathrm{f}(4,1)+4 \times 2 \times \mathrm{f}(4,2)+8 \times 1 \times \mathrm{f}(8,1)+8 \times 2 \times \mathrm{f}(8,2)-5 \times 1.5=0.5 .
$$

- $\rho_{\mathrm{xy}}=\frac{\sigma_{x y}}{\sigma_{x} \sigma_{y}}=\frac{0.5}{\sqrt{3} \sqrt{1 / 4}} \cong 0.58$.
- Conditional Probabilities

$\mathrm{Y} \backslash \mathrm{X}$	4	8	$\mathrm{f}_{\mathrm{y}}(\mathrm{y})$
1	$1 / 2$	0	$1 / 2$
2	$1 / 4$	$1 / 4$	$1 / 2$
$\mathrm{f}_{\mathrm{x}}(\mathrm{x})$	$3 / 4$	$1 / 4$	

- $f(y \mid x)$:

$\mathrm{Y} \backslash \mathrm{X}$	4	8
1	$2 / 3$	0
2	$1 / 3$	1

- Conditional mean:
- $\mathrm{E}(\mathrm{y} \mid \mathrm{x}=4)=\sum_{\mathrm{y}} \mathrm{yf}(\mathrm{y} \mid \mathrm{x}=4)=1 \times \mathrm{f}(\mathrm{y}=1 \mid \mathrm{x}=4)+2 \times \mathrm{f}(\mathrm{y}=2 \mid \mathrm{x}=4)$

$$
=1 \times(2 / 3)+2 \times(1 / 3)=4 / 3
$$

- $\mathrm{E}(\mathrm{y} \mid \mathrm{x}=8)=2$.

- Conditional variance of Y :
- $\operatorname{var}(y \mid x=4)=\Sigma_{y}[y-E(y \mid x=4)]^{2} f(y \mid x=4)=6 / 27$.
- $\operatorname{var}(\mathrm{y} \mid \mathrm{x}=8)=0$.
- Law of iterative expectation:
- $\mathrm{E}_{\mathrm{x}}[\mathrm{E}(\mathrm{y} \mid \mathrm{x})]=\Sigma_{\mathrm{x}} \mathrm{E}(\mathrm{y} \mid \mathrm{x}) \mathrm{f}_{\mathrm{x}}(\mathrm{x})=\mathrm{E}(\mathrm{y} \mid \mathrm{x}=4) \mathrm{f}_{\mathrm{x}}(4)+\mathrm{E}(\mathrm{y} \mid \mathrm{x}=8) \mathrm{f}_{\mathrm{x}}(8)$

$$
=(4 / 3) \times(3 / 4)+2 \times(1 / 4)=1.5=\mathrm{E}(\mathrm{y})!!!
$$

(2) Bivariate Normal Distribution

Definition:

$$
\begin{aligned}
&\binom{x}{y} \sim N\left(\binom{\mu_{x}}{\mu_{y}},\left(\begin{array}{cc}
\sigma_{x}^{2} & \rho_{x y} \sigma_{x} \sigma_{y} \\
\rho_{x y} \sigma_{x} \sigma_{y} & \sigma_{y}^{2}
\end{array}\right)\right) \\
& f(x, y)=\frac{1}{2 \pi \sigma_{x} \sigma_{y} \sqrt{1-\rho_{x y}^{2}}} \\
& \times \exp \left(-\frac{1}{2\left(1-\rho_{x y}^{2}\right)}\left\{\frac{\left(x-\mu_{x}\right)^{2}}{\sigma_{x}^{2}}-2 \rho_{x y} \frac{x-\mu_{x}}{\sigma_{x}} \frac{y-\mu_{y}}{\sigma_{y}}+\frac{\left(y-\mu_{y}\right)^{2}}{\sigma_{y}^{2}}\right\}\right),
\end{aligned}
$$

where $\mathrm{x}, \mathrm{y} \in \mathfrak{R}$.

Facts:

- $f_{x}(x) \sim N\left(\mu_{x}, \sigma_{x}^{2}\right)$ and $f_{y}(y) \sim N\left(\mu_{y}, \sigma_{y}^{2}\right)$.
- $\mathrm{E}(\mathrm{y} \mid \mathrm{x})=\beta_{1}+\beta_{2} \mathrm{x}$ and $\operatorname{var}(\mathrm{y} \mid \mathrm{x})$ is constant (see Greene).
$\rightarrow \mathrm{E}(\mathrm{y} \mid \mathrm{x})$ is linear in x and y is homoskedastic.
- If $\sigma_{\mathrm{xy}}=0\left(\right.$ or $\left.\rho_{\mathrm{xy}}=0\right), \mathrm{x}$ and y are stochastically independent.
(3) Multivariate Distributions

Definition: (Mean vector and covariance matrix)
X_{1}, \ldots, X_{n} : random variables.
Let $\mathrm{x}=\left[\mathrm{x}_{1}, \ldots ., \mathrm{x}_{\mathrm{n}}\right]^{\prime}(\mathrm{n} \times 1$ vector). Then,

$$
\begin{aligned}
& E(x)=\left(\begin{array}{c}
E\left(x_{1}\right) \\
E\left(x_{2}\right) \\
: \\
E\left(x_{n}\right)
\end{array}\right) ; \quad \operatorname{Cov}(x)=\left[\begin{array}{cccc}
\operatorname{var}\left(x_{1}\right) & \operatorname{cov}\left(x_{1}, x_{2}\right) & \ldots & \operatorname{cov}\left(x_{1}, x_{n}\right) \\
\operatorname{cov}\left(x_{2}, x_{1}\right) & \operatorname{var}\left(x_{2}\right) & \ldots & \operatorname{cov}\left(x_{2}, x_{n}\right) \\
: & : & & : \\
\operatorname{cov}\left(x_{n}, x_{1}\right) & \operatorname{cov}\left(x_{n}, x_{1}\right) & \ldots & \operatorname{var}\left(x_{n}\right)
\end{array}\right] . \\
& \rightarrow \operatorname{Cov}(\mathrm{x}) \text { is symmetric. }
\end{aligned}
$$

EX: If x is scalar, $\operatorname{Cov}(x)=E\left[(x-\mu)^{2}\right]=\operatorname{var}(x)$.
EX: $x=\left[x_{1}, x_{2}\right]^{\prime} ; E(x)=\mu=\left[\mu_{1}, \mu_{2}\right]^{\prime}$
$\mathrm{x}-\mu=\left[\mathrm{x}_{1}-\mu_{1}, \mathrm{x}_{2}-\mu_{2}\right]^{\prime}$

$$
\begin{aligned}
& \rightarrow \quad(\mathrm{x}-\mu)(\mathrm{x}-\mu)^{\prime} \quad=\binom{x_{1}-\mu_{1}}{x_{2}-\mu_{2}}\left(\begin{array}{ll}
x_{1}-\mu_{1} & \left.x_{2}-\mu_{2}\right)
\end{array}\right. \\
& =\left(\begin{array}{cc}
\left(x_{1}-\mu_{1}\right)^{2} & \left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right) \\
\left(x_{2}-\mu_{2}\right)\left(x_{1}-\mu_{1}\right) & \left(x_{2}-\mu_{2}\right)^{2}
\end{array}\right) . \\
& \rightarrow \quad \mathrm{E}\left[(\mathrm{x}-\mu)(\mathrm{x}-\mu)^{\prime}\right]=\operatorname{Cov}(\mathrm{x}) .
\end{aligned}
$$

Theorem: $\operatorname{Cov}(x)=E\left[(x-\mu)(x-\mu)^{\prime}\right]=E\left(x^{\prime}\right)-\mu \mu^{\prime}$.
Proof: See Greene.

Note: In Greene, $\operatorname{Cov}(\mathbf{x})$ is denoted by $\operatorname{Var}(\mathbf{x})$.

Definition: Covariance Matrix between Two Random Vectors
$X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{\prime}$ and $Y=\left(Y_{1}, Y_{2}, \ldots, Y_{m}\right)^{\prime}$ are random vectors. Then,

$$
\operatorname{Cov}(x, y)=\left(\begin{array}{cccc}
\operatorname{cov}\left(x_{1}, y_{1}\right) & \operatorname{cov}\left(x_{1}, y_{2}\right) & \ldots & \operatorname{cov}\left(x_{1}, y_{m}\right) \\
\operatorname{cov}\left(x_{2}, y_{1}\right) & \operatorname{cov}\left(x_{2}, y_{2}\right) & \operatorname{cov}\left(x_{2}, y_{m}\right) \\
: & : & & : \\
\operatorname{cov}\left(x_{n}, y_{1}\right) & \operatorname{cov}\left(x_{n}, y_{2}\right) & \ldots & \operatorname{cov}\left(x_{n}, y_{m}\right)
\end{array}\right)
$$

Definition: (Expectation of random matrix)

Suppose that B_{ij} are RVs. Then,

$$
B=\left[\begin{array}{cccc}
B_{11} & B_{12} & \ldots & B_{1 q} \\
B_{21} & B_{22} & \ldots & B_{2 q} \\
\vdots & \vdots & & \vdots \\
B_{p 1} & B_{p 2} & \ldots & B_{p q}
\end{array}\right] \Rightarrow E(B)=\left[\begin{array}{cccc}
E\left(B_{11}\right) & E\left(B_{12}\right) & \ldots & E\left(B_{1 q}\right) \\
E\left(B_{21}\right) & E\left(B_{22}\right) & \ldots & E\left(B_{2 q}\right) \\
\vdots & \vdots & & \vdots \\
E\left(B_{p 1}\right) & E\left(B_{p 2}\right) & \ldots & E\left(B_{p q}\right)
\end{array}\right]
$$

(4) Multivariate Normal distribution

Definition:

$\mathrm{X}=\left[\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right]^{\prime}$ is a normal vector, i.e., each of the X_{j} 's is normal.
Let $\mathrm{E}(\mathrm{x})=\mu=\left[\mu_{1}, \ldots, \mu_{\mathrm{n}}\right]^{\prime}$ and $\operatorname{Cov}(\mathrm{x})=\Sigma=\left[\Sigma_{\mathrm{ij}}\right]_{\mathrm{n} \times \mathrm{n}}$. Then,

$$
\mathrm{x} \sim \mathrm{~N}(\mu, \Sigma)
$$

Pdf of x :

$$
\mathrm{f}(\mathrm{x})=\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=(2 \pi)^{-\mathrm{n} / 2}|\Sigma|^{-1 / 2} \exp \left[-(1 / 2)(\mathrm{x}-\mu)^{\prime} \Sigma^{-1}(\mathrm{x}-\mu)\right]
$$

where $|\Sigma|=\operatorname{det}(\Sigma)$.

EX:
Let X be a single RV with $\mathrm{N}\left(\mu_{\mathrm{x}}, \sigma_{\mathrm{x}}^{2}\right)$. Then,

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =(2 \pi)^{-1 / 2}\left(\sigma_{\mathrm{x}}^{2}\right)^{-1 / 2} \exp \left[-(1 / 2)\left(\mathrm{x}-\mu_{\mathrm{x}}\right)\left(\sigma_{\mathrm{x}}^{2}\right)^{-1}\left(\mathrm{x}-\mu_{\mathrm{x}}\right)\right] \\
& =\frac{1}{\sqrt{2 \pi} \sigma_{x}} \exp \left[-\frac{\left(x-\mu_{x}\right)^{2}}{2 \sigma_{x}^{2}}\right] .
\end{aligned}
$$

EX:
Assume that all the $\mathrm{X}_{\mathrm{i}}(\mathrm{i}=1, \ldots, \mathrm{n})$ are iid with $N\left(\mu_{x}, \sigma_{x}^{2}\right)$. Then,
(1) $\mu=\mathrm{E}(\mathrm{x})=\left[\mu_{\mathrm{x}}, \ldots, \mu_{\mathrm{x}}\right]^{\prime}$;
(2) $\Sigma=\operatorname{Cov}(\mathrm{x})=\operatorname{diag}\left(\sigma_{x}^{2}, \sigma_{x}^{2}, \ldots, \sigma_{x}^{2}\right)=\sigma_{x}^{2} I_{n}$.

Using (1) and (2), we can show that $\mathrm{f}(\mathrm{x})=\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\prod_{i=1}^{n} f\left(x_{i}\right)$,
where $\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=\frac{1}{\sqrt{2 \pi} \sigma_{x}} \exp \left[-\frac{\left(x_{i}-\mu_{x}\right)^{2}}{2 \sigma_{x}{ }^{2}}\right]$.

Theorem: Conditional normal distribution
$\left[y, x_{2}, \ldots, x_{k}\right]$ is a normal vector. Then,

$$
E\left(y \mid x_{2}, \ldots, x_{k}\right)=\beta_{1}+\beta_{2} x_{2}+\ldots+\beta_{k} x_{k}=x^{* \prime} ; \operatorname{var}\left(y \mid x^{*}\right)=\sigma^{2} .
$$

where $\mathrm{x}^{*}=\left(1, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}\right)^{\prime}$ and $\left.\beta=\left(\beta_{1}, \ldots, \beta_{\mathrm{k}}\right)^{\prime}\right]$. That is, the regression of y on $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}$ is linear \& homoskedastic.
Proof: See Greene.
(5) Properties of the Covariance Matrix of a Random Vector Definition:

Let $\mathrm{X}=\left[\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right]^{\prime}$ be a random vector and let $\mathrm{c}=\left[\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}\right]^{\prime}$ be a $\mathrm{n} \times 1$ vector of fixed constants. Then,

$$
\mathrm{c}^{\prime} \mathrm{x}=\mathrm{x}^{\prime} \mathrm{c}=\mathrm{c}_{1} \mathrm{x}_{1}+\ldots+\mathrm{c}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}=\Sigma_{\mathrm{j}} \mathrm{c}_{\mathrm{j}} \mathrm{x}_{\mathrm{j}}(\text { scalar })
$$

Theorem:
(1) $E\left(c^{\prime} x\right)=c^{\prime} E(x)$;
(2) $\operatorname{var}\left(c^{\prime} \mathrm{x}\right)=\mathrm{c}^{\prime} \operatorname{Cov}(\mathrm{x}) \mathrm{c}$.

Proof:
(1) $\mathrm{E}\left(\mathrm{c}^{\prime} \mathrm{x}\right)=\mathrm{E}\left(\sum_{\mathrm{j}} \mathrm{c}_{\mathrm{j}} \mathrm{x}_{\mathrm{j}}\right)=\mathrm{E}\left(\mathrm{c}_{1} \mathrm{x}_{1}+\ldots+\mathrm{c}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}\right)$

$$
=\mathrm{c}_{1} \mathrm{E}\left(\mathrm{x}_{1}\right)+\ldots+\mathrm{c}_{\mathrm{n}} \mathrm{E}\left(\mathrm{x}_{\mathrm{n}}\right)=\sum_{\mathrm{j}} \mathrm{c}_{\mathrm{j}} \mathrm{E}\left(\mathrm{x}_{\mathrm{j}}\right)=\mathrm{c}^{\prime} \mathrm{E}(\mathrm{x})
$$

(2) $\quad \operatorname{var}\left(\mathrm{c}^{\prime} \mathrm{x}\right)=\mathrm{E}\left[\left(\mathrm{c}^{\prime} \mathrm{x}-\mathrm{E}\left(\mathrm{c}^{\prime} \mathrm{x}\right)\right)^{2}\right]=\mathrm{E}\left[\left\{\mathrm{c}^{\prime} \mathrm{x}-\mathrm{c}^{\prime} \mathrm{E}(\mathrm{x})\right\}^{2}\right]$

$$
\begin{aligned}
& =\mathrm{E}\left[\left\{\mathrm{c}^{\prime}(\mathrm{x}-\mathrm{E}(\mathrm{x}))\right\}^{2}\right]=\mathrm{E}\left[\left\{\mathrm{c}^{\prime}(\mathrm{x}-\mathrm{E}(\mathrm{x}))\right\}\left\{\mathrm{c}^{\prime}(\mathrm{x}-\mathrm{E}(\mathrm{x}))\right\}\right] \\
& =\mathrm{E}\left[\left\{\mathrm{c}^{\prime}(\mathrm{x}-\mathrm{E}(\mathrm{x}))\right\}\left\{(\mathrm{x}-\mathrm{E}(\mathrm{x}))^{\prime} \mathrm{c}\right\}\right] \\
& =\mathrm{E}\left[\mathrm{c}^{\prime}(\mathrm{x}-\mathrm{E}(\mathrm{x}))(\mathrm{x}-\mathrm{E}(\mathrm{x}))^{\prime} \mathrm{c}\right]=\mathrm{c}^{\prime} \mathrm{E}\left[(\mathrm{x}-\mathrm{E}(\mathrm{x}))(\mathrm{x}-\mathrm{E}(\mathrm{x}))^{\prime}\right] \mathrm{c}=\mathrm{c}^{\prime} \operatorname{Cov}(\mathrm{x}) \mathrm{c}
\end{aligned}
$$

Remark:
(2) implies that $\operatorname{Cov}(x)$ is always positive semidefinite.
$\rightarrow \mathrm{c}^{\prime} \operatorname{Cov}(\mathrm{x}) \mathrm{c} \geq 0$, for any nonzero vector c .

Proof:

For any nonzero vector $\mathrm{c}, \mathrm{c}^{\prime} \operatorname{Cov}(\mathrm{x}) \mathrm{c}=\operatorname{var}\left(\mathrm{c}^{\prime} \mathrm{x}\right) \geq 0$.

Remark:

- $\operatorname{Cov}(x)$ is symmetric and positive semidefinite (what does it mean?).
- Usually, $\operatorname{Cov}(\mathrm{x})$ is positive definite, that is, $\mathrm{c}^{\prime} \operatorname{Cov}(\mathrm{x}) \mathrm{c}>0$, for any nonzero vector c .

Definition:

Let $\mathrm{B}=\left[\mathrm{b}_{\mathrm{ij}}\right]_{\mathrm{nx}}$ be a symmetric matrix, and $\mathrm{c}=\left[\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}\right]^{\prime}$. Then, a scalar $\mathrm{c}^{\prime} \mathrm{Bc}$ is called a quadratic form of B.

Definition:

- If $\mathrm{c}^{\prime} \mathrm{Bc}>(<) 0$ for any nonzero vector c, B is called positive (negative) definite.
- If $\mathrm{c}^{\prime} \mathrm{Bc} \geq(\leq) 0$ for any nonzero c , B is called positive (negative) semidefinite.

Theorem:
Let B be a symmetric and square matrix given by:

$$
B=\left[\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 n} \\
b_{21} & b_{22} & \ldots & b_{2 n} \\
: & : & & : \\
b_{n 1} & b_{n 2} & \ldots & b_{n n}
\end{array}\right] .
$$

Define the principal minors by:

$$
\left|B_{1}\right|=b_{11} ;\left|B_{2}\right|=\left|\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right| ;\left|B_{3}\right|=\left|\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right| ; \ldots
$$

B is positive definite iff $\left|B_{1}\right|,\left|B_{2}\right|, \ldots,\left|B_{n}\right|$ are all positive. B is negative definite iff $\left|B_{1}\right|<0,\left|B_{2}\right|>0,\left|B_{3}\right|<0, \ldots$.

EX:

Show that B is positive definite:

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

End of Digression

[2] Classical Linear Regression (CLR) Model

Example:

- Wish to find important determinants of individuals’ earnings and estimate the size of the effect of each determinant.
- Data: (WAGE2.WF1 or WAGE2.TXT)
\# of observations (T): 935

1. wage monthly earnings
2. hours average weekly hours
3. IQ
4. KWW
5. educ
6. exper
7. tenure
8. age
9. married
10. black
11. south
12. urban
13. sibs
14. brthord
15. meduc
16. feduc
17. lwage
knowledge of world work score years of education
years of work experience
years with current employer
age in years
$=1$ if married
$=1$ if black
$=1$ if live in south
$=1$ if live in SMSA
number of siblings
birth order
mother's education
father's education
natural log of wage

What variables would be important determinants of \log (wage)?
From now on, we use both "log" and "ln" to refer to natural log.

Mincerian Wage Equation:

- Set y (dependent variable $)=\log ($ wage $)$.
- Set x. (vector of independent variables) $=\left[1 \text {, educ, exper, exper }{ }^{2}\right]^{\prime}$.
- $\quad x_{\text {. }}=$ vector of independent variables (or explanatory variables, or regressors).
- Use subscript " o " for "true value".
- Assume $E(y \mid x)=.\beta_{1, o}+\beta_{2, o} e d u c+\beta_{3,0} \operatorname{exper}+\beta_{4, o}$ exper 2
- $\mathrm{y}=E(y \mid x)+.\varepsilon=\beta_{1, o}+\beta_{2, o}$ educ $+\beta_{3,0} \operatorname{exper}+\beta_{4, o} \operatorname{exper}^{2}+\varepsilon$
- $y=x^{\prime} \beta_{o}+\varepsilon$, where $\beta_{o}=\left(\beta_{1, o}, \beta_{2, o}, \beta_{3, o}, \beta_{4, o}\right)^{\prime}$
- Here,
- $\beta_{2,0} \times 100=\% \Delta$ in wage by one more year of education.
- $\left(\beta_{3,0}+2 \beta_{4,0}\right.$ exper $) \times 100=\% \Delta$ by one more year of exper.

- Issues:

- How to estimate β_{0} 's?
- Estimated β 's would not be equal to the true values of $\beta\left(\beta_{0}\right)$. How close would our estimates to the true values?

Basic Assumptions for CLR

(I call these assumptions Strong Ideal Conditions (SIC).)

To understand SIC better; imagine a population of T-groups with the following properties.

- For each group $t=1,2, \ldots, T, y_{t}$ denotes the dependent variable and $x_{t}=$ $\left(\mathrm{x}_{\mathrm{t} 1}, \mathrm{x}_{\mathrm{t} 2}, \ldots, \mathrm{x}_{\mathrm{tk}}\right)^{\prime}$ denotes the vector of regressors.
- The T-groups are assumed to be independent.
- Your sample consists of T observations, each of which comes from each different group.

As you may find, the above assumptions are unrealistic. But under the assumptions, more intuitive discussions about the statistical properties of OLS can be made. The statistical properties of OLS discussed later still hold even under more realistic assumptions.

Notation:

- $E\left(x_{t 1}\right)$ is the group population mean of x_{1} for group t, while $E\left(x_{1}\right)$ is the population mean of x_{1} for the whole population.

We now discuss each of SIC in detail:
(SIC.1) The conditional mean of y_{t} (dependent variable) given x_{t}. (vector of explanatory variables) is linear:

$$
\begin{aligned}
& y_{t}=E\left(y_{t} \mid x_{t \bullet}\right)+\varepsilon_{t}=x_{t \bullet}^{\prime} \beta_{o}+\varepsilon_{t}=\beta_{1, o} x_{t 1}+\beta_{2, o} x_{t 2}+\ldots+\beta_{k, o} x_{t k}+\varepsilon_{t}, \\
& \text { where } x_{t \bullet}=\left(x_{t 1}, x_{t 2}, \ldots, x_{t k}\right)^{\prime} \text { and } \beta_{o}=\left(\beta_{1, o}, \ldots, \beta_{k, o}\right)^{\prime} .
\end{aligned}
$$

Comment:

- Usually, $\mathrm{x}_{\mathrm{t} 1}=1$ for all t . That is, β_{1} is an overall intercept term.
- $E\left(\varepsilon_{t} \mid x_{t}\right)=0$.
- $E\left(x_{t} \cdot \varepsilon_{t}\right)=E_{x_{t \cdot}}\left[E\left(x_{t} \cdot \varepsilon_{t} \mid x_{t \cdot}\right)\right]=E_{x_{t \cdot}}\left[x_{t} \cdot E\left(\varepsilon_{t} \mid x_{t \cdot}\right)\right]=E_{x_{t_{t}}}(0)=0$.
(SIC.2) $\beta_{o}=\left(\beta_{1, o}, \ldots, \beta_{k, o}\right)^{\prime}$ is unique.

Comment:

- No other β_{*} such that $E\left(y_{t} \mid x_{t}\right)=x_{t .}^{\prime} \beta_{o}=x_{t .}^{\prime} \beta_{*}$ for all t .
- The uniqueness assumption of β_{o} is called "identification" condition.
- Rules out perfect multicollinearity (perfect linear relationship among the regressors):
- Suppose $\beta=\left(\beta_{1}, \beta_{2}, \beta_{3}\right)^{\prime}$ and $x_{t 3}=x_{t 1}+x_{t 2}$ for all t.
- Set $\beta_{1, *}=\beta_{1, o}+a ; \beta_{2, *}=\beta_{2, o}+a ; \beta_{3,{ }^{*}}=\beta_{3, o}-a$ for an arbitrary $a \in \mathfrak{R}$.

$$
\begin{aligned}
x_{t .}^{\prime} \beta_{*} & =x_{t 1} \beta_{1, *}+x_{t 2} \beta_{2,,^{*}}+x_{t 3} \beta_{3, *} \\
& =x_{t 1} \beta_{1, o}+x_{t 2} \beta_{2, o}+x_{t 3} \beta_{3, o}+a\left(x_{t 1}+x_{t 2}-x_{t 3}\right) \\
& =x_{t .}^{\prime} \beta_{o}
\end{aligned}
$$

- (SIC.2) rules out this possibility.
(SIC.3) The variables, $\mathrm{y}_{\mathrm{t}}, \mathrm{x}_{\mathrm{t} 1}, \ldots, \mathrm{x}_{\mathrm{tk}}$, have finite moments up to fourth order.

Comment:

- $E\left(y_{t}^{2} x_{t 2}^{2}\right), E\left(x_{t 3} x_{t 4}^{3}\right), E\left(x_{t 3}^{4}\right)$, etc, exist.
- Rules out extreme outliers.
- We need this assumption for consistency and asymptotic normality of the OLS estimator.
- SIC implies the Weak Ideal Conditions (WIC) that will be discussed later.
- Violated if $\mathrm{x}_{\mathrm{t} 2}=\mathrm{t}$ or $x_{\mathrm{t} 2}=x_{t-1,2}+v_{\mathrm{t} 2}$.
(SIC.4) A random sample $\left\{\left(y_{t}, x_{t 1}, x_{t 2}, \ldots, x_{t k}\right)^{\prime}\right\}_{t=1, \ldots, T}$ is available and $T \geq k$.
Comment:
- $\left(y_{t}, x_{t 1}, x_{t 2}, \ldots, x_{t k}\right)^{\prime}$ are iid (independently and identically distributed):
- T groups which are iid with

$$
E\left(\binom{y_{t}}{x_{t}}\right)=E\left(\binom{y}{x}\right) \text { and } \operatorname{Cov}\left(\binom{y_{t}}{x_{t}}\right)=\operatorname{Cov}\left(\binom{y}{x}\right) .
$$

- One observation is drawn from each of the T group.
- Could be appropriate for cross-section data.
- Violated if time series data are used. That is why we add "strong" for the name of the conditions.
- If $T<k$, there are infinitely many β_{*} such that $x_{t .}^{\prime} \beta_{o}=x_{t .}^{\prime} \beta_{*}$ for all t . For this case, the sample cannot identify β.
- Implies no autocorrelation: $\operatorname{cov}\left(\varepsilon_{t}, \varepsilon_{s}\right)=0$ for all $t \neq s$.
(SIC.5) $\operatorname{var}\left(\varepsilon_{t} \mid x_{t_{0}}\right)=\sigma_{o}^{2}$, for all x_{t}. (Homoskedasticity Assumption).
Comment:
- Often violated when cross-section data are used.
- Consider the two different populations:
o Population 1 (homoskedastic population):
- homy $=1+2 \mathrm{x}_{2}+\varepsilon$, where $\operatorname{var}\left(\varepsilon \mid \mathrm{x}_{2}\right)=9$.
o Population 2 (heteroskedastic population):
- hety $=1+2 \mathrm{x}_{2}+\varepsilon$, where $\operatorname{var}\left(\varepsilon \mid \mathrm{x}_{2}\right)=\mathrm{x}_{2}{ }^{2}$.
o $x_{2}=1$, or 2 , or 3 , or 4 , or 5 , for both populations.

(SIC.6) The errors ε_{t} are normally distributed conditional on $x_{t \bullet}$.
(SIC.7) $x_{t 1}=1$, for all $t=1, \ldots, T$.

Comment:

- Optional. Not critical.
- This condition implies that $\beta_{1,0}$ is an overall intercept term.
- Need this assumption for convenient interpretation of empirical R^{2}.
- Link between β_{o} and covariances:
- Consider a simple regression model, $y_{t}=\beta_{1, o}+\beta_{2, o} x_{t 2}+\varepsilon_{t}=x_{t \cdot}^{\prime} \beta_{o}+\varepsilon_{t}$.
- Assume (SIC.1) - (SIC.4) and (SIC.7).
- $E\left(x_{t \bullet} y_{t}\right)=E\left(x_{t \bullet}\left(x_{t}^{\prime} \beta_{o}+\varepsilon_{t}\right)\right)=E\left(x_{t 0} x_{t \bullet}^{\prime}\right) \beta_{o}$

$$
\rightarrow E\left(x_{0} y\right)=E\left(x_{0} x_{0}^{\prime}\right) \beta_{o}
$$

$\rightarrow \beta_{o}=\left[E\left(x_{0} x_{0}\right)\right]^{-1} E\left(x_{0} y\right)$,
where,

$$
\begin{aligned}
& E\left(x_{\mathbf{0}} x_{\bullet}\right)=E\left(\binom{1}{x_{2}}\left(1 \begin{array}{l}
1 \\
x_{2}
\end{array}\right)\right)=E\left(\begin{array}{cc}
1 & x_{2} \\
x_{2} & x_{2}^{2}
\end{array}\right)=\left(\begin{array}{cc}
1 & E\left(x_{2}\right) \\
E\left(x_{2}\right) & E\left(x_{2}^{2}\right)
\end{array}\right) ; \\
& E\left(x_{0} y\right)=E\left(\binom{1}{x_{2}} y\right)=E\binom{y}{x_{2} y}=\binom{E(y)}{E\left(x_{2} y\right)} . \\
& \rightarrow \beta_{2, o}=\frac{\operatorname{cov}\left(x_{2}, y\right)}{\operatorname{var}\left(x_{2}\right)} ; \beta_{1, o}=E(y)-\beta_{2, o} E\left(x_{2}\right) .
\end{aligned}
$$

Theorem:
Let $y_{t}=x_{t \cdot}^{\prime} \beta_{o} \equiv \beta_{1, o}+w_{t \cdot}^{\prime} \beta_{w, o}+\varepsilon_{t}$, where $x_{t .}^{\prime}=\left(1, w_{t \cdot}^{\prime}\right), \beta_{o}=\left(\beta_{1, o}, \beta_{w, o}^{\prime}\right)^{\prime}$,
$w_{t .}=\left(x_{t 2}, \ldots, x_{t k}\right)^{\prime}$ and $\beta_{w, o}=\left(\beta_{2, o}, \ldots, \beta_{k, o}\right)^{\prime}$. Suppose that this model satisfies
(SIC.1)-(SIC4) and (SIC.7). Then,

$$
\beta_{o}=\left(E\left(x_{t} x_{t}^{\prime}\right)\right)^{-1} E\left(x_{t} y_{t}\right)=\left(E\left(x_{\bullet} x_{\bullet}^{\prime}\right)\right)^{-1} E\left(x_{\bullet} y\right) .
$$

And,

$$
\begin{aligned}
\beta_{w, o} & =\left(E\left(w_{\bullet} w_{\bullet}^{\prime}\right)-E\left(w_{0}\right) E\left(w_{\bullet}^{\prime}\right)\right)^{-1}\left(E\left(w_{0} y\right)-E\left(w_{0}\right) E(y)\right) \\
& =\left(\operatorname{Cov}\left(w_{0}\right)\right)^{-1} \operatorname{Cov}\left(w_{\bullet}, y\right)
\end{aligned}
$$

Hint for proof:

$$
\left.\begin{array}{rl}
\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)^{-1} & =\left(\begin{array}{cc}
A_{11}^{-1} & 0 \\
0 & 0
\end{array}\right)+\binom{A_{11}^{-1} A_{12}}{-I}\left(A_{22}-A_{21} A_{11}^{-1} A_{12}\right)\left(A_{21} A_{11}^{-1}\right.
\end{array}-I\right), ~\left(\begin{array}{cc}
0 & 0 \\
0 & A_{22}^{-1}
\end{array}\right)+\binom{-I}{-A_{22}^{-1} A_{21}}\left(A_{11}-A_{12} A_{22}^{-1} A_{21}\right)\left(\begin{array}{ll}
-I & A_{12} A_{22}^{-1}
\end{array}\right), ~ \$
$$

where 0 's here are zero matrices.

Implications:

- The slopes, $\beta_{2, o}, \ldots, \beta_{k, o}$, measure the correlations between regressors and dependent variables.
- $\beta_{2, o} \neq 0$ means non-zero correlation between y_{t} and $\mathrm{x}_{\mathrm{t} 2}$. It does not mean that $\mathrm{x}_{\mathrm{t} 2}$ causes $\mathrm{y}_{\mathrm{t}} . \quad \beta_{2, o} \neq 0$ could mean that y_{t} causes $\mathrm{x}_{\mathrm{t} 2}$.
- SIC do not talk about causality. SIC may hold even if y_{t} determines $x_{t 0}$: It can be the case that $E\left(e d u_{t} \mid\right.$ wage $\left._{t}\right)=\beta_{1, o}+\beta_{2, o}$ wage $_{t}$.
- But, the regression model (1) is not meaningful if the x variables are not causal variables. We would like to know by how much hourly wage rate increases with one more of education. We would not be interested in how many more years of education an individual could have obtained if his/her current wage rate increased now by $\$ 1$!

[3] Ordinary Least Squares (OLS)

Definition:
For a given sample $\left\{\left(y_{t}, x_{t 1}, \ldots, x_{t k}\right)^{\prime}\right\}_{t=1, \ldots, T}$ without perfect multicollinearity
among regressors $x_{t 1}, \ldots, x_{t k}$, the OLS estimator $\hat{\beta}=\left(\hat{\beta}_{1}, \hat{\beta}_{2}, \ldots, \hat{\beta}_{k}\right)^{\prime}$ minimizes:

$$
\begin{aligned}
S_{T}(\beta) & \equiv \Sigma_{t}\left(y_{t}-x_{t 1} \beta_{1}-\ldots-x_{t k} \beta_{k}\right)^{2} \\
& =\Sigma_{t}\left(y_{t}-x_{t 0}^{\prime} \beta\right)=(y-X \beta)^{\prime}(y-X \beta)
\end{aligned}
$$

where $\Sigma_{t}=\Sigma_{t=1}^{T}$, and

$$
y=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
: \\
y_{T}
\end{array}\right) ; X=\left(\begin{array}{c}
x_{1 \bullet}^{\prime} \\
x_{2 \bullet}^{\prime} \\
: \\
x_{T \bullet}^{\prime}
\end{array}\right) ; x_{t \bullet}^{\prime}=\left(x_{t 1}, x_{t 2}, \ldots, x_{t k}\right)
$$

Comment on the assumption of no perfect multicollinearity.

- $\operatorname{rank}\left(X^{\prime} X\right)=\operatorname{rank}(X)=k$. So, $X^{\prime} X=\Sigma_{t} X_{t 0} X_{t \bullet}^{\prime}$ is invertible.
- If perfect multicollinearity exists, $\operatorname{rank}\left(X^{\prime} X\right)=\operatorname{rank}(X)<k$. So, $X^{\prime} X=\Sigma_{t} x_{t} \cdot x_{t}^{\prime}$. is not invertible.
- If $T<k, \operatorname{rank}\left(X^{\prime} X\right)=\operatorname{rank}(X) \leq \min (T, k)<k$. So, $X^{\prime} X=\Sigma_{t} x_{t} x_{t}^{\prime}$ is not invertible. $T<k$ is a case of perfect multicollinearity.

EX: Simple Regression Model

- Wish to estimate $y_{t}=\beta_{1, o} x_{t 1}+\beta_{2, o} x_{t 2}+\varepsilon_{t}$:

$$
S_{T}\left(\beta_{1}, \beta_{2}\right)=\Sigma_{t}\left(y_{t}-x_{t 1} \beta_{1}-x_{t 2} \beta_{2}\right)^{2} .
$$

- The first order condition for minimization:

$$
\begin{aligned}
& \partial S_{T} / \partial \beta_{1}=\Sigma_{\mathrm{t}} 2\left(\mathrm{y}_{\mathrm{t}}-\mathrm{x}_{\mathrm{t} 1} \beta_{1}-\mathrm{x}_{\mathrm{t} 2} \beta_{2}\right)\left(-\mathrm{x}_{\mathrm{t} 1}\right)=0 \rightarrow \Sigma_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t} 1} \mathrm{y}_{\mathrm{t}}-\mathrm{x}_{\mathrm{t} 1}{ }^{2} \beta_{1}-\mathrm{x}_{\mathrm{t} 1} \mathrm{x}_{\mathrm{t} 2} \beta_{2}\right)=0 \\
& \partial S_{T} / \partial \beta_{2}=\Sigma_{\mathrm{t}} 2\left(\mathrm{y}_{\mathrm{t}}-\mathrm{x}_{\mathrm{t} 1} \beta_{1}-\mathrm{x}_{\mathrm{t} 2} \beta_{2}\right)\left(-\mathrm{x}_{\mathrm{t} 2}\right)=0 \rightarrow \Sigma_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t} 2} \mathrm{y}_{\mathrm{t}}-\mathrm{x}_{\mathrm{t} 1} \mathrm{x}_{\mathrm{t} 2} \beta_{1}-\mathrm{x}_{\mathrm{t} 2}^{2} \beta_{2}\right)=0 \\
& \rightarrow \quad \Sigma_{\mathrm{t}} \mathrm{x}_{\mathrm{t} 1} \mathrm{y}_{\mathrm{t}}=\left(\Sigma_{\mathrm{t}} \mathrm{x}_{\mathrm{t} 1}^{2}\right) \beta_{1}+\left(\Sigma_{\mathrm{t}} \mathrm{x}_{\mathrm{t} 1} \mathrm{x}_{\mathrm{t} 2}\right) \beta_{2} \\
& \Sigma_{\mathrm{t}} \mathrm{x}_{\mathrm{t} 2} \mathrm{y}_{\mathrm{t}}=\left(\Sigma_{\mathrm{t}} \mathrm{x}_{\mathrm{t} 1} \mathrm{x}_{\mathrm{t} 2}\right) \beta_{1}+\left(\Sigma_{\mathrm{t}} \mathrm{x}_{\mathrm{t} 2}^{2}\right) \beta_{2} \\
& \rightarrow \quad\binom{\Sigma_{t} x_{t 1} y_{t}}{\Sigma_{t} x_{t 2} y_{t}}=\left(\begin{array}{cc}
\Sigma_{t} x_{t 1}{ }^{2} & \Sigma_{t} x_{t 1} x_{t 2} \\
\Sigma_{t} x_{t 2} x_{t 1} & \Sigma_{t} x_{t 2}{ }^{2}
\end{array}\right)\binom{\hat{\beta}_{1}}{\hat{\beta}_{2}} .
\end{aligned}
$$

$\rightarrow \quad$ But, this equation is equivalent to $X^{\prime} y=X^{\prime} X \hat{\beta}$.
$\rightarrow \quad \hat{\beta}=\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}^{\prime} \mathrm{y}$.

Derivation of the OLS estimator for general cases:

- $S_{T}(\beta)=\left(y^{\prime}-\beta^{\prime} X^{\prime}\right)(y-X \beta)=y^{\prime} y-\beta^{\prime} X^{\prime} y-y^{\prime} X \beta+\beta^{\prime} X^{\prime} X \beta$.
- Since $y^{\prime} X \beta$ is a scalar, $y^{\prime} X \beta=\left(y^{\prime} X \beta\right)^{\prime}=\beta^{\prime} X^{\prime} y$.
- Thus, $S_{T}(\beta)=y^{\prime} y-2 \beta^{\prime} X^{\prime} y+\beta^{\prime} X^{\prime} X \beta$.
- FOC for minimization of $\mathrm{S}_{\mathrm{T}}(\beta): \frac{\partial S_{T}(\beta)}{\partial \beta} \equiv\left(\begin{array}{c}\frac{\partial S_{T}(\beta)}{\partial \beta_{1}} \\ \frac{\partial S_{T}(\beta)}{\partial \beta_{2}} \\ \vdots \\ \frac{\partial S_{T}(\beta)}{\partial \beta_{k}}\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ : \\ 0\end{array}\right)=0_{k \times 1}$.

But,

$$
\begin{gathered}
\partial\left(\beta^{\prime} \mathrm{X}^{\prime} \mathrm{y}\right) / \partial \beta=\mathrm{X}^{\prime} \mathrm{y} \\
\partial\left(\beta^{\prime} \mathrm{X}^{\prime} \mathrm{X} \beta\right) / \partial \beta=2 \mathrm{X}^{\prime} \mathrm{X} \beta
\end{gathered}
$$

[In fact, for any $\mathrm{k} \times 1$ vector $\mathrm{d}, \partial\left(\beta^{\prime} \mathrm{d}\right) / \partial \beta=\mathrm{d}$; and, for any $\mathrm{k} \times \mathrm{k}$ symmetric matrix $\mathrm{A}, \partial\left(\beta^{\prime} \mathrm{A} \beta\right) / \partial \beta=2 \mathrm{~A} \beta$.]
Thus, FOC implies

$$
\frac{\partial S_{T}(\beta)}{\partial \beta}=-2 X^{\prime} y+2 X^{\prime} X \beta=0_{k \times 1}
$$

\rightarrow

$$
\begin{equation*}
X^{\prime} y-X^{\prime} X \beta=0_{k \times 1} \tag{2}
\end{equation*}
$$

$\rightarrow \quad$ Solving (2), we have

$$
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y .
$$

SOC (second order condition) for minimization:

$$
\frac{\partial^{2} S_{T}(\beta)}{\partial \beta \partial \beta^{\prime}}=\left[\frac{\partial^{2} S_{T}(\beta)}{\partial \beta_{i} \partial \beta_{j}}\right]_{k \times k}=2 \mathrm{X}^{\prime} \mathrm{X}
$$

which is a positive definite matrix for any value of β. That is, the function $\mathrm{S}_{\mathrm{T}}(\beta)$ is globally convex. This indicates that $\hat{\beta}$ indeed minimizes $\mathrm{S}_{\mathrm{T}}(\beta)$.
[Here, we use the fact that $\partial\left(\beta^{\prime} \mathrm{A} \beta\right) / \partial \beta \partial \beta^{\prime}=2 \mathrm{~A}$ for any symmetric matrix A.]

Theorem: $\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y$.

Definition:

- t'th residual: $e_{t}=y_{t}-x_{t \cdot}^{\prime} \hat{\beta}$ (can be viewed as an estimate of ε_{t}).
- Vector of residuals: $e=\left(e_{1}, \ldots, e_{T}\right)^{\prime}=y-X \hat{\beta}$.

Theorem: $X^{\prime} e=0_{k \times 1}$
Proof:
From the proof of the previous theorem,

$$
X^{\prime} y-X^{\prime} X \hat{\beta}=0_{k \times 1} \rightarrow X^{\prime}(y-X \hat{\beta})=0_{k \times 1} \rightarrow X^{\prime} e=0 .
$$

Corollary:
If (SIC.7) holds ($x_{t 1}=1$ for all t : β_{1} is the intercept), $\Sigma_{\mathrm{t}} \mathrm{e}_{\mathrm{t}}=0$.
Proof:

$$
\begin{gathered}
X^{\prime} e=\left[\begin{array}{cccc}
x_{11} & x_{21} & \ldots & x_{T 1} \\
x_{12} & x_{22} & \ldots & x_{T 2} \\
: & : & & : \\
x_{1 k} & x_{2 k} & \ldots & x_{T k}
\end{array}\right]\left[\begin{array}{c}
e_{1} \\
e_{2} \\
: \\
e_{T}
\end{array}\right]=\left[\begin{array}{c}
\Sigma_{t} x_{t 1} e_{t} \\
\Sigma_{t} x_{t 2} e_{t} \\
: \\
\Sigma_{t} x_{t k} e_{t}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
: \\
0
\end{array}\right]_{k \times 1} . \\
\rightarrow \Sigma_{\mathrm{t}} \mathrm{x}_{\mathrm{t} 1} \mathrm{e}_{\mathrm{t}}=0 \rightarrow \Sigma_{\mathrm{t}} \mathrm{e}_{\mathrm{t}}=0 \text { (by SIC. } 7 \text {). }
\end{gathered}
$$

Question:
Consider the following two models:
(A) $\mathrm{y}_{\mathrm{t}}=\mathrm{x}_{\mathrm{t} 1} \beta_{1}+\mathrm{x}_{\mathrm{t} 2} \beta_{2}+\mathrm{x}_{\mathrm{t} 3} \beta_{3}+\varepsilon_{\mathrm{t}}$;
(B) $y_{t}=x_{t 1} \beta_{1}+x_{t 2} \beta_{2}+\varepsilon_{t}$.

Are the OLS estimates of β_{1} and β_{2} from (A) the same as those from (B)?

Digression to Matrix Algebra

Definition: Let A be a $\mathrm{T} \times \mathrm{p}$ matrix.
$\mathrm{P}(\mathrm{A})=\mathrm{A}\left(\mathrm{A}^{\prime} \mathrm{A}\right)^{-1} \mathrm{~A}^{\prime}(\mathrm{T} \times \mathrm{T}$ matrix called "projection matrix");
$\mathrm{M}(\mathrm{A})=\mathrm{I}_{\mathrm{T}}-\mathrm{P}(\mathrm{A})=\mathrm{I}_{\mathrm{T}}-\mathrm{A}\left(\mathrm{A}^{\prime} \mathrm{A}\right)^{-1} \mathrm{~A}^{\prime}(\mathrm{T} \times \mathrm{T}$ matrix called "residual maker $)$.

Facts:

1) $P(A)$ and $M(A)$ are both symmetric and idempotent:

$$
\mathrm{P}(\mathrm{~A})^{\prime}=\mathrm{P}(\mathrm{~A}), \mathrm{M}(\mathrm{~A})^{\prime}=\mathrm{M}(\mathrm{~A}), \mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~A})=\mathrm{P}(\mathrm{~A}), \mathrm{M}(\mathrm{~A}) \mathrm{M}(\mathrm{~A})=\mathrm{M}(\mathrm{~A})
$$

2) $P(A)$ and $M(A)$ are psd (positive semi-definite).
3) $\mathrm{P}(\mathrm{A}) \mathrm{M}(\mathrm{A})=0_{\mathrm{T} \times \mathrm{T}}$ (orthogonal).
4) $\mathrm{P}(\mathrm{A}) \mathrm{A}=\left[\mathrm{A}\left(\mathrm{A}^{\prime} \mathrm{A}\right)^{-1} \mathrm{~A}^{\prime}\right] \mathrm{A}=\mathrm{A}$.
5) $\mathrm{M}(\mathrm{A}) \mathrm{A}=\left[\mathrm{I}_{\mathrm{T}}-\mathrm{P}(\mathrm{A})\right] \mathrm{A}=\mathrm{A}-\mathrm{P}(\mathrm{A}) \mathrm{A}=\mathrm{A}-\mathrm{A}=0_{\mathrm{T} \times \mathrm{T}}$.

End of Digression

Theorem: $\mathrm{e}=\mathrm{M}(\mathrm{X}) \mathrm{y}$.
$<$ Proof $>\quad e=y-X \widehat{\beta}=I_{T} y-X\left(X^{\prime} X\right)^{-1} X^{\prime} y=\left[I_{T}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right] y=M(X) y$.

Frisch-Waugh Theorem:
Partition X into $\left[\mathrm{X}_{\mathrm{A}}, \mathrm{X}_{\mathrm{B}}\right]$ and $\beta=\left(\beta_{A}^{\prime}, \beta_{B}^{\prime}\right)^{\prime}$. Let $\hat{\beta}_{A}$ be the OLS estimate of β_{A} from a regression of the model $\mathrm{y}=\mathrm{X} \beta+\varepsilon=\mathrm{X}_{\mathrm{A}} \beta_{\mathrm{A}}+\mathrm{X}_{\mathrm{B}} \beta_{\mathrm{B}}+\varepsilon$. Then,

$$
\widehat{\beta}_{A}=\left[X_{A}{ }^{\prime} M\left(X_{B}\right) X_{A}\right]^{-1} X_{A}{ }^{\prime} M\left(X_{B}\right) y .
$$

That is, $\widehat{\beta}_{A}$ is obtained by regressing $\mathrm{M}\left(\mathrm{X}_{\mathrm{B}}\right)$ y on $\mathrm{M}\left(\mathrm{X}_{B}\right) \mathrm{X}_{\mathrm{A}}$.

Comment:
$\widehat{\beta}_{A}$ is different from the OLS estimate of β_{A} from a regression of y on X_{A}.

Theorem:
Consider the following models:
(A) $y_{t}=\beta_{1}+\beta_{2} x_{t 2}+\beta_{3} x_{t 3}+$ error
(B) $y_{t}=\alpha_{1}+\alpha_{2} \mathrm{x}_{\mathrm{t} 2}+$ error
(C) $\mathrm{x}_{\mathrm{t} 3}=\delta_{1}+\delta_{2} \mathrm{x}_{\mathrm{t} 2}+$ error

Then, $\hat{\alpha}_{2}=\hat{\beta}_{2}+\hat{\delta}_{2} \hat{\beta}_{3}$.

Theorem:
Consider the following two models:
(A) $\mathrm{y}_{\mathrm{t}}=\beta_{1}+\beta_{2} \mathrm{x}_{\mathrm{t} 2}+\ldots+\beta_{\mathrm{k}} \mathrm{x}_{\mathrm{tk}}+\varepsilon_{\mathrm{t}} ;$
(B) $y_{t}-\bar{y}=\beta_{2}\left(x_{t 2}-\bar{x}_{2}\right)+\ldots+\beta_{k}\left(x_{t k}-\bar{x}_{k}\right)+$ error.

Then, the OLS estimates of $\beta_{2}, \ldots, \beta_{\mathrm{k}}$ from the regression of (A) are the same as the OLS estimates of $\beta_{2}, \ldots, \beta_{\mathrm{k}}$ from the regression of (B).

Proof:

Model (A) can be written as

$$
y=X \beta=1_{T} \beta_{1}+X_{*} \beta_{*}+\varepsilon
$$

where 1_{T} is the $\mathrm{T} \times 1$ vector of ones and $\beta_{*}=\left(\beta_{2}, \ldots, \beta_{\mathrm{k}}\right)^{\prime}$. Then,

$$
\widehat{\beta}_{*}=\left(X_{*}^{\prime} M\left(1_{T}\right) X_{*}\right)^{-1} X_{*}{ }^{\prime} M\left(1_{T}\right) y .
$$

Observe that:

$$
M\left(1_{T}\right) y=\left(\begin{array}{llll}
y_{1}-\bar{y} & y_{2}-\bar{y} & \ldots & y_{T}-\bar{y}
\end{array}\right)^{\prime}
$$

Now, complete the proof by yourself.

[4] Goodness of Fit

Question: How well does your regression explain y_{t} ?

Example:

- A simple regression model: $\mathrm{y}_{\mathrm{t}}=\beta_{1}+\beta_{2} \mathrm{x}_{\mathrm{t} 2}+\varepsilon_{\mathrm{t}}$, with $\beta_{1, \mathrm{o}}=\beta_{2, \mathrm{o}}=1$.
- For population $\mathrm{A}, \sigma_{0}{ }^{2}=1$. For population $B, \sigma_{0}{ }^{2}=10$.

- Clearly, the regression line $E\left(y_{t} \mid x_{t}\right)$ explains Population A better.
- How can we measure the goodness of fit of $E\left(y_{t} \mid x_{t}\right)$?

Definition:

- "Fitted value" of $y_{t}: \hat{y}_{t}=x_{t}^{\prime} \cdot \hat{\beta}$ (an estimate of $\left.E\left(y_{t} \mid x_{t}\right)\right)$.
- Vector of fitted values: $\hat{y}=X \hat{\beta}$.

Definition:
$\operatorname{SSE}=e^{\prime} e=(y-X \hat{\beta})^{\prime}(y-X \hat{\beta})=(y-\hat{y})^{\prime}(y-\hat{y})=\Sigma_{t}\left(y_{t}-\hat{y}_{t}\right)^{2}$.
(Unexplained sum of squares)
\rightarrow Measures unexplained variation of y_{t}.
$\rightarrow \mathrm{SSE} / \mathrm{T}$ is an estimate of $\mathrm{E}_{\mathrm{x}}[\operatorname{var}(\mathrm{y} \mid \mathrm{x})]$.
$\operatorname{SSR}=\Sigma_{t}\left(\hat{y}_{t}-\bar{y}\right)^{2}$, where $\bar{y}=T^{-1} \Sigma_{t} y_{t}$ (Explained sum of squares).
\rightarrow Measures variation of y_{t} explained by regression.
$\rightarrow \mathrm{SSR} / \mathrm{T}$ is an estimate of $\operatorname{var}_{\mathrm{x}}[\mathrm{E}(\mathrm{y} \mid \mathrm{x})]$.
$\operatorname{SST}=\Sigma_{t}\left(y_{t}-\bar{y}\right)^{2}$ (Total sum of squares)
$\rightarrow \mathrm{SST} / \mathrm{T}$ measures total variation of y_{t}.

Theorem: $\mathrm{SSE}=\Sigma_{\mathrm{t}} \mathrm{e}_{\mathrm{t}}^{2}=y^{\prime} y-\hat{\beta}^{\prime} X^{\prime} y$.
Proof:

$$
\begin{aligned}
\mathrm{SSE} & =(y-X \hat{\beta})^{\prime}(y-X \hat{\beta})=y^{\prime} y-2 \hat{\beta}^{\prime} X^{\prime} y+\hat{\beta}^{\prime} X ' X \hat{\beta} \\
& =y^{\prime} y-2 \hat{\beta}^{\prime} X^{\prime} y+\hat{\beta}^{\prime} X^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} y=y^{\prime} y-\hat{\beta}^{\prime} X^{\prime} y
\end{aligned}
$$

Theorem:
$\mathrm{SST}=\Sigma_{t}\left(y_{t}-\bar{y}\right)^{2}=\Sigma_{t} y_{t}^{2}-T \bar{y}^{2}$,
$\mathrm{SSR}=\hat{\beta}^{\prime} X^{\prime} y-T \bar{y}^{2}$ [if (SIC.7) holds].
Proof: For SSR, see Schmidt.

Theorem:
Suppose that $\mathrm{x}_{\mathrm{t} 1}=1$, for all t (that is, (SIC.7) holds). Then, $\mathrm{SST}=\mathrm{SSE}+\mathrm{SSR}$. Proof: Obvious.

Implication:
Total variation of y_{t} equals sum of explained and unexplained variations of y_{t}.

Definition: [Measure of goodness of fit] $\mathrm{R}^{2}=1-(\mathrm{SSE} / \mathrm{SST})=(\mathrm{SST}-\mathrm{SSE}) / \mathrm{SST}$.

Theorem:
Suppose that $\mathrm{x}_{\mathrm{t} 1}=1$, for all t (SIC.7). Then, $\mathrm{R}^{2}=\mathrm{SSR} /$ SST and $0 \leq \mathrm{R}^{2} \leq 1$.

Note:

1) If (SIC.7) holds, then, $\mathrm{R}^{2}=1-(\mathrm{SSE} / \mathrm{SST})=\mathrm{SSR} / \mathrm{SST}$.
2) If (SIC.7) does not hold, then, $1-(\mathrm{SSE} / \mathrm{SST}) \neq \mathrm{SSR} / \mathrm{SST}$.
3) $1-(\mathrm{SSE} / \mathrm{SST})$ can never be greater than 1 , but it could be negative. SSR/SST can never be negative, but it could be greater than 1.

Definition:
$\mathrm{R}_{\mathrm{u}}{ }^{2}\left(\right.$ uncentered $\left.\mathrm{R}^{2}\right)=\hat{y}^{\prime} \hat{y} / y^{\prime} y=\Sigma_{t} \hat{y}_{t}^{2} / \Sigma_{t} y_{t}^{2}$.

Note:

- Some people use $\mathrm{R}_{\mathrm{u}}{ }^{2}$, when the model has no intercept term.
- $0 \leq \mathrm{R}_{\mathrm{u}}{ }^{2} \leq 1$, since $\mathrm{e}^{\prime} \mathrm{e}+\hat{y}^{\prime} \hat{y}=\mathrm{y}^{\prime} \mathrm{y}$. [Why? Try it at home.]
\rightarrow This holds even if (SIC.7) does not hold.
- If $\bar{y}=0$, then, $\mathrm{R}_{\mathrm{u}}{ }^{2}=\mathrm{R}^{2}$.

Definition:

An estimator of covariance between y_{t} and \hat{y}_{t} (which be viewed as an estimate of $\left.E\left(y_{t} \mid x_{t \bullet}\right)\right)$ is defined by:

$$
e \operatorname{cov}\left(y_{t}, \hat{y}_{t}\right)=\frac{1}{T-1} \Sigma_{t}\left(y_{t}-\bar{y}\right)\left(\hat{y}_{t}-\tilde{y}\right)
$$

where $\tilde{y}=T^{-1} \Sigma_{t} \hat{y}_{t}$. Similarly, the estimators of $\operatorname{var}\left(\mathrm{y}_{\mathrm{t}}\right)$ and $\operatorname{var}\left(\hat{y}_{t}\right)$ are defined by:

$$
e \operatorname{var}\left(y_{t}\right)=\frac{1}{T-1} \Sigma_{t}\left(y_{t}-\bar{y}\right)^{2} ; e \operatorname{var}\left(\hat{y}_{t}\right)=\frac{1}{T-1} \Sigma_{t}\left(\hat{y}_{t}-\tilde{y}\right)^{2} .
$$

Then, the estimated correlation coefficient between y_{t} and \hat{y}_{t} is defined by:

$$
\hat{\rho}=\frac{e \operatorname{cov}\left(y_{t}, \hat{y}_{t}\right)}{\sqrt{e \operatorname{var}\left(y_{t}\right)} \sqrt{e \operatorname{var}\left(\hat{y}_{t}\right)}} .
$$

Note:

1) $0 \leq \hat{\rho}^{2} \leq 1$, whether (SIC. 7) holds or not.
2) If (SIC.7) holds, $\widetilde{y}=\bar{y}$.
3) If (SIC.7) holds, $1-(\mathrm{SSE} / \mathrm{SST})=\mathrm{SSR} / \mathrm{SST}=\hat{\rho}^{2}$ 。

Remark for the case where (SIC.7) holds:

1) If $\mathrm{R}^{2}=1, \mathrm{y}_{\mathrm{t}}$ and \hat{y}_{t} are perfectly correlated (perfect fit).
2) If $\mathrm{R}^{2}=0, \mathrm{y}_{\mathrm{t}}$ and \hat{y}_{t} have no correlation.
\rightarrow Regression may not be much useful.
3) Does a high R^{2} always mean that your regression is good?
[Answer]
No. If you use more regressors, then, you will get higher R^{2}. In particular, if $\mathrm{k}=\mathrm{T}, \mathrm{R}^{2}=1$.
4) R^{2} tends to exaggerate goodness of fit when T is small.

Definition: [Adjusted R^{2}, Theil (1971)]

$$
\bar{R}^{2}=1-\frac{S S E /(T-k)}{S S T /(T-1)} .
$$

Comment:

- $\bar{R}^{2}<R^{2}$ unless $\mathrm{k}>1$ and $\mathrm{R}^{2}<1$.
- \bar{R}^{2} could be negative.
[Proof for the fact that R^{2} increases with k]
Theorem: Let $\mathrm{A}=\left[\mathrm{A}_{1}, \mathrm{~A}_{2}\right]$. Then,

$$
\mathrm{M}(\mathrm{~A}) \mathrm{A}_{\mathrm{j}}=0 ; \mathrm{P}(\mathrm{~A}) \mathrm{A}_{\mathrm{j}}=\mathrm{A}_{\mathrm{j}}, \mathrm{j}=1,2 ; \mathrm{P}(\mathrm{~A})=\mathrm{P}\left(\mathrm{~A}_{1}\right)+\mathrm{P}\left[\mathrm{M}\left(\mathrm{~A}_{1}\right) \mathrm{A}_{2}\right]
$$

Theorem: $\hat{y}=P(X) y$ and $e=M(X) y$.
Proof: Because $\hat{y}=X \hat{\beta}=X\left(X^{\prime} X\right)^{-1} \mathrm{X}^{\prime} \mathrm{y}=\mathrm{P}(\mathrm{X}) \mathrm{y}$. And $\mathrm{e}=\mathrm{y}-\mathrm{P}(\mathrm{X}) \mathrm{y}=\mathrm{M}(\mathrm{X}) \mathrm{y}$.

Lemma: $\mathrm{SSE}=\mathrm{y}^{\prime} \mathrm{M}(\mathrm{X}) \mathrm{y}=\mathrm{y}^{\prime} \mathrm{y}-\mathrm{y}^{\prime} \mathrm{P}(\mathrm{X}) \mathrm{y}$.
Proof: $S S E=e^{\prime} e=[M(X) y]^{\prime} M(X) y=y^{\prime} M(X)^{\prime} M(X) y=y^{\prime} M(X) y$.

Theorem:
When k increases, SSE never increases.
Proof:
Compare:
Model 1: $y=X \beta+\varepsilon$
Model 2: $\mathrm{y}=\mathrm{X} \beta+\mathrm{Z} \gamma+\mathrm{v}=\mathrm{W} \xi+\mathrm{v}$,
where $\mathrm{W}=[\mathrm{X}, \mathrm{Z}]$ and $\xi=\left[\beta^{\prime}, \gamma^{\prime}\right]^{\prime}$.
$\mathrm{SSE}_{1}=\mathrm{SSE}$ from $\mathrm{M} 1=\mathrm{y}^{\prime} \mathrm{M}(\mathrm{X}) \mathrm{y}=\mathrm{y}^{\prime} \mathrm{y}-\mathrm{y}^{\prime} \mathrm{P}(\mathrm{X}) \mathrm{y}$
$\mathrm{SSE}_{2}=\mathrm{SSE}$ from $\mathrm{M} 2=\mathrm{y}^{\prime} \mathrm{M}(\mathrm{W}) \mathrm{y}=\mathrm{y}^{\prime} \mathrm{y}-\mathrm{y}^{\prime} \mathrm{P}(\mathrm{W}) \mathrm{y}$

$$
\begin{aligned}
& =y^{\prime} \mathrm{y}-\mathrm{y}^{\prime}[\mathrm{P}(\mathrm{X})+\mathrm{P}\{\mathrm{M}(\mathrm{X}) \mathrm{Z}\}] \mathrm{y} \\
& =\mathrm{y}^{\prime} \mathrm{y}-\mathrm{y}^{\prime} \mathrm{P}(\mathrm{X}) \mathrm{y}-\mathrm{y}^{\prime} \mathrm{P}\{\mathrm{M}(\mathrm{X}) \mathrm{Z}\} \mathrm{y}
\end{aligned}
$$

$\mathrm{SSE}_{1}-\mathrm{SSE}_{2}=\mathrm{y}^{\prime} \mathrm{P}\{\mathrm{M}(\mathrm{X}) \mathrm{Z}\} \mathrm{y} \geq 0$.
[5] Statistical Properties of the OLS estimator
(1) Random Sample:

- A population (of billions and billions)

Here, the $\mathrm{x}^{(\mathrm{j})}$ are the members of the population.

- θ : An unknown parameter of interest (e.g., population mean or population variance.)
o If we know the pdf of this population, we could easily compute θ. But if you do not know the pdf?
- Need to estimate θ, using a random sample $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$ of size T from the population.
- What do we mean by "random sample"?
- A sample that represents the population well.
- Divide the population into T groups such that the groups are stochastically independent and the pdf of each group is the same as the pdf of the whole population. Then, draw one from each group: Then, the $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}$ should be iid (independently and identically distributed).
- "Random sample" means a sample obtained by this sampling strategy.
- An example of nonrandom sampling:
- Suppose you wish to estimate the \% of supporters of the Republican Party in the Phoenix metropolitan area.
- t is a zip-code area. Choose a person living in a street corner from each t .
- If you do, your sample is not random. Because rich people are likely to live in corner houses! Republicans are over-sampled!
- Let $\hat{\theta}$ be an estimator of θ. What properties should $\hat{\theta}$ have?
(2) Criteria for "good" estimators

1) Unbiasedness.
2) Small variance.
3) Distributed following a known form of pdf (e.g., normal, or χ^{2}).

Definition: (Unbiasedness)
If $E(\hat{\theta})=\theta_{o}$, then we say that $\hat{\theta}$ is an unbiased estimator of θ.
Comment:

- Consider the set of all possible random samples of size T :

Estimate
Sample 1: $\left\{\mathrm{x}_{1}{ }^{[1]}, \mathrm{x}_{2}{ }^{[1]}, \ldots, \mathrm{x}_{\mathrm{T}}{ }^{[1]}\right\} \quad \rightarrow \quad \hat{\theta}^{[1]}$
Sample 2: $\left\{\mathrm{x}_{1}{ }^{[2]}, \mathrm{x}_{2}{ }^{[2]}, \ldots, \mathrm{x}_{\mathrm{T}}{ }^{[2]}\right\} \quad \rightarrow \quad \hat{\theta}^{[2]}$
Sample 3: $\left\{\mathrm{x}_{1}{ }^{[3]}, \mathrm{x}_{2}{ }^{[3]}, \ldots, \mathrm{x}_{\mathrm{T}}{ }^{[3]}\right\} \quad \rightarrow \quad \hat{\theta}^{[3]}$

Sample $\mathrm{b}^{\prime}:\left\{\mathrm{x}_{1}{ }^{\left[\mathrm{b}^{\prime}\right]}, \mathrm{x}_{2}{ }^{\left[\mathrm{b}^{\prime}\right]}, \ldots, \mathrm{x}_{\mathrm{T}}{ }^{\left[\mathrm{b}^{\prime}\right]}\right\} \quad \rightarrow \quad \hat{\theta}^{\left[b^{\prime}\right]}$.

- Consider the population of $\mathrm{S}_{\theta} \equiv\left\{\hat{\theta}^{[1]}, \ldots, \hat{\theta}^{\left[b^{\prime}\right]}\right\}$.
- Unbiasedness of $\hat{\theta}$ means that $\mathrm{E}(\hat{\theta})=$ population average of $\mathrm{S}_{\theta}=\theta_{0}$.

Definition: (Relative Efficiency)

Let $\hat{\theta}$ and $\hat{\theta}$ be unbiased estimators of θ. If $\operatorname{var}(\hat{\theta})<\operatorname{var}(\hat{\theta})$, we say that $\hat{\theta}$ is more efficient than $\hat{\theta}$.

Comment:
If $\hat{\theta}$ is more efficient than $\hat{\theta}$, it means that the value of $\hat{\theta}$ that I can obtain from a particular sample would be generally closer to the true value of $\theta\left(\theta_{0}\right)$ than the value of $\hat{\theta}$.

Example:

- A population is normally distributed with $\mathrm{N}\left(\mu, \sigma^{2}\right)$, where $\mu_{0}=0$ and $\sigma_{0}{ }^{2}=9$.
- $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$ is a random sample $(\mathrm{T}=100)$:
- Two possible unbiased estimators of $\mu: \bar{x}=\frac{1}{T} \Sigma_{t} x_{t}$ and $\widehat{x}=x_{1}$.
- $E(\bar{x})=E\left(\frac{1}{T} \Sigma_{t} x_{t}\right)=\frac{1}{T} \Sigma_{t} E\left(x_{t}\right)=\frac{1}{T} \Sigma_{t} \mu_{o}=\mu_{o} ; E(\widehat{x})=E\left(x_{1}\right)=\mu_{o}$.
- Which estimator is more efficient?
- $\operatorname{var}(\bar{x})=\operatorname{var}\left(\frac{1}{T} \Sigma_{t} x_{t}\right)=\left(\frac{1}{T}\right)^{2} \Sigma_{t} \operatorname{var}\left(x_{t}\right)=\left(\frac{1}{T}\right)^{2} \Sigma_{t} \sigma_{o}^{2}=\frac{\sigma_{o}^{2}}{T} ;$
- $\operatorname{var}(\widehat{x})=\operatorname{var}\left(x_{1}\right)=\sigma_{o}^{2}$.
- Thus, $\operatorname{var}(\bar{x})=\frac{\sigma_{o}^{2}}{T}<\sigma_{o}^{2}=\operatorname{var}(\widehat{x})$, if $\mathrm{T}>1$.

Gauss Exercise:

- From $\mathrm{N}(0,9)$, draw 1,000 random samples of size equal to $\mathrm{T}=100$.
- For each sample, compute \bar{X} and \hat{X}.
- Draw a histogram for each estimator.
- Gauss program name: mmonte.prg.

```
/*
** Monte Carlo Program for sample mean
*/
seed = 1;
tt = 100; @ # of observations @ 
iter = 1000; @ # of sets of different data @
storem = zeros(iter,1);
stores = zeros(iter,1);
i=1; do while i <= iter;
@ compute sample mean for each sample @ 
x = 3*rndns(tt,1,seed);
m = meanc(x);
storem[i,1] = m;
stores[i,1] = x[1,1];
i = i + 1; endo;
@ Reporting Monte Carlo results @ 
output file = mmonte.out reset;
format /rd 12,3;
"Monte Carlo results";
"-
"----------";
"Mean of x bar =" meanc(storem);
"mean of x rou =" meanc(stores);
library pgraph;
graphset;
v = seqa(-10, .2, 100);
{a1,a2,a3}=hist(storem,v);
@ {b1,b2,b3}=hist(stores,v); @
output off;
```


Linear Regressions under Ideal Conditions-47

Extension to the Cases with Multiple Parameters:

- $\theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{\mathrm{p}}\right)^{\prime}$ is a unknown parameter vector.

Definition: (Unbiasedness)
$\hat{\theta}$ is unbiased iff $E(\hat{\theta})=\theta_{o}$:

$$
E(\hat{\theta})=\left[\begin{array}{c}
E\left(\hat{\theta}_{1}\right) \\
E\left(\hat{\theta}_{2}\right) \\
\vdots \\
E\left(\hat{\theta}_{p}\right)
\end{array}\right]=\left[\begin{array}{c}
\theta_{1, o} \\
\theta_{2, o} \\
\vdots \\
\theta_{p, o}
\end{array}\right]=\theta_{o} .
$$

Definition: (Relative Efficiency)
Suppose that $\hat{\theta}$ and $\hat{\theta}$ are unbiased estimators. Let $\mathrm{c}=\left(\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{p}}\right)^{\prime}$ is a nonzero vector. $\hat{\theta}$ is said to be more efficient than $\hat{\theta}$, iff $\operatorname{var}\left(c^{\prime} \hat{\theta}\right) \geq \operatorname{var}\left(c^{\prime} \hat{\theta}\right)$ for any nonzero vector c .

Remark:

$$
\begin{aligned}
& \operatorname{var}\left(c^{\prime} \hat{\theta}\right) \geq \operatorname{var}\left(c^{\prime} \hat{\theta}\right) . \\
& \leftrightarrow c^{\prime} \operatorname{Cov}(\hat{\theta}) c-c^{\prime} \operatorname{Cov}(\hat{\theta}) c \geq 0, \text { for any nonzero } \mathrm{c} . \\
& \quad \leftrightarrow c^{\prime}[\operatorname{Cov}(\hat{\theta})-\operatorname{Cov}(\hat{\theta})] c \geq 0, \text { for any nonzero } \mathrm{c} . \\
& \leftrightarrow \operatorname{Cov}(\hat{\theta})-\operatorname{Cov}(\hat{\theta}) \text { is positive semi-definite. }
\end{aligned}
$$

Comment:

- Let $\theta=\left(\theta_{1}, \theta_{2}\right)^{\prime}$ and $c=\left(c_{1}, c_{2}\right)^{\prime}$.
- Suppose you wish to estimate $\mathrm{c}^{\prime} \theta=\mathrm{c}_{1} \theta_{1}+\mathrm{c}_{2} \theta_{2}$.
- If, for any nonzero $\mathrm{c}, \operatorname{var}\left(\mathrm{c}^{\prime} \hat{\theta}\right)=\operatorname{var}\left(\mathrm{c}_{1} \hat{\theta}_{1}+\mathrm{c}_{2} \hat{\theta}_{2}\right) \geq \operatorname{var}\left(\mathrm{c}_{1} \hat{\theta}_{1}+\mathrm{c}_{2} \hat{\theta}_{2}\right)=$ $\operatorname{var}\left(\mathrm{c}^{\prime} \hat{\theta}\right)$, we say that $\hat{\theta}$ is more efficient than $\hat{\theta}$.

Example:

- Let $\theta=\left(\theta_{1}, \theta_{2}\right)^{\prime}$. Suppose $\operatorname{Cov}(\hat{\theta})=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] ; \operatorname{Cov}(\hat{\theta})=\left[\begin{array}{cc}1.5 & 1 \\ 1 & 1.5\end{array}\right]$.
- Note that:

$$
\operatorname{var}\left(\hat{\theta}_{1}\right)=1<1.5=\operatorname{var}\left(\hat{\theta}_{1}\right) ; \operatorname{var}\left(\hat{\theta}_{2}\right)=1<1.5=\operatorname{var}\left(\hat{\theta}_{2}\right)
$$

- But,

$$
\operatorname{Cov}(\hat{\theta})-\operatorname{Cov}(\hat{\theta})=\left[\begin{array}{cc}
0.5 & 1 \\
1 & 0.5
\end{array}\right] \equiv A \rightarrow\left|A_{1}\right|=0.5>0 ;\left|A_{2}\right|=-0.75<0
$$

- A is neither positive nor negative semi-definite.
- $\hat{\theta}$ is not necessarily more efficient than $\hat{\theta}$.
- For example, suppose you wish to estimate $\theta_{1}-\theta_{2}=c^{\prime} \theta$ (where $\left.\mathrm{c}=(1,-1)^{\prime}\right)$:
- $\operatorname{var}\left(\mathrm{c}^{\prime} \hat{\theta}\right)=\mathrm{c}^{\prime} \operatorname{Cov}(\hat{\theta}) \mathrm{c}=2 ; \operatorname{var}\left(\mathrm{c}^{\prime} \hat{\theta}\right)=\mathrm{c}^{\prime} \operatorname{Cov}(\hat{\theta}) \mathrm{c}=1$.
- That is, for the given $\mathrm{c}=(1,-1)^{\prime}, \mathrm{c}^{\prime} \hat{\theta}$ is more efficient than $\mathrm{c}^{\prime} \hat{\theta}$.
- This example is a case where relative efficiency of estimators depends on c. For such cases, we can't claim that one estimator is superior to others.

Theorem:
If $\hat{\theta}$ is more efficient than $\hat{\theta}, \operatorname{var}\left(\hat{\theta}_{j}\right) \leq \operatorname{var}\left(\hat{\theta}_{j}\right)$, for all $\mathrm{j}=1, \ldots$, p. But not vice versa.

Proof:

Choose $\mathrm{c}=(1,0, \ldots, 0)^{\prime}$. Then, you can show $\operatorname{var}\left(\hat{\theta}_{1}\right) \leq \operatorname{var}\left(\hat{\theta}_{1}\right)$. Now, choose c $=(0,1,0, \ldots, 0)^{\prime}$. Then, we can show $\operatorname{var}\left(\hat{\theta}_{2}\right) \leq \operatorname{var}\left(\hat{\theta}_{2}\right)$. Keep doing this until j $=\mathrm{p}$.

(3) Population Projection

- Suppose you have data from all population members (say, $\mathrm{t}=1, \ldots$, B).
- Assume that $E\left(x_{0} x_{0}^{\prime}\right)=\frac{1}{B} \sum_{t=1}^{B} x_{t 0} x_{t 0}^{\prime}$ is pd, where $x_{t 1}=1$ for all t .
- Let $\beta_{p}=\left(\beta_{1, p}, \ldots, \beta_{2, p}\right)^{\prime}$ be the OLS estimator obtained using all population:

Notice that β_{p} is a population parameter vector. Denote

$$
\operatorname{Proj}\left(y_{t} \mid x_{t 0}\right)=x_{t 0}^{\prime} \beta_{p} .
$$

- Let $e_{p, t}=y_{t}-x_{t}^{\prime} . \beta_{p}$, where $\mathrm{t}=1, \ldots, \mathrm{~B}$.
- Population projection model:

$$
y_{t}=\operatorname{Pr} o j\left(y_{t} \mid x_{t \cdot}\right)+\varepsilon_{t}=x_{t}^{\prime} . \beta_{p}+e_{p, t} .
$$

- By definition, β_{p} always exists. Notice that (SIC.1) assumes that the conditional mean of y_{t} is linear in $x_{t}: E\left(y_{t} \mid x_{t}\right)=x_{t \cdot}^{\prime}, \beta_{o}$. In contrast, the population projection of y_{t} is always linear.

Theorem:

$E\left(x_{j} e_{p}\right)=0$ for all $\mathrm{j}=1, \ldots$, k. That is, $E\left(x . e_{p}\right)=0_{k \times 1}$.
Proof:
Recall $X^{\prime} e=0_{k \times 1} \rightarrow \Sigma_{t=1}^{T} x_{t} e_{t}=0_{k \times 1}$. That is, $E\left(x_{\bullet} e_{p}\right)=\frac{1}{B} \sum_{t=1}^{B} x_{t \cdot e_{p, t}}=0$.

Comment:

- $E\left(x_{\bullet} e_{p}\right)=0 \rightarrow E\left(e_{p} \mid x_{0}\right)=0$, although the latter implies the former.

Theorem:

$$
\beta_{p}=\left(E\left(x_{0} x_{0}^{\prime}\right)\right)^{-1} E\left(x_{0} y\right) .
$$

Proof:

$$
\beta_{p}=\left(\sum_{t=1}^{B} x_{t \bullet} x_{t \bullet}^{\prime}\right)^{-1} \Sigma_{t=1}^{B} x_{t \bullet} y_{t}=\left(\frac{1}{B} \Sigma_{t=1}^{B} x_{t \bullet} x_{t \bullet}^{\prime}\right)^{-1} \frac{1}{B} \sum_{t=1}^{B} x_{t} y_{t} .
$$

Comment:

- Intuitively, the OLS estimator is a consistent estimator of β_{p}.
- Notice that under (SIC.1)-(SIC.4), $\beta_{o}=\beta_{p}$!
- $\operatorname{Under}(\operatorname{SIC.1})-(\operatorname{SIC} .4), E\left(y_{t} \mid x_{t \bullet}\right)=\operatorname{Proj}\left(y_{t} \mid x_{t \bullet}\right)=x_{t_{0}}^{\prime} \beta_{o}$.
- Thus, under (SIC.1)-(SIC.4), the OLS estimator is a consistent estimator of β_{o}.
(4) The Stochastic Properties of the OLS Estimator.
(SIC.8) The regressor $\mathrm{x}_{\mathrm{tl}}, \ldots, \mathrm{x}_{\mathrm{tk}}\left(x_{t \bullet}\right)$ are nonstochastic.

Comment:

- The whole population consists of T groups, and each group has fixed x_{t}. We draw y_{t} from each group. The value of y_{t} would change over different trials, but the value of x_{t}. remains the same.
- Can be replaced by the assumption that $E\left(\varepsilon_{t} \mid x_{1 \bullet}, \ldots, x_{T \bullet}\right)=0$ for all t (assumption of strictly exogenous regressors). This assumption holds as long as (SIC.1) - (SIC.4) hold. If you do not use (SIC.8), the distributions of $\hat{\beta}$ and s^{2} obtained below the conditional ones conditional on $X_{1}, x_{2}, \ldots, X_{T}$.

Theorem:
Assume (SIC.1)-(SIC.6) and (SIC.8). Then,

- $E(\hat{\beta})=\beta_{o}($ unbiased $)$
- $\operatorname{Cov}(\hat{\beta})=\sigma_{o}^{2}\left(X^{\prime} X\right)^{-1}$
- $E\left(s^{2}\right)=\sigma_{o}^{2}$, where $s^{2}=\operatorname{SSE} /(T-k)=\Sigma_{t} e_{t}^{2} /(T-k)=e^{\prime} e /(T-k)$
[even if the ε_{t} are not normal, that is, (SIC.6) does not hold]
- $\hat{\beta} \sim N\left(\beta_{o}, \sigma_{o}^{2}\left(X^{\prime} X\right)^{-1}\right)$.
- $\hat{\beta}$ and SSE (so s${ }^{2}$) are stochastically independent.
- SSE / $\sigma_{o}^{2} \sim \sigma^{2}(T-k)$ [if (SIC.6) holds.]

Comment:

- As discussed later, we need to estimate $\operatorname{Cov}(\hat{\beta})=\sigma_{o}^{2}\left(X^{\prime} X\right)^{-1}$.
- We can use s ${ }^{2}$ to estimate $\operatorname{Cov}(\hat{\beta})$.

Numerical Exercise:

- $\mathrm{y}_{\mathrm{t}}=\beta_{1}+\beta_{2} \mathrm{x}_{\mathrm{t} 2}+\beta_{3} \mathrm{x}_{\mathrm{t} 3}+\varepsilon_{\mathrm{t}}, \mathrm{T}=5$:

$$
y=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
3
\end{array}\right] ; X=\left[\begin{array}{ccc}
1 & -2 & 4 \\
1 & -1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 2 & 4
\end{array}\right]
$$

- Then,

$$
X^{\prime} X=\left[\begin{array}{ccc}
5 & 0 & 10 \\
0 & 10 & 0 \\
10 & 0 & 34
\end{array}\right] ; X^{\prime} y=\left[\begin{array}{c}
5 \\
7 \\
13
\end{array}\right] ; y^{\prime} y=11 ; \bar{y}=1
$$

1) Compute $\hat{\beta}$:

$$
\begin{gathered}
\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1}=\left[\begin{array}{ccc}
17 / 35 & 0 & -1 / 7 \\
0 & 1 / 10 & 0 \\
-1 / 7 & 0 & 1 / 14
\end{array}\right] . \\
\hat{\beta}=\left[\begin{array}{c}
\hat{\beta}_{1} \\
\hat{\beta}_{2} \\
\hat{\beta}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
17 / 35 & 0 & -1 / 7 \\
0 & 1 / 10 & 0 \\
-1 / 7 & 0 & 1 / 14
\end{array}\right]\left[\begin{array}{c}
5 \\
7 \\
13
\end{array}\right]=\left[\begin{array}{c}
0.571 \\
0.7 \\
0.214
\end{array}\right] .
\end{gathered}
$$

2) Compute s^{2} :

$$
\begin{aligned}
& \mathrm{SSE}=\mathrm{y}^{\prime} \mathrm{y}-\mathrm{y}^{\prime} \mathrm{X} \hat{\beta}=0.46 \\
& \quad \rightarrow \mathrm{~s}^{2}=\mathrm{SSE} /(\mathrm{T}-\mathrm{k})=0.46 /(5-3)=0.23
\end{aligned}
$$

3) Estimate $\operatorname{Cov}(\hat{\beta})$:

$$
s^{2}\left(X^{\prime} X\right)^{-1}=0.23\left[\begin{array}{ccc}
17 / 35 & 0 & -1 / 7 \\
0 & 1 / 10 & 0 \\
-1 / 7 & 0 & 1 / 14
\end{array}\right]=\left[\begin{array}{ccc}
0.112 & 0 & -0.032 \\
0 & 0.023 & 0 \\
-0.032 & 0 & 0.016
\end{array}\right] .
$$

4) Compute SSE, SSR and SST:

- $\operatorname{SST}=\mathrm{y}^{\prime} \mathrm{y}-\mathrm{T} \bar{y}^{2}=11-5 \times(1)^{2}=6$;
- $\mathrm{SSE}=\mathrm{y}^{\prime} \mathrm{y}-\hat{\beta}^{\prime} X^{\prime} y=11-\left(\begin{array}{lll}0.571 & 0.7 & 0.214\end{array}\right)\left(\begin{array}{c}5 \\ 7 \\ 13\end{array}\right)=0.46$
- $\mathrm{SSR}=\mathrm{SST}-\mathrm{SSE}=5.54$.

5) Compute R^{2} and \bar{R}^{2}.

- $\mathrm{R}^{2}=\mathrm{SSR} / \mathrm{SST}=5.54 / 6=0.923$
- $\bar{R}^{2}=1-\frac{T-1}{T-k}\left(1-R^{2}\right)=1-\frac{5-1}{5-3}(1-0.923)=0.846$.

[Proofs of the General Results under SIC]

1) Some useful results:
a) Let $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{T}\right)^{\prime}$. Then, the model $y_{t}=x_{t 0}^{\prime} \beta_{o}+\varepsilon_{t}(\mathrm{t}=1, \ldots, \mathrm{~T})$ can be written as $y=X \beta_{o}+\varepsilon$. [Be careful that ε is a vector from now on!]
b) $E(\varepsilon)=0_{T \times 1}$, because $E\left(\varepsilon_{t}\right)=E_{x_{t}}\left[E\left(\varepsilon_{t} \mid x_{t \bullet}\right)\right]=E_{x_{t}}(0)=0$ for all t .
c) $E\left(\varepsilon \varepsilon^{\prime}\right)=E\left(\varepsilon \varepsilon^{\prime}\right)-E(\varepsilon) E\left(\varepsilon^{\prime}\right)=\operatorname{Cov}(\varepsilon)=\sigma_{o}^{2} I_{T}$, because $\operatorname{cov}\left(\varepsilon_{t}, \varepsilon_{s}\right)=0$ by (SIC.4) and $\operatorname{var}\left(\varepsilon_{t}\right)=\sigma_{o}^{2}$ by (SIC.5).
d) Under (SIC.8), $E\left(X^{\prime} \varepsilon\right)=X^{\prime} E(\varepsilon)=0_{k \times 1}$.
2) Show that $E(\hat{\beta})=\beta_{o}$ and $\operatorname{Cov}(\hat{\beta})=\sigma_{o}^{2}\left(X^{\prime} X\right)^{-1}$.

Lemma D.1:

$$
\hat{\beta}=\beta_{o}+\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon
$$

Proof:

$$
\begin{aligned}
& y=X \beta_{o}+\varepsilon . \\
& \hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y=\left(X^{\prime} X\right)^{-1}\left(X \beta_{o}+\varepsilon\right)=\beta_{o}+\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon .
\end{aligned}
$$

Theorem: (Unbiasedness)

$$
E(\hat{\beta})=\beta_{o}
$$

Proof:

$$
E(\hat{\beta})=E\left[\beta_{o}+\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon\right]=\beta_{o}+\left(X^{\prime} X\right)^{-1} X^{\prime} E(\varepsilon)=\beta_{o}
$$

Theorem:

$$
\operatorname{Cov}(\hat{\beta})=\sigma_{o}^{2}\left(X^{\prime} X\right)^{-1}
$$

Proof:

$$
\begin{aligned}
\operatorname{Cov}(\hat{\beta}) & =\operatorname{Cov}\left[\beta_{o}+\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon\right] \\
& =\operatorname{Cov}\left[\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon\right]=\left(X^{\prime} X\right)^{-1} X^{\prime} \operatorname{Cov}(\varepsilon)\left[\left(X^{\prime} X\right)^{-1} X^{\prime}\right]^{\prime} \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime}\left(\sigma_{o}^{2} I_{T}\right) X\left(X^{\prime} X\right)^{-1}=\sigma_{o}^{2}\left(X^{\prime} X\right)^{-1} X^{\prime} I_{T} X\left(X^{\prime} X\right)^{-1} \\
& =\sigma_{o}^{2}\left(X^{\prime} X\right)^{-1} X^{\prime} X\left(X^{\prime} X\right)^{-1}=\sigma_{o}^{2}\left(X^{\prime} X\right)^{-1} .
\end{aligned}
$$

3) Show $E\left(s^{2}\right)=\sigma_{o}^{2}$.

Lemma D.2:
$\mathrm{SSE}=e^{\prime} e=y^{\prime} M(X) y=\varepsilon^{\prime} M(X) \varepsilon$.
Proof:

$$
\mathrm{SSE}=\mathrm{y}^{\prime} \mathrm{M}(\mathrm{X}) \mathrm{y}=(\mathrm{X} \beta+\varepsilon)^{\prime} \mathrm{M}(\mathrm{X})(\mathrm{X} \beta+\varepsilon)=\left(\beta^{\prime} \mathrm{X}^{\prime}+\varepsilon^{\prime}\right) \mathrm{M}(\mathrm{X}) \varepsilon=\varepsilon^{\prime} \mathrm{M}(\mathrm{X}) \varepsilon
$$

Theorem:

$$
E(S S E)=(T-k) \sigma_{o}^{2}
$$

Digression to Matrix Algebra:

Definition: (trace of a matrix)
$B=\left[b_{i j}\right]_{\mathrm{nxn}} \rightarrow \operatorname{tr}(\mathrm{B})=\Sigma_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{b}_{\mathrm{ii}}=$ sum of diagonals.

Lemma D.3:
For $A_{m \times n}$ and $B_{n \times m}, \operatorname{tr}(A B)=\operatorname{tr}(B A)$.
Lemma D.4:
If B is an idempotent $n \times n$ matrix,

$$
\operatorname{rank}(B)=\operatorname{tr}(B)
$$

[Comment]

- For Lemma D.4, many econometrics books assume B to be also symmetric.

But the matrix B does not have to be.

- An idempotent matrix does not have to be symmetric: For example,

$$
\left(\begin{array}{cc}
1 / 2 & 1 \\
1 / 4 & 1 / 2
\end{array}\right) ;\left(\begin{array}{ll}
1 & a \\
0 & 0
\end{array}\right)
$$

- Theorem DA.1:

The eigenvalues of an idempotent matrix, say B , are ones or zeros.

$$
<\text { Proof }>\lambda \xi=B \xi=B^{2} \xi=B \lambda \xi=\lambda^{2} \xi
$$

- Theorem DA.2:

$$
\begin{aligned}
& \operatorname{tr}(\mathrm{B})=\operatorname{sum} \text { of the eigenvalues of } \mathrm{B} \text {, where } \mathrm{B} \text { is } \mathrm{n} \times \mathrm{n} . \\
& \begin{aligned}
<\text { Proof }> & \operatorname{det}(\lambda I-B)=\left(\lambda-\lambda_{1}\right) \ldots\left(\lambda-\lambda_{n}\right) \\
& \rightarrow\left(b_{11}+b_{22}+\ldots+b_{n n}\right) \lambda^{n-1}=\left(\lambda_{1}+\ldots+\lambda_{n}\right) \lambda^{n-1}
\end{aligned}
\end{aligned}
$$

- Theorem DA.3: $\operatorname{rank}(B)=\#$ of non-zero eigenvalues of B [See Greene.]
- Lemma D. 4 is implied by Theorems DA.1-3.

Example:
Let A be $\mathrm{T} \times \mathrm{k}(\mathrm{T}>\mathrm{k})$. Show that $\operatorname{rank}\left[\mathrm{I}_{\mathrm{T}}-\mathrm{A}\left(\mathrm{A}^{\prime} \mathrm{A}\right)^{-1} \mathrm{~A}^{\prime}\right]=\mathrm{T}-\mathrm{k}$.
[Solution]

$$
\begin{aligned}
\operatorname{rank}\left[\mathrm{I}_{\mathrm{T}}-\mathrm{A}\right. & \left.\left(\mathrm{A}^{\prime} \mathrm{A}\right)^{-1} \mathrm{~A}^{\prime}\right] \\
& =\operatorname{tr}\left(\mathrm{I}_{\mathrm{T}}-\mathrm{A}\left(\mathrm{~A}^{\prime} \mathrm{A}\right)^{-1} \mathrm{~A}^{\prime}\right) \\
& =\operatorname{tr}\left(\mathrm{I}_{\mathrm{T}}\right)-\operatorname{tr}\left[\mathrm{A}\left(\mathrm{~A}^{\prime} \mathrm{A}\right)^{-1} \mathrm{~A}^{\prime}\right]=\mathrm{T}-\operatorname{tr}\left[\left(\mathrm{A}^{\prime} \mathrm{A}\right)^{-1} \mathrm{~A}^{\prime} \mathrm{A}\right] \\
& =\mathrm{T}-\operatorname{tr}\left(\mathrm{I}_{\mathrm{k}}\right)=\mathrm{T}-\mathrm{k} .
\end{aligned}
$$

End of Digression.

3) Show $E\left(s^{2}\right)=\sigma_{o}^{2}$:

$$
\begin{aligned}
E(S S E) & =E\left(\varepsilon^{\prime} M(X) \varepsilon\right)=E\left[\operatorname{tr}\left\{\varepsilon^{\prime} M(X) \varepsilon\right\}\right]=E\left[\operatorname{tr}\left\{M(X) \varepsilon \varepsilon^{\prime}\right\}\right] \\
& =\operatorname{tr}\left[M(X) E\left(\varepsilon \varepsilon^{\prime}\right)\right]=\operatorname{tr}\left[M(X) \sigma_{o}^{2} I_{T}\right]=\sigma_{o}^{2} \operatorname{tr}[M(X)] \\
& =\sigma_{o}^{2} \operatorname{tr}\left[I_{T}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right]=\sigma_{o}^{2}(T-k) \\
\rightarrow E\left(s^{2}\right)= & E(S S E /(T-k))=E(S S E) /(T-k)=\left[\sigma_{o}^{2}(T-k)\right] /(T-k)=\sigma_{o}^{2} .
\end{aligned}
$$

4) Show the normality of $\hat{\beta}$.

Lemma D. 5:
Let $\mathrm{z}_{\mathrm{T} \times 1} \sim \mathrm{~N}\left(\mu_{\mathrm{T} \times 1}, \Omega_{\mathrm{T} \times \mathrm{T}}\right)$. Suppose that A is a $\mathrm{k} \times \mathrm{T}$ nonstochastic matrix. Then, $b+A z \sim N\left(b+A \mu, A \Omega A^{\prime}\right)$.

Theorem: $\hat{\beta} \sim N\left(\beta_{o}, \sigma_{o}^{2}\left(X^{\prime} X\right)^{-1}\right)$
Proof:

$$
\begin{aligned}
& \hat{\beta}=\beta_{o}+\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon \\
& \rightarrow \hat{\beta} \sim \mathrm{N}\left(\beta_{\mathrm{o}}+\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}^{\prime} \mathrm{E}(\varepsilon),\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}^{\prime} \operatorname{Cov}(\varepsilon) \mathrm{X}\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1}\right) \\
& \quad=N\left(\beta_{o}, \sigma_{o}^{2}\left(X^{\prime} X\right)^{-1}\right)
\end{aligned}
$$

5) Show that $\hat{\beta}$ and SSE are stochastically independent.

Lemma D.6:
Let Q be a $\mathrm{T} \times \mathrm{T}$ (nonstochastic) symmetric and idempotent matrix. Suppose $\varepsilon \sim N\left(0_{T \times 1}, \sigma_{o}^{2} I_{T}\right)$. Then,

$$
\frac{\varepsilon^{\prime} \mathrm{Q} \varepsilon}{\sigma_{o}^{2}} \sim \chi^{2}(r), \mathrm{r}=\operatorname{tr}(\mathrm{Q})
$$

Proof: See Schmidt.

Lemma D.7:

Suppose that Q is a $\mathrm{T} \times \mathrm{T}$ (nonstochastic) symmetric and idempotent and B is a $\mathrm{m} \times \mathrm{T}$ nonstochastic matrix. If $\varepsilon \sim N\left(0_{T \times 1}, \sigma_{o}^{2} I_{T}\right), \mathrm{B} \varepsilon$ and $\varepsilon^{\prime} \mathrm{Q} \varepsilon$ are stochastically independent iff $\mathrm{BQ}=0_{\mathrm{mxT}}$.

Proof: See Schmidt.

Theorem:

$$
\frac{(T-k) s^{2}}{\sigma_{o}^{2}}=\frac{S S E}{\sigma_{o}^{2}} \sim \chi^{2}(T-k) .
$$

And, $\hat{\beta}$ and s^{2} are stochastically independent.

Proof:

1) Note that $(T-k) s^{2} / \sigma_{o}^{2}=S S E / \sigma_{o}^{2}=\varepsilon^{\prime} M(X) \varepsilon / \sigma_{o}^{2}$.

Since $\mathrm{M}(\mathrm{X})$ is idempotent and symmetric and $\operatorname{tr}(\mathrm{M}(\mathrm{X}))=$ T-k, by Lemma D.7, $\varepsilon^{\prime} M(X) \varepsilon / \sigma_{o}^{2} \sim \chi^{2}(T-k)$.
2) Note that $\hat{\beta}-\beta_{o}=\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon$ (by Lemma D.1); (T-k) ${ }^{2}=\mathrm{SSE}=\varepsilon^{\prime} \mathrm{M}(\mathrm{X}) \varepsilon$.

Note that $\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}^{\prime} \mathrm{M}(\mathrm{X})=0_{\mathrm{kxT}}$. Therefore, Lemma D. 7 applies, i.e., SSE and $\hat{\beta}$ are stochastically independent. So are s^{2} and $\hat{\beta}$.

Theorem: $\operatorname{var}\left(s^{2}\right)=2 \sigma_{o}^{4} /(T-k)$.
Proof:
Since $(T-k) s^{2} / \sigma_{o}^{2} \sim \chi^{2}(T-k), \operatorname{var}\left[(T-k) s^{2} / \sigma_{o}^{2}\right]=2(T-k)$ (since $\left.\operatorname{var}\left(\chi^{2}(\mathrm{r})\right)=2 \mathrm{r}\right)$, and $\left[(T-k) / \sigma_{o}^{2}\right]^{2} \operatorname{var}\left(s^{2}\right)=2(T-k)$ implies $\operatorname{var}\left(s^{2}\right)=2 \sigma_{o}^{4} /(T-k)$.

Remark:
Let $\theta=\binom{\beta}{\sigma^{2}}$ and $\hat{\theta}=\binom{\hat{\beta}}{s^{2}}$. Then, $\operatorname{Cov}(\hat{\theta})=\left[\begin{array}{cc}\sigma_{o}^{2}\left(X^{\prime} X\right)^{-1} & 0_{k \times 1} \\ 0_{1 \times k} & \frac{2 \sigma_{o}^{4}}{T-k}\end{array}\right]$.

[6] Efficiency of $\hat{\beta}$ and s^{2}

Question:
Are the OLS estimators, $\hat{\beta}$ and s^{2}, the best estimators among the unbiased estimators of β and σ^{2} ?

Theorem: (Gauss-Markov)
Under (SIC.1) - (SIC.5) (ε may not be normal) and (SIC.8), $\hat{\beta}$ is the best linear unbiased estimator (BLUE) of β.

Comment:
Suppose that $\hat{\beta}$ is an estimator which is linear in y ; that is, there exists a $\mathrm{T} \times \mathrm{k}$ matrix C such that $\widehat{\beta}=\mathrm{C}^{\prime} \mathrm{y}$. Let us assume that $E(\widehat{\beta})=\beta_{o}$. Then, the above theorem means that $\operatorname{Cov}(\hat{\beta})-\operatorname{Cov}(\hat{\beta})$ is psd, for any $\hat{\beta}$.

Proof of Gauss-Markov (A Sketch):
Let $\hat{\beta}$ be an unbiased estimator linear in y : That is, there exists a $\mathrm{T} \times \mathrm{k}$ matrix C such that $\hat{\beta}=\mathrm{C}^{\prime} \mathrm{y}$. Let $\mathrm{C}^{\prime}=\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}^{\prime}+\mathrm{D}^{\prime}$. Then,

$$
\mathrm{E}\left(E(\hat{\beta})=E\left[\left(X^{\prime} X\right)^{-1} X^{\prime} y+D^{\prime} y\right]=E\left(\hat{\beta}+D^{\prime} y\right)=\beta_{o}+E\left(D^{\prime} y\right)\right.
$$

Since $\hat{\beta}$ is unbiased, it must be that:

$$
\begin{aligned}
\mathrm{E}\left(\mathrm{D}^{\prime} \mathrm{y}\right)=0 & \rightarrow \mathrm{E}\left[\mathrm{D}^{\prime}(\mathrm{X} \beta+\varepsilon)\right]=0 \rightarrow \mathrm{D}^{\prime} \mathrm{X} \beta+\mathrm{D}^{\prime} \mathrm{E}(\varepsilon)=0 \\
& \rightarrow \mathrm{D}^{\prime} \mathrm{X} \beta_{\mathrm{o}}=0
\end{aligned}
$$

Since this result must hold whatever β_{o} is, $\mathrm{D}^{\prime} \mathrm{X}=0_{\mathrm{k} \times \mathrm{k}}$. Then,

$$
\begin{aligned}
\widehat{\beta} & =\mathrm{C}^{\prime} \mathrm{y}=\left[\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}^{\prime}+\mathrm{D}^{\prime}\right] \mathrm{y}=\left[\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}^{\prime}+\mathrm{D}^{\prime}\right]\left(\mathrm{X} \beta_{\mathrm{o}}+\varepsilon\right) \\
& =\beta_{\mathrm{o}}+\left[\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}^{\prime}+\mathrm{D}^{\prime}\right] \varepsilon
\end{aligned}
$$

After some algebra, you can show that (do this by yourself):
$\operatorname{Cov}(\hat{\beta})=\operatorname{Cov}(\hat{\beta})+\sigma_{0}{ }^{2} \mathrm{D}^{\prime} \mathrm{D}$ [using the fact that $\left.\mathrm{D}^{\prime} \mathrm{X}=0\right]$.
Then, you can show:
$\operatorname{Cov}(\hat{\beta})-\operatorname{Cov}(\hat{\beta})=\sigma_{0}{ }^{2} \mathrm{D}^{\prime} \mathrm{D}$ is psd (by the theorem below)

Digression to Matrix Theory

Theorem:
Suppose A is $p \times q$ nonzero matrix. Then, $A^{\prime} A$ is $p s d$. If $\operatorname{rank}(A)=q$, then, $A^{\prime} A$ is pd .

End of Digression

Theorem:
Under (SIC.1) - (SIC.6) (ε should be normal) and (SIC.8), $\hat{\beta}$ and s^{2} are the most efficient estimators of β and σ^{2}. [(SIC.7) does not have to hold.]

Digression to Mathematical Statistics

(1) Cases in which θ (unknown parameter) is scalar.

Definition: (Likelihood function)

- Let $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$ be a sample from a population.
- It does not have to be a random sample.
- X_{t} is a scalar.
- Let $f\left(x_{1}, x_{2}, \ldots, x_{T}, \theta_{0}\right)$ be the joint density function of x_{1}, \ldots, x_{T}.
- The functional form of f is known, but not θ_{0}.
- Then, $\mathrm{L}_{\mathrm{T}}(\theta) \equiv \mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}, \theta\right)$ is called "likelihood function".
- $\mathrm{L}_{\mathrm{T}}(\theta)$ is a function of θ given $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}$.
- The functional form of f is known, but not θ_{0}.

Definition: (log-likelihood function)

$$
l_{\mathrm{T}}(\theta)=\ln \left[\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}, \theta\right)\right] .
$$

Example:

- $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$: a random sample from a population distributed with $\mathrm{f}\left(\mathrm{x}, \theta_{\mathrm{o}}\right)$.
- $\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}, \theta_{\mathrm{o}}\right)=\prod_{t=1}^{T} f\left(x_{t}, \theta_{o}\right)$.

$$
\begin{aligned}
& \rightarrow \quad \mathrm{L}_{\mathrm{T}}(\theta)=\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}, \theta\right)=\prod_{t=1}^{T} f\left(x_{t}, \theta\right) \\
& \rightarrow \quad l_{\mathrm{T}}(\theta)=\ln \left(\prod_{t=1}^{T} f\left(x_{t}, \theta\right)\right)=\Sigma_{t} \ln f\left(x_{t}, \theta\right)
\end{aligned}
$$

Definition: (Maximum Likelihood Estimator (MLE))
MLE $\hat{\theta}_{\text {MLE }}$ maximizes $l_{\mathrm{T}}(\theta)$ given data points $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}$.

Theorem: (Minimum Variance Unbiased Estimator)
If $\mathrm{E}\left(\hat{\theta}_{M L E}\right)=\theta_{0}$, then $\hat{\theta}_{M L E}$ is the MVUE. If $\mathrm{E}\left(\hat{\theta}_{M L E}\right) \neq \theta_{\mathrm{o}}$, but if there exists a function $\mathrm{g}\left(\hat{\theta}_{M L E}\right)$ such that $\mathrm{E}\left[\mathrm{g}\left(\hat{\theta}_{M L E}\right)\right]=\theta_{0}$, then, $\mathrm{g}\left(\hat{\theta}_{M L E}\right)$ is the MVUE.

Example:

- $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$ is a random sample from a population following a Poisson distribution [i.e., $f(x, \theta)=\mathrm{e}^{-\theta} \theta^{\mathrm{x}} / \mathrm{x}$! (suppressing subscript "o" from θ)].
- Note that $E(x)=\operatorname{var}(x)=\theta_{0}$ for Poisson distribution.
- $l_{\mathrm{T}}(\theta)=\Sigma_{\mathrm{t}} \ln \left[\mathrm{f}\left(\mathrm{x}_{\mathrm{t}}, \theta\right)\right]=-\theta \mathrm{T}+(\ln (\theta)) \Sigma_{\mathrm{t}} \mathrm{x}_{\mathrm{t}}-\Sigma_{\mathrm{t}} \ln \left(\mathrm{x}_{\mathrm{t}}!\right)$
- FOC of maximization: $\partial \ell_{T} / \partial \theta=-T+\frac{1}{\theta} \Sigma_{t} x_{t}=0$.
- Solving this, $\hat{\theta}_{M L E}=\frac{\sum_{t} x_{t}}{T}=\bar{X}$.

(2) Extension to the Cases with Multiple Parameters.

Definition:

- $\theta=\left[\theta_{1}, \theta_{2}, \ldots, \theta_{\mathrm{p}}\right]^{\prime}$.
- $\mathrm{L}_{\mathrm{T}}(\theta)=\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}, \theta\right)=\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}, \theta_{1}, \ldots, \theta_{\mathrm{p}}\right)$.
- $l_{\mathrm{T}}(\theta)=\ln \left[\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}, \theta\right)=\ln \left[\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}, \theta_{1}, \ldots, \theta_{\mathrm{p}}\right)\right]\right.$.
- x_{t} could be a vector.
- If $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$ is a random sample from a population with $\mathrm{f}\left(\mathrm{x}, \theta_{0}\right)$,

$$
l_{\mathrm{T}}(\theta)=\ln \left(\prod_{t=1}^{T} f\left(x_{t}, \theta\right)\right)=\Sigma_{t} \ln f\left(x_{t}, \theta\right)
$$

Definition: (MLE)

MLE $\hat{\theta}_{\text {MLE }}$ maximizes $l_{\mathrm{T}}(\theta)$ given data (vector) points $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}$. That is, $\hat{\theta}_{\text {MLE }}$ solves

$$
\frac{\partial \ell_{T}(\theta)}{\partial \theta}=\left[\begin{array}{c}
\partial \ell_{T}(\theta) / \partial \theta_{1} \\
\partial \ell_{T}(\theta) / \partial \theta_{2} \\
: \\
\partial \ell_{T}(\theta) / \partial \theta_{p}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
: \\
0
\end{array}\right]_{p \times 1} .
$$

Theorem: (Minimum Variance Unbiased Estimator)
If $\mathrm{E}\left(\hat{\theta}_{M L E}\right)=\theta_{0}$, then $\hat{\theta}_{M L E}$ is the MVUE. If $\mathrm{E}\left(\hat{\theta}_{M L E}\right) \neq \theta_{0}$, but if there exists a function $\mathrm{g}\left(\hat{\theta}_{M L E}\right)$ such that $\mathrm{E}\left[\mathrm{g}\left(\hat{\theta}_{M L E}\right)\right]=\theta_{0}$, then, $\mathrm{g}\left(\hat{\theta}_{M L E}\right)$ is the MVUE.

Comment:
Let $\hat{\theta}$ be any unbiased estimator of θ_{0}. The above theorem implies that $\left[\operatorname{Cov}(\hat{\theta})-\operatorname{Cov}\left(\hat{\theta}_{M L E}\right)\right]$ is psd.

Example:

- Let $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$ be a random sample from $N\left(\mu_{o}, \sigma_{o}^{2}\right)$.
- Since $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$ is a random sample, $E\left(x_{t}\right)=\mu_{o}$ and $\operatorname{var}\left(x_{t}\right)=\sigma_{o}^{2}$.
- Let $\theta=(\mu, v)^{\prime}$, where $v=\sigma^{2}$.
- $f\left(x_{t}, \theta\right)=\frac{1}{\sqrt{2 \pi v}} \exp \left[-\frac{\left(x_{t}-\mu\right)^{2}}{2 v}\right]=(2 \pi)^{-1 / 2}(v)^{-1 / 2} \exp \left[-\frac{\left(x_{t}-\mu\right)^{2}}{2 v}\right]$.
- $\ln \left[f\left(x_{t}, \theta\right)\right]=-\frac{1}{2} \ln (2 \pi)-\frac{1}{2} \ln (v)-\frac{\left(x_{t}-\mu\right)^{2}}{2 v}$.
- $\ell_{T}(\theta)=-\frac{T}{2} \ln (2 \pi)-\frac{T}{2} \ln (v)-\frac{\Sigma_{t}\left(x_{t}-\mu\right)^{2}}{2 v}$.
- MLE solves FOC:
(1) $\frac{\partial \ell_{T}(\theta)}{\partial \mu}=-\frac{1}{2 v} \Sigma_{t} 2\left(x_{t}-\mu\right)(-1)=\frac{\Sigma_{t}\left(x_{t}-\mu\right)}{v}=0$;
(2) $\frac{\partial \ell_{T}(\theta)}{\partial v}=-\frac{T}{2 v}+\frac{\Sigma_{t}\left(x_{t}-\mu\right)^{2}}{2 v^{2}}=0$.
- From (1):
(3) $\Sigma_{t}\left(x_{t}-\mu\right)=0 \rightarrow \Sigma_{\mathrm{t}} \mathrm{x}_{\mathrm{t}}-\mathrm{T} \mu=0 \rightarrow \hat{\mu}_{M L E}=\frac{\Sigma_{t} x_{t}}{T}=\bar{x}$.
- Substituting (3) in to (2):
(4) $-\mathrm{Tv}+\Sigma_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}}-\hat{\mu}_{M L E}\right)^{2}=0 \rightarrow \hat{v}_{M L E}=\frac{1}{T} \Sigma_{t}\left(x_{t}-\bar{x}\right)^{2}$.
- Thus,

$$
\hat{\theta}_{M L E}=\binom{\hat{\mu}_{M L E}}{\hat{v}_{M L E}}=\binom{\bar{x}}{\frac{1}{T} \Sigma_{t}\left(x_{t}-\bar{x}\right)^{2}} .
$$

- Note that:
- $E\left(\hat{\mu}_{M L E}\right)=E(\bar{x})=E\left(\frac{1}{T} \Sigma_{t} x_{t}\right)=\frac{1}{T} \Sigma_{t} E\left(x_{t}\right)=\frac{1}{T} \Sigma_{t} \mu_{o}=\mu_{o}$.
- $E\left(\hat{v}_{M L E}\right)=\frac{T-1}{T} \sigma_{o}^{2}\left(\right.$ by the fact that $\left.E\left[\frac{1}{T-1} \Sigma_{t}\left(x_{t}-\bar{x}\right)^{2}\right]=\sigma_{o}^{2}\right)$
\rightarrow Let $g\left(\hat{v}_{M L E}\right)=\frac{T}{T-1} \hat{v}_{M L E}$.
\rightarrow Clearly, $E\left[g\left(\hat{v}_{M L E}\right)\right]=E\left[\frac{1}{T-1} \Sigma_{t}\left(x_{t}-\bar{x}\right)^{2}\right]=\sigma_{o}^{2}$.
\rightarrow Thus, $g\left(\hat{v}_{\text {MLE }}\right)$ is MVUE of σ^{2}.

(3) Extension to Conditional density

Definition:

- Conditional density of $y_{t}: f\left(y_{t}, \theta_{o} \mid x_{t}\right), \theta=\left[\theta_{1}, \theta_{2}, \ldots, \theta_{\mathrm{p}}\right]^{\prime}$.
- $L_{T}(\theta)=\prod_{t=1}^{T} f\left(y_{t}, \theta \mid x_{t}\right)$.
- $l_{\mathrm{T}}(\theta)=L_{T}(\theta)=\Sigma_{t=1}^{T} \ln \left(f\left(y_{t} \mid \theta, x_{t}\right)\right)$.

Example:

- Assume that $\left(y_{t}, x_{t \cdot}^{\prime}\right)$ iid and $f\left(y_{t}, \beta_{o}, v_{o} \mid x_{t \cdot}\right) \sim N\left(x_{t \cdot}^{\prime} \beta_{o}, v_{o}\right)$.
- $f\left(y_{t}, \beta, v \mid x_{t \cdot}\right)=\frac{1}{\sqrt{2 \pi v}} \exp \left(-\frac{1}{2 v}\left(y_{t}-x_{t .}^{\prime} \beta\right)^{2}\right)$.

$$
\begin{aligned}
l_{T}(\beta, v) & =\Sigma_{t} \ln f\left(y_{t}, \beta, v \mid x_{t \cdot}\right) \\
& =-\frac{T}{2} \ln (2 \pi)-\frac{T}{2} \ln v-\frac{1}{2 v} \Sigma_{t}\left(y_{t}-x_{t}^{\prime} \beta\right)^{2} \\
& =-\frac{T}{2} \ln (2 \pi)-\frac{T}{2} \ln v-\frac{1}{2 v}(y-X \beta)^{\prime}(y-X \beta)
\end{aligned}
$$

End of Digression

Return to Efficiency of OLS estimator

Proof:

We already know that $E(\hat{\beta})=\beta_{o}$ and $E\left(s^{2}\right)=\sigma_{o}^{2}$. Thus, it is sufficient to show that $\hat{\beta}$ and s^{2} are MLE or some functions of MLE. Under (SIC.1) (SIC.6) and (SIC.8),

$$
\varepsilon \sim \mathrm{N}\left(0_{\mathrm{T} \times 1}, \mathrm{v}_{\mathrm{o}} \mathrm{I}_{\mathrm{T}}\right) \rightarrow \mathrm{y} \sim \mathrm{~N}\left(\mathrm{X} \beta_{0}, \mathrm{v}_{\mathrm{o}} \mathrm{I}_{\mathrm{T}}\right), \text { where } \mathrm{v}_{\mathrm{o}}=\sigma_{o}^{2} .
$$

Therefore, we have the following likelihood function of y,

$$
\begin{aligned}
\mathrm{L}_{\mathrm{T}}(\beta, \mathrm{v}) & =\frac{1}{(2 \pi)^{T / 2} \sqrt{\left|v I_{T}\right|}} \exp \left[-\frac{1}{2}(y-X \beta)^{\prime}\left(v I_{T}\right)^{-1}(y-X \beta)\right] \\
& =\frac{1}{(2 \pi)^{T / 2} v^{T / 2}} \exp \left[-\frac{1}{2}(y-X \beta)^{\prime}\left(v I_{T}\right)^{-1}(y-X \beta)\right]
\end{aligned}
$$

Then,

$$
\begin{aligned}
l_{\mathrm{T}}(\beta, \mathrm{v}) & =-(\mathrm{T} / 2) \ln (2 \pi)-(\mathrm{T} / 2) \ln (\mathrm{v})-(\mathrm{y}-\mathrm{X} \beta)^{\prime}(\mathrm{y}-\mathrm{X} \beta) /(2 \mathrm{v}) \\
& =-(\mathrm{T} / 2) \ln (2 \pi)-(\mathrm{T} / 2) \ln (\mathrm{v})-(1 / 2 \mathrm{v})\left[\mathrm{y}^{\prime} \mathrm{y}-2 \beta^{\prime} \mathrm{X}^{\prime} \mathrm{y}+\beta^{\prime} \mathrm{X}^{\prime} \mathrm{X} \beta\right]
\end{aligned}
$$

$\rightarrow \quad$ FOC: $\quad \partial l_{\mathrm{T}}(\beta, \mathrm{v}) / \partial \beta=-(1 / 2 \mathrm{v})\left[-2 \mathrm{X}^{\prime} \mathrm{y}+2 \mathrm{X}^{\prime} \mathrm{X} \beta\right]=0_{\mathrm{k} \times 1}$

$$
\begin{equation*}
\partial l_{\mathrm{T}}(\beta, \mathrm{v}) / \partial \mathrm{v}=-(\mathrm{T} / 2 \mathrm{v})+\left(1 / 2 \mathrm{v}^{2}\right)(\mathrm{y}-\mathrm{X} \beta)^{\prime}(\mathrm{y}-\mathrm{X} \beta)=0 \tag{i}
\end{equation*}
$$

$\rightarrow \quad \operatorname{From}(\mathrm{i}), \mathrm{X}^{\prime} \mathrm{y}-\mathrm{X}^{\prime} \mathrm{X} \beta=0_{\mathrm{k} \times 1} \rightarrow \hat{\beta}_{M L E}=\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}^{\prime} \mathrm{y}=\hat{\beta}$.
\rightarrow From (ii), $\hat{v}_{M L E}=\mathrm{SSE} / \mathrm{T} \rightarrow \mathrm{s}^{2}$ is a function of $\hat{v}_{M L E}$.

$$
\left[\mathrm{s}^{2}=[\mathrm{T} /(\mathrm{T}-\mathrm{k})] \hat{v}_{M L E}\right]
$$

[7] Testing Linear Hypotheses

(1) Testing a single restriction on β :

- $H_{0}: R \beta_{0}-r=0$, where R is $1 \times k$ and r is a scalar.

Example: $\mathrm{y}_{\mathrm{t}}=\mathrm{x}_{\mathrm{t} 1} \beta_{1}+\mathrm{x}_{\mathrm{t} 2} \beta_{2}+\mathrm{x}_{\mathrm{t}} \beta_{3}+\varepsilon_{\mathrm{t}}$.

- We would like to test $\mathrm{H}_{0}: \beta_{3,0}=0$.
- Define $\mathrm{R}=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$ and $\mathrm{r}=0$.
- Then, $R \beta_{\mathrm{o}}-\mathrm{r}=0 \rightarrow \beta_{3,0}=0$.
- $\mathrm{H}_{0}: \beta_{2, \mathrm{o}}-\beta_{3, \mathrm{o}}=0$ (or $\beta_{2,0}=\beta_{3,0}$).
- Define $\mathrm{R}=\left[\begin{array}{lll}0 & 1 & -1\end{array}\right]$ and $\mathrm{r}=0$.
- $\mathrm{R} \beta_{\mathrm{o}}-\mathrm{r}=0 \rightarrow \beta_{2, \mathrm{o}}-\beta_{3,0}=0$
- $\mathrm{H}_{0}: 2 \beta_{2, \mathrm{o}}+3 \beta_{3, \mathrm{o}}=3$.
- $\mathrm{R}=\left[\begin{array}{lll}0 & 2 & 3\end{array}\right]$ and $\mathrm{r}=3$.
- $\mathrm{R} \beta-\mathrm{r}=0 \rightarrow \mathrm{H}_{0}$.

Theorem: (T-Statistics Theorem)
Assume that (SIC.1)-(SIC.6) and (SIC.8) hold. Under $\mathrm{H}_{0}: \mathrm{R} \beta_{\mathrm{o}}-\mathrm{r}=0$,

$$
t=\frac{R \hat{\beta}-r}{s_{R}} \sim t(T-k),
$$

where $s_{R}=\sqrt{R\left[s^{2}\left(X^{\prime} X\right)^{-1}\right] R^{\prime}}$.

Corollary:
Let $\operatorname{se}\left(\hat{\beta}_{j}\right)=$ square root of the j^{\prime} th diagonal of $\mathrm{s}^{2}\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1}$. Then, under $\mathrm{H}_{0}: \beta_{\mathrm{j}}=$ $\beta_{j}{ }^{*}$,

$$
t=\frac{\hat{\beta}_{j}-\beta_{j}{ }^{*}}{\operatorname{se}\left(\hat{\beta}_{j}\right)} \sim t(T-k) .
$$

Proof:
Let $\mathrm{R}=\left[\begin{array}{llll}0 & 0 \ldots 1 & \ldots\end{array}\right]$; that is, only the j^{\prime} th entry of R equals 1. Let $\mathrm{r}=\beta_{j}{ }^{*}$. Then,

$$
t=\frac{R \hat{\beta}-r}{s_{R}}=\frac{\hat{\beta}_{j}-\beta_{j}^{*}}{\sqrt{\operatorname{Rs}^{2}\left(X^{\prime} X\right)^{-1} R^{\prime}}}=\frac{\hat{\beta}_{j}-\beta_{j}^{*}}{\sqrt{\operatorname{var}\left(\hat{\beta}_{j}\right)}}=\frac{\hat{\beta}_{j}-\beta_{j}^{*}}{\operatorname{se}\left(\hat{\beta}_{j}\right)} .
$$

Comment:

- T-Statistics Theorem implies the following:
- Imagine that you collect billions and billions (b) of different samples.
- For each sample, compute the t statistic for the same hypothesis H_{0}. Denote the population of these t statistics by $\left\{\mathrm{t}^{[1]}, \mathrm{t}^{[2]}, \ldots, \mathrm{t}^{[\mathrm{b}]}\right\}$.
- The above theorem indicates that the population of t-statistics is distributed as $\mathrm{t}(\mathrm{T}-\mathrm{k})$.

How to reject or accept H_{o}
$<$ Case $1>\mathrm{H}_{\mathrm{o}}: \mathrm{R} \beta_{\mathrm{o}}=\mathrm{r}$ and $\mathrm{H}_{\mathrm{a}}: \mathrm{R} \beta_{\mathrm{o}} \neq \mathrm{r}$.

- For simplicity, consider a case with T-k $=25$.
- $\mathrm{H}_{\mathrm{o}}: \beta_{\mathrm{j}, \mathrm{o}}=0$ and $\mathrm{H}_{\mathrm{a}}: \beta_{\mathrm{j}, \mathrm{o}} \neq 0$.

- If you choose $\alpha=5 \%$ (significance level), the probability that your t -statistic computed with a sample lies between -2.06 and 2.06 is 95% (confidence level). Call 2.06 "critical value" (c).
- So, if the value of your t-statistic is outside of $(-2.06,2.06)[(-\mathrm{c}, \mathrm{c})]$, you could say, "My t-value is quite an unlikely number I can obtain, if H_{0} is indeed correct". In this sense, you reject H_{0}.
- If the value of your t-statistic is inside of (-2.06,2.06), you can say, "My t-value is a possible number I can get if H_{o} is correct." In this sense, you accept (do not reject) H_{0}.
- Another way to determine acceptance/rejection (P-value):
- Suppose you have $\mathrm{t}=1.85$ and $\mathrm{T}-\mathrm{k}=40$
- Find the probability that a t-random variable is outside of $(-1.85,1.85)$.

- This probability is called p-value. This value is the minimum α value with which you can reject H_{0}. Thus, your choice of $\alpha>\mathrm{p}$-value, reject H_{0}. If your choice of $\alpha<p$-value, do not reject H_{0}.
$<$ Case 2> $\mathrm{H}_{\mathrm{o}}: \mathrm{R} \beta_{\mathrm{o}}=\mathrm{r}$ and $\mathrm{H}_{\mathrm{a}}: \mathrm{R} \beta_{\mathrm{o}}>\mathrm{r}$.
- $\mathrm{T}-\mathrm{k}=28, \mathrm{H}_{\mathrm{o}}: \beta_{\mathrm{j}, \mathrm{o}}=0$ and $\mathrm{H}_{\mathrm{a}}: \beta_{\mathrm{j}, \mathrm{o}}>0$.

- Here, you strongly believe that $\beta_{\mathrm{j}, \mathrm{o}}$ cannot be negative. If so, you would regard negative t-statistics as evidence for H_{0}. So, your acceptance/rejection decision depends on how positively large the value of your t-statistic is.
- Choose a critical value ($\mathrm{c}=1.701$) as in the above graph at 5% significance level. Then, reject H_{o} in favor of H_{a}, if $t>c(=1.701)$. Do not reject H_{0}, if t $<\mathrm{c}$.
$<$ Case $3>\mathrm{H}_{\mathrm{o}}: \mathrm{R} \beta_{\mathrm{o}}=\mathrm{r}$ and $\mathrm{H}_{\mathrm{a}}: \mathrm{R} \beta_{\mathrm{o}}<\mathrm{r}$.
- $\mathrm{T}-\mathrm{k}=18, \mathrm{H}_{\mathrm{o}}: \beta_{\mathrm{j}, \mathrm{o}}=0$ and $\mathrm{H}_{\mathrm{a}}: \beta_{\mathrm{j}, \mathrm{o}}<0$.

- Here, you strongly believe that $\beta_{\mathrm{j}, \mathrm{o}}$ cannot be positive. If so, you would regard a positive value of a t -statistic as evidence favoring H_{0}. So, your acceptance/rejection decision depends on how negatively large the value of your t -statistic is.
- Choose a critical value $(-\mathrm{c}=-1.734)$ as in the above graph at a given significance level. Then, reject H_{o} in favor of H_{a}, ift $<-\mathrm{c}(=-1.734$). Do not reject H_{0}, if $\mathrm{t}>-\mathrm{c}$.

Numerical Example:

- Use 95% of confidence level.
- $\mathrm{y}=\beta_{1}+\beta_{2} \mathrm{x}_{2 \mathrm{t}}+\beta_{3} \mathrm{x}_{3 \mathrm{t}}+\varepsilon_{\mathrm{t}}$.
- $s^{2}\left(X^{\prime} X\right)^{-1}=\left[\begin{array}{ccc}1.45 & 0 & 0 \\ 0 & 72.57 & -101.60 \\ 0 & -101.60 & 145.14\end{array}\right] ; \hat{\beta}=\left[\begin{array}{c}1.2 \\ -1 \\ 2\end{array}\right] ; \mathrm{T}=10$.
- $\mathrm{H}_{\mathrm{o}}: \beta_{2, \mathrm{o}}=\beta_{3, \mathrm{o}}$ against $\mathrm{H}_{\mathrm{a}}: \beta_{2, \mathrm{o}} \neq \beta_{3, \mathrm{o}}$
$\rightarrow \quad H_{0}: \beta_{2,0}-\beta_{3,0}=0$.
$\rightarrow \quad \mathrm{H}_{\mathrm{o}}: 1 \cdot \beta_{2, \mathrm{o}}+(-1) \cdot \beta_{3, \mathrm{o}}=0$.
$\rightarrow \quad \mathrm{R}=(0,1,-1)$ and $\mathrm{r}=0$.
$\rightarrow \quad \mathrm{t}=-0.14$
$\rightarrow \mathrm{df}=10-3=7 \rightarrow \mathrm{c}=2.365$
\rightarrow Since $-2.365(-\mathrm{c})<\mathrm{t}<2.365$ (c), do not reject H_{0}.
- $\mathrm{H}_{\mathrm{o}}: \beta_{2, \mathrm{o}}+\beta_{3, \mathrm{o}}=1 ; \mathrm{H}_{\mathrm{a}}: \beta_{2, \mathrm{o}}+\beta_{3, \mathrm{o}} \neq 1$

$$
\rightarrow \quad \mathrm{t}=0, \mathrm{c}=2.365
$$

[Proof of T-Statistics Theorem]

Digression to Probability Theory

1) Standard Normal Distribution: $(z \sim N(0,1))$

- Pdf: $\phi(z)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{z^{2}}{2}\right),-\infty<z<\infty$.

2) χ^{2} (Chi-Square) Distribution

- Let $\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{k}}$ be random variables iid with $\mathrm{N}(0,1)$.
- Then, $\mathrm{y}=\sum_{i=1}^{k} z_{i}{ }^{2} \sim \chi^{2}(\mathrm{k})$.
- Here, $\mathrm{y}>0, \mathrm{k}=$ degrees of freedom.
- $\mathrm{E}(\mathrm{y})=\mathrm{k}$ and $\operatorname{var}(\mathrm{y})=2 \mathrm{k}$.

3) Student t Distribution

- Let $\mathrm{z} \sim \mathrm{N}(0,1)$ and $\mathrm{y} \sim \chi^{2}(\mathrm{k})$. Assume that z and y are stochastically independent.
- Then, $t=\frac{z}{\sqrt{y / k}} \sim \mathrm{t}(\mathrm{k})$.
- $\mathrm{E}(\mathrm{t})=0, \mathrm{k}>1 ; \operatorname{var}(\mathrm{t})=\mathrm{k} /(\mathrm{k}-2), \mathrm{k}>2$.
- As $\mathrm{k} \rightarrow \infty$, $\operatorname{var}(\mathrm{t}) \rightarrow 1$. In fact, $\mathrm{t} \rightarrow \mathrm{z}$.
- The pdf of t is similar to that of z, but t has ticker tails.
- $f(t)$ is symmetric around $t=0$.

4) F Distribution

- Let $\mathrm{y}_{1} \sim \chi^{2}\left(\mathrm{k}_{1}\right)$ and $\mathrm{y}_{2} \sim \chi^{2}\left(\mathrm{k}_{2}\right)$ be stochastically independent.
- Then, $f=\frac{y_{1} / k_{1}}{y_{2} / k_{2}} \sim \mathrm{f}\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)$.
- $\mathrm{f}\left(1, \mathrm{k}_{2}\right)=\left[\mathrm{t}\left(\mathrm{k}_{2}\right)\right]^{2}$.
- If $\mathrm{f} \sim \mathrm{f}\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right), \mathrm{k}_{1} \mathrm{f} \rightarrow \chi^{2}\left(\mathrm{k}_{1}\right)$ as $\mathrm{k}_{2} \rightarrow \infty$.

Gauss Exercise:

- $\mathrm{z} \sim \mathrm{N}(0,1) ; \mathrm{t} \sim \mathrm{f}(4) ; \mathrm{y} \sim \chi^{2}(2) ; \mathrm{f} \sim \mathrm{f}(2,10)$.
- Gauss program name: dismonte.prg

```
*** Monte Carlo Program for z, x-square, t and f distribution
*/
@ Data generation under Classical Linear Regression Assumptions @
new;
seed = 1;
iter = 10000; @ # of sets of different data points @
z = zeros(iter,1);
t = zeros(iter,1);
x = zeros(iter,1);
f = zeros(iter,1);
i = 1; do while i <= iter;
z[i,1] = rndns(1,1,seed);
t[i,1] = rndns(1,1, seed)./sqrt( sumc(rndns(4,1, seed)^2)/4 );
x[i,1] = sumc(rndns(2,1,seed)^2);
f[i,1] = ( sumc( rndns(2,1,seed)^2 )/2 )./ (sumc( rndns(10,1,seed)^2 )/10) ;
i = i + 1; endo ;
@ Histograms @
library pgraph;
graphset;
ytics(0,6,0.1,0) ;
v = seqa(-8,0.1,220);
@ {a1,a2,a3}=histp(z,v); @
@ {b1,b2,b3}=histp(t,v); @
library pgraph;
graphset;
ytics(0,10,0.1,0);
w = seqa(0, 0.1, 330);
```

```
@ {c1,c2,c3} = histp(x,w); @
{d1,d2,d3} = histp(f,w);
```


$$
t \sim t(4)
$$

$y \sim \chi^{2}(2)$

$$
\mathrm{f} \sim \mathrm{f}(2,10)
$$

End of Digression

Lemma T.1:
Under (SIC.1)-(SIC.6) and (SIC.8), $\hat{\beta}$ and s^{2} are stochastically independent. (See Schmidt.)
Lemma T.2:
Under (SIC.1)-(SIC.6) and (SIC.8),

$$
\frac{R(\hat{\beta}-\beta)}{s_{R}} \sim t(T-k)
$$

Proof:
Define $\sigma_{\mathrm{R}}=\sqrt{\sigma_{o}^{2} R\left(X^{\prime} X\right)^{-1} R^{\prime}}$. Note that:

$$
E\left[\frac{R(\hat{\beta}-\beta)}{\sigma_{R}}\right]=0 ; \operatorname{var}\left[\frac{R(\hat{\beta}-\beta)}{\sigma_{R}}\right]=1
$$

[Why?] Furthermore, since $\hat{\beta}$ is normal, so is $R(\hat{\beta}-\beta) / \sigma_{R}$. That is,

$$
q_{1} \equiv \frac{R(\hat{\beta}-\beta)}{\sigma_{R}} \sim N(0,1)
$$

Note that

$$
q_{2} \equiv \frac{s_{R}}{\sigma_{R}}=\frac{\sqrt{R s^{2}\left(X^{\prime} X\right)^{-1} R^{\prime}}}{\sqrt{R \sigma_{o}^{2}\left(X^{\prime} X\right)^{-1} R^{\prime}}}=\sqrt{\frac{s^{2}}{\sigma_{o}^{2}}}=\sqrt{\frac{(T-k) s^{2}}{(T-k) \sigma_{o}^{2}}}=\sqrt{\frac{\chi^{2}(T-k)}{T-k}} .
$$

Note that q_{1} and q_{2} are stochastically independent because $\hat{\beta}$ and s^{2} are stochastically independent by Lemma T.1. Therefore, we have:

$$
\frac{R(\hat{\beta}-\beta)}{s_{R}}=\frac{q_{1}}{q_{2}}=\frac{N(0,1)}{\sqrt{\chi^{2}(T-K) /(T-k)}} \sim t(T-k)
$$

Proof of T-Statistics Theorem:

Under H_{o},

$$
t=\frac{R \hat{\beta}-r}{s_{R}}=\frac{R \hat{\beta}-R \beta_{o}}{s_{R}}=\frac{R\left(\hat{\beta}-\beta_{o}\right)}{s_{R}} \sim t(T-k) .
$$

Then, the result immediately follows from Lemma T.2.
(2) Testing several restrictions

Assume that R is $m \times k$ and r is $m \times 1$ vector, and $H_{0}: R \beta_{o}=r$.

Example:

- A model is given: $\mathrm{y}_{\mathrm{t}}=\mathrm{x}_{\mathrm{t1}} \beta_{1, \mathrm{o}}+\mathrm{x}_{\mathrm{t} 2} \beta_{2, \mathrm{o}}+\mathrm{x}_{\mathrm{t} 3} \beta_{3, \mathrm{o}}+\varepsilon_{\mathrm{t}}$.
- Wish to test for $\mathrm{H}_{0}: \beta_{1, \mathrm{o}}=0$ and $\beta_{2, \mathrm{o}}+\beta_{3,0}=1$.
- Define:

$$
R=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right] ; r=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Then, $\mathrm{H}_{\mathrm{o}} \rightarrow \mathrm{R} \beta_{\mathrm{o}}=\mathrm{r}$.

Theorem: (F-Statistics Theorem)
Assume that all of SIC holds. Under $\mathrm{H}_{0}: \mathrm{R} \beta_{\mathrm{o}}=\mathrm{r}$,

$$
F \equiv \frac{(R \hat{\beta}-r)^{\prime}\left[R s^{2}\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \hat{\beta}-r)}{m} \sim f(m, T-k)
$$

Comment:

$$
\begin{aligned}
& \frac{(R \hat{\beta}-r)^{\prime}\left[R s^{2}\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \hat{\beta}-r)}{m} \\
& =\frac{R(\hat{\beta}-r)^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \hat{\beta}-r) / m}{S S E /(T-k)}
\end{aligned}
$$

Comment:
F-Statistics Theorem implies the following:

- Imagine that you collect billions and billions (b) of different samples.
- For each sample, compute the F statistic for the same hypothesis H_{0}. Denote the population of these F statistics as $\left\{\mathrm{F}^{[1]}, \mathrm{F}^{[2]}, \ldots, \mathrm{F}^{[\mathrm{b}]}\right\}$.
- The above theorem indicates that the population of the F-statistics is distributed as $\mathrm{f}(\mathrm{m}, \mathrm{T}-\mathrm{k})$.

How to reject or accept H_{o}

- When you use the F-test, it is important to note that the hypothesis you actually test is not $H_{0}: R \beta_{o}=r$. It is rather (with some exaggerations) the hypothesis that:

$$
\mathrm{H}_{\mathrm{o}}^{\prime}:\left(\mathrm{R} \beta_{0}-\mathrm{r}\right)^{\prime}\left[\mathrm{R}\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{R}^{\prime}\right]^{-1}\left(\mathrm{R} \beta_{\mathrm{o}}-\mathrm{r}\right)=0
$$

If so, your alternative hypothesis should be that

$$
\mathrm{H}_{\mathrm{a}}^{\prime}:\left(\mathrm{R} \beta_{\mathrm{o}}-\mathrm{r}\right)^{\prime}\left[\mathrm{R}\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{R}^{\prime}\right]^{-1}\left(\mathrm{R} \beta_{\mathrm{o}}-\mathrm{r}\right)>0
$$

because $R\left(X^{\prime} X\right)^{-1} R^{\prime}$ is pd. So, the F-test is a one-tail by nature.

- Suppose $\mathrm{m}=3$ and $\mathrm{T}-\mathrm{k}=60$.

- If you choose $\alpha=5 \%$ (significance level), the probability that your F-statistic computed with a sample is greater than 2.76 (confidence level). Call 2.76 "critical value" (c).
- So, if the value of your F-statistic is greater (smaller) than c, reject (do not reject) H_{0}.

An Alternative Representation of F-Statistic

Definition: (Restricted OLS)
Restricted OLS estimators $\widetilde{\beta}$ and $\widetilde{\sigma}^{2}$ are defined as follows: $\widetilde{\beta}$ minimizes $\mathrm{S}_{\mathrm{T}}(\beta)=(\mathrm{y}-\mathrm{X} \beta)^{\prime}(\mathrm{y}-\mathrm{X} \beta)$ subject to the restriction $\mathrm{R} \beta=\mathrm{r}$. Given $\widetilde{\beta}, \widetilde{\sigma}^{2}$ is computed by $(y-X \tilde{\beta})^{\prime}(y-X \tilde{\beta}) /(T-k+m)$.

Theorem:

$$
\tilde{\beta}=\hat{\beta}-\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right](R \hat{\beta}-r) .
$$

Proof: See Greene.

Theorem:
Under $\mathrm{H}_{\mathrm{o}}: \mathrm{R} \beta_{\mathrm{o}}-\mathrm{r}=0$,

$$
\begin{aligned}
& E(\tilde{\beta})=\beta_{o} \\
& \operatorname{Cov}(\tilde{\beta})=\operatorname{Cov}(\hat{\beta})-\sigma_{o}^{2}\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right] R\left(X^{\prime} X\right)^{-1}
\end{aligned}
$$

Proof:
Show it by yourself. Use the fact that for any pd matrix A, BAB^{\prime} is a psd matrix whatever nonzero conformable matrix B.

Theorem:
Assume that (SIC.1)-(SIC.6) and (SIC.8) hold (whether (SIC.7) holds or not).
If H_{o} is correct, then, $\widetilde{\beta}$ is more efficient than $\hat{\beta}$.
Proof: Show it by yourself.

Theorem
Let $\operatorname{SSE}=(y-X \hat{\beta})^{\prime}(y-X \hat{\beta}) ; \operatorname{SSE}_{r}=(y-X \tilde{\beta})^{\prime}(y-X \tilde{\beta})$. Then,

$$
F=\frac{\left(S S E_{r}-S S E\right) / m}{s^{2}}=\frac{\left(S S E_{r}-S S E\right) / m}{S S E /(T-k)} .
$$

Proof: See Greene.

Remark:

- Consider a model: $y_{t}=x_{t 1} \beta_{1}+x_{t 2} \beta_{2}+x_{t 3} \beta_{3}+x_{t 4} \beta_{4}+\varepsilon_{t}$.
- Wish to test for $\mathrm{H}_{0}: \beta_{3, \mathrm{o}}=\beta_{4, \mathrm{o}}=0$.
- To find $\widetilde{\beta}$, do OLS on:

$$
\text { (*) } y_{t}=x_{t 1} \beta_{1}+x_{t 2} \beta_{2}+\varepsilon_{\mathrm{t}} .
$$

- Denote the OLS estimates by $\widetilde{\beta}_{1}$ and $\widetilde{\beta}_{2}$. Then, the restricted OLS estimate of β is given by $=\left[\widetilde{\beta}_{1}, \widetilde{\beta}_{2}, 0,0\right]^{\prime}$.
- Also, set SSE from (*) as $\mathrm{SSE}_{\mathrm{r}}$.
- Test $\mathrm{H}_{\mathrm{o}}: \beta_{2, \mathrm{o}}+\beta_{3, \mathrm{o}}=1$ and $\beta_{4, \mathrm{o}}=0$.
- $\mathrm{y}_{\mathrm{t}}=\mathrm{x}_{\mathrm{t} 1} \beta_{1}+\mathrm{x}_{\mathrm{t} 2} \beta_{2}+\mathrm{x}_{\mathrm{t} 3} \beta_{3}+\mathrm{x}_{\mathrm{t} 4} \beta_{4}+\varepsilon_{\mathrm{t}}$.
$\rightarrow \mathrm{y}_{\mathrm{t}}=\mathrm{x}_{\mathrm{t} 1} \beta_{1}+\mathrm{x}_{\mathrm{t} 2} \beta_{2}+\mathrm{x}_{\mathrm{t} 3}\left(1-\beta_{2}\right)+\varepsilon_{\mathrm{t}}$.
$\rightarrow \mathrm{y}_{\mathrm{t}}-\mathrm{x}_{\mathrm{t} 3}=\mathrm{x}_{\mathrm{t} 1} \beta_{1}+\left(\mathrm{x}_{\mathrm{t} 2}-\mathrm{x}_{\mathrm{t} 3}\right) \beta_{2}+\varepsilon_{\mathrm{t}} \cdot\left({ }^{* *}\right)$
- Do OLS on $\left({ }^{* *}\right)$ and get $\widetilde{\beta}_{1}$ and $\widetilde{\beta}_{2}$. Set $\widetilde{\beta}_{3}=1-\widetilde{\beta}_{2}$ and $\widetilde{\beta}_{4}=0$. Set $\mathrm{SSE}_{\mathrm{r}}=\mathrm{SSE}$ from OLS on $\left({ }^{* *}\right)$.

Theorem

Let $\widetilde{\beta}_{1}$ be the OLS estimator β_{1} for a model $y_{t}=\beta_{1}+\varepsilon_{t}$. Then, $\widetilde{\beta}_{1}=\bar{y}$. Proof: Do this by yourself.

Theorem: (Overall Significance F Test)
The model is given:

$$
\left.\mathrm{y}_{\mathrm{t}}=\mathrm{x}_{\mathrm{t} 1} \beta_{1}+\mathrm{x}_{\mathrm{t} 2} \beta_{2}+\ldots+\mathrm{x}_{\mathrm{tk}} \beta_{\mathrm{k}}+\varepsilon_{\mathrm{t} \cdot} \cdot{ }^{*}\right)
$$

Assume that this model satisfies all of SIC (including SIC.7). Consider $\mathrm{H}_{0}: \beta_{2,0}$
$=\ldots=\beta_{\mathrm{k}, \mathrm{o}}=0$. The F-statistic for this hypothesis is given by

$$
F=\frac{T-k}{k-1} \frac{R^{2}}{1-R^{2}} \sim \mathrm{f}(\mathrm{k}-1, \mathrm{~T}-\mathrm{k})
$$

where R^{2} is from the original model (*).

Example:

- Consider WAGE2.WF1
- Data: (WAGE2.WF1 or WAGE2.TXT - from Wooldridge's website)
\# of observations (T):
935

1. wage
2. hours
3. IQ
4. KWW
5. educ
6. exper
7. tenure
8. age
9. married
10. black
11. south
12. urban
13. sibs
14. brthord
15. meduc
16. feduc
17. lwage

IQ score
monthly earnings
average weekly hours
knowledge of world work score
years of education
years of work experience
years with current employer
age in years
$=1$ if married
$=1$ if black
$=1$ if live in south
$=1$ if live in SMSA
number of siblings
birth order
mother's education
father's education
natural log of wage

- Estimate the Mincerian wage equation:

$$
\log (\text { wage })=\beta_{1}+\beta_{2} \text { Educ }+\beta_{3} \text { Exper }+\beta_{4} \text { Exper }^{2}+\varepsilon
$$

Estimation Results by Eviews:

Dependent Variable: LWAGE
Method: Least Squares
Sample: 1935
Included observations: 935

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	5.517432	0.124819	44.20360	0.0000
EDUC	0.077987	0.006624	11.77291	0.0000
EXPER	0.016256	0.013540	1.200595	0.2302
EXPER^2	0.000152	0.000567	0.268133	0.7887
R-squared	0.130926	Mean dependent var	6.779004	
Adjusted R-squared	0.128126	S.D. dependent var	0.421144	
S.E. of regression	0.393240	Akaike info criterion	0.975474	
Sum squared resid	143.9675	Schwarz criterion	0.996183	
Log likelihood	-452.0343	F-statistic	46.75188	
Durbin-Watson stat	1.788764			

- H_{0} : Education does not improve individuals' productivity.
- Ha: Education matters, but its effect could be either positive or negative.
$\rightarrow \quad H_{0}: \beta_{2,0}=0$ Vs. $H_{a}: \beta_{2, o} \neq 0$.
$\rightarrow \quad t=\frac{\hat{\beta}_{2}-0}{\operatorname{se}\left(\hat{\beta}_{2}\right)}=11.77291 ; \mathrm{c}=1.96$ at 5% significance level.
$\rightarrow \quad$ Since $t \notin(-1.96,1.96)$, reject Ho!
$\rightarrow \quad \mathrm{P}$-value for this t statistic $=0.0000 ; \alpha=0.05$.
- H_{0} : Education does not improve individuals' productivity.
H_{a} : Education improves individuals' productivity.
$\rightarrow \quad H_{0}: \beta_{2, \mathrm{o}}=0$ Vs. $\mathrm{H}_{\mathrm{a}}: \beta_{2, \mathrm{o}}>0$.
$\rightarrow \quad \mathrm{t}=\frac{\hat{\beta}_{2}-0}{\operatorname{se}\left(\hat{\beta}_{2}\right)}=11.77291 ; \mathrm{c}=1.645$ at 5% significance level.
Since $c<t$, reject H_{o} in favor of H_{a}.
- H_{0} : Work experience does not improve individuals' productivity.

$$
\rightarrow \quad \mathrm{H}_{\mathrm{o}}: \beta_{3, \mathrm{o}}=\beta_{4, \mathrm{o}}=0 .
$$

H_{a} : Work experience matters.

$$
\rightarrow \quad \mathrm{H}_{\mathrm{a}}: \beta_{3, \mathrm{o}} \neq 0 \mathrm{and} / \text { or } \beta_{4, \mathrm{o}} \neq 0
$$

Wald Test:
Equation: Untitled
Null $\quad C(3)=0$

Hypothesis:

$$
C(4)=0
$$

F-statistic	17.94867	Probability	0.000000
Chi-square	35.89734	Probability	0.000000

$\rightarrow \quad \mathrm{F}=17.94867 ; \mathrm{c}$ from $\mathrm{f}(2,931)=2.6($ at $\alpha=5 \%)$.
$\rightarrow \quad$ Reject H_{0}.
$\rightarrow \quad$ Or, p-val of $F=0.0000<0.05=\alpha$. So, reject H_{0}.

Example: (Cobb-Douglas production function)

- Setup: L = labor; $\mathrm{K}=$ capital; $\mathrm{Q}=$ output.
- The Cobb-Douglas production function is given:

$$
Q_{t}=A L_{t}^{\beta_{2}} K_{t}^{\beta_{3}} e^{\varepsilon_{t}},
$$

where A is constant. Taking log for both sides, we have:

$$
(*) \log \left(Q_{t}\right)=\beta_{1}+\beta_{2} \log \left(L_{t}\right)+\beta_{3} \log \left(K_{t}\right)+\varepsilon_{t},
$$

where $\beta_{1}=\ln (\mathrm{A})$.

- Estimation: Do OLS on $(*)$, and estimate β 's.
- Interpretation of β 's:

$$
\begin{aligned}
& \beta_{2}=\partial \log \left(Q_{t}\right) / \partial \log \left(L_{t}\right)=\text { Elasticity of output with respect to labor. } \\
& \beta_{3}=\partial \log \left(Q_{t}\right) / \partial \log \left(K_{t}\right)=\text { Elasticity of output with respect to capital. } \\
& \beta_{2}+\beta_{3}=\text { scale of economy (r) } \\
& \quad \quad \quad \text { increasing returns to scale if } \mathrm{r}>1]
\end{aligned}
$$

- Using F- or t-test methods, we can test $\mathrm{H}_{0}: \beta_{2, \mathrm{o}}+\beta_{3, \mathrm{o}}=1$.
- A drawback of Cobb-Douglas
- When you use the Cobb-Douglas production function, you are assuming that the elasticities are constant over different levels of L and L. In reality, elasticities might change over different L and K .

Example: (Translog Production Function)

- Setup:

$$
\log \left(Q_{t}\right)=\left\{\begin{array}{l}
\beta_{1}+\beta_{2} \log \left(L_{t}\right)+\beta_{3} \log \left(K_{t}\right) \\
+\beta_{4} \frac{\left(\log \left(L_{t}\right)\right)^{2}}{2}+\beta_{5} \frac{\left(\log \left(K_{t}\right)\right)^{2}}{2}+\beta_{6}\left(\log \left(L_{t}\right)\right)\left(\log \left(K_{t}\right)\right)+\varepsilon_{t}
\end{array}\right\} .
$$

- Testing Cobb-Douglas:
- Do a F-test for $\mathrm{H}_{0}: \beta_{4, o}=\beta_{5, o}=\beta_{6, o}=0$.
- Estimating elasticities:
- Let $\overline{\log (L)}$ and $\overline{\log (K)}$ be chosen values of $\log \left(\mathrm{L}_{\mathrm{t}}\right)$ and $\log \left(\mathrm{K}_{\mathrm{t}}\right)$. [You may choose sample means.]
- Observe that $\eta_{\mathrm{QL}}=\partial \log (Q) / \partial \log (L)=\beta_{2}+\beta_{4} \log (\mathrm{~L})+\beta_{6} \log (\mathrm{~K})$.
- Thus, a natural estimate of η_{QL} is given:

$$
\hat{\eta}_{Q L}=\hat{\beta}_{2}+\hat{\beta}_{4} \overline{\log (L)}+\hat{\beta}_{6} \overline{\log (K)}=R \hat{\beta}
$$

where $\mathrm{R}=(0,1,0, \overline{\log (L)}, 0, \overline{\log (K)})$.

- $\operatorname{var}\left(\hat{\eta}_{Q L}\right)=\operatorname{var}(R \hat{\beta})=R \operatorname{Cov}(\hat{\beta}) R^{\prime}$.

Thus, $\operatorname{se}\left(\hat{\eta}_{Q L}\right)=\sqrt{\operatorname{RCov}(\hat{\beta}) R^{\prime}}$.
[Proofs of the theorems related with F-statistic]
Theorem:
Under $\mathrm{H}_{0}: \mathrm{R} \beta_{\mathrm{o}}=\mathrm{r}$,

$$
F=\frac{(R \hat{\beta}-r)^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \hat{\beta}-r) / m}{S S E /(T-k)} \sim f(m, T-k)
$$

Proof:
Let $\mathrm{g}=(R \hat{\beta}-r)^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \hat{\beta}-r) / \sigma_{o}^{2}$; and let $\mathrm{h}=S S E / \sigma_{o}^{2}=$ $(T-k) s^{2} / \sigma_{o}^{2}$. Note that $\mathrm{F}=(\mathrm{g} / \mathrm{m}) /[\mathrm{h} /(\mathrm{T}-\mathrm{k})]$. We already know that $\mathrm{h} \sim$ $\chi^{2}(\mathrm{~T}-\mathrm{k})$. Therefore, we can complete the proof by showing that (i) g is $\chi^{2}(\mathrm{~m})$, and that (ii) g and h are stochastically independent.
(i) Note that under H_{0},

$$
R \hat{\beta}-r=R \hat{\beta}-R \beta=R(\hat{\beta}-\beta)=R\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon
$$

Therefore, we have:

$$
g=\frac{\varepsilon^{\prime} X\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon}{\sigma_{o}^{2}} \equiv \frac{\varepsilon^{\prime} Q \varepsilon}{\sigma_{o}^{2}}
$$

We can see that Q is symmetric and idempotent with $\operatorname{Rank}(Q)=m$. Since $\varepsilon \sim$ $N\left(0_{T \times 1}, \sigma_{o}^{2} I_{T}\right), \mathrm{g} \sim \chi^{2}(\mathrm{~m})$. [See Schmidt.]
(ii) $\mathrm{h}=\mathrm{SSE} / \sigma^{2}=\varepsilon^{\prime} \mathrm{M}(\mathrm{X}) \varepsilon / \sigma^{2} \sim \chi^{2}(\mathrm{~T}-\mathrm{k})$. Note that $\mathrm{M}(\mathrm{X}) \mathrm{Q}=0$. Therefore, g and h are stochastically independent. [See Schmidt.]

Theorem:
Under $\mathrm{H}_{\mathrm{o}}: \mathrm{R} \beta_{\mathrm{o}}-\mathrm{r}=0$,

$$
\left.E(\tilde{\beta})=\beta_{o}\right)
$$

$$
\operatorname{Cov}(\tilde{\beta})=\operatorname{Cov}(\hat{\beta})-\sigma_{o}^{2}\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\left(X^{\prime} X\right)^{-1}
$$

Proof:
(i) $\tilde{\beta}=\hat{\beta}-\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \widehat{\beta}-r)$
$=\hat{\beta}-\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}\left(R \beta_{o}+R\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon-r\right)$
$=\beta_{o}+\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon-\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon$
$=\beta_{o}+\left[\left(X^{\prime} X\right)^{-1} X^{\prime}-\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\left(X^{\prime} X\right)^{-1} X^{\prime}\right] \varepsilon$
$\rightarrow E(\tilde{\beta})=\beta_{o}$.
(ii) Derive $\operatorname{Cov}(\tilde{\beta})$ by yourself.

Theorem (Overall Significance Test)
The model is given:

$$
\text { (*) } \mathrm{y}_{\mathrm{t}}=\mathrm{x}_{\mathrm{t} 1} \beta_{1}+\mathrm{x}_{\mathrm{t} 2} \beta_{2}+\ldots+\mathrm{x}_{\mathrm{tk}} \beta_{\mathrm{k}}+\varepsilon_{\mathrm{t}} .
$$

The null hypothesis is given by $\mathrm{H}_{\mathrm{o}}: \beta_{2, \mathrm{o}}=\ldots=\beta_{\mathrm{k}, \mathrm{o}}=0$. Assume that (SIC.1)-(SIC.8) (including (SIC.7)) hold. Then, the F-statistic for H_{o} is given by:

$$
F=\frac{T-k}{k-1} \frac{R^{2}}{1-R^{2}} \sim \mathrm{f}(\mathrm{k}-1, \mathrm{~T}-\mathrm{k})
$$

where R^{2} is from the above-unrestricted model $\left({ }^{*}\right)$.

Proof:

The restricted model is given by: $\mathrm{y}_{\mathrm{t}}=\beta_{1}+\varepsilon_{\mathrm{t}}$. Since $\tilde{\beta}_{1}=\bar{y}$,

$$
\begin{aligned}
\mathrm{SSE}_{\mathrm{r}} & =(y-X \widetilde{\beta})^{\prime}(y-X \widetilde{\beta})=\Sigma_{t}\left(y_{t}-x_{t \bullet}^{\prime} \widetilde{\beta}\right)^{2} \\
& =\Sigma_{t}\left(y_{t}-\tilde{\beta}_{1}-x_{t 2} \tilde{\beta}_{2}-\ldots-x_{t k} \tilde{\beta}_{k}\right)^{2} \\
& =\Sigma_{t}\left(y_{t}-\tilde{\beta}_{1}\right)^{2}=\Sigma_{t}\left(y_{t}-\bar{y}\right)^{2}=\mathrm{SST} .
\end{aligned}
$$

Observe that:

$$
\begin{aligned}
F & =\frac{\left(S S E_{r}-S S E_{u}\right) /(k-1)}{S S E_{u} /(T-k)}=\frac{T-k}{k-1} \frac{S S T-S S E}{S S E} \\
& =\frac{T-k}{k-1} \frac{1-S S E / S S T}{S S E / S S T}=\frac{T-k}{k-1} \frac{R^{2}}{1-R^{2}}
\end{aligned}
$$

[8] Tests of Structural Changes

(1) Motivation:

Relationships among economic variables may change over time or across different genders (Ch. 7.4 in Greene)

Example 1:
Oil shocks during 70's may have changed firms' production functions permanently.

Example 2:

Effects of schooling on wages may be different over different regions. [Why?
Perhaps because of different industries across different regions.]

- Data: (WAGE2.WF1 or WAGE2.TXT - from Wooldridge's website) \# of observations (T): 935

1. wage
2. hours
3. IQ
4. KWW
5. educ
6. exper
7. tenure
8. age
9. married
10. black
11. south
12. urban
13. sibs
14. brthord
15. meduc
16. feduc
17. lwage
monthly earnings
average weekly hours
IQ score
knowledge of world work score
years of education
years of work experience
years with current employer
age in years
$=1$ if married
$=1$ if black
$=1$ if live in south
$=1$ if live in SMSA
number of siblings
birth order
mother's education
father's education
natural \log of wage

- Mincerian wage equation for people living in South (A):

Dependent Variable: LWAGE
Sample(adjusted): 28935 IF SOUTH = 1
Included observations: 319 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	4.860469	0.233695	20.79831	0.0000
\quad EDUC	0.101053	0.012594	8.024086	0.0000
EXPER	0.053960	0.024386	2.212751	0.0276
EXPER^2	-0.001007	0.001009	-0.997829	0.3191
R-squared				
Adjusted R-squared	0.179628	Mean dependent var	6.665056	
S.E. of regression	0.471815	S.D. dependent var	0.450349	
Sum squared resid	52.90976	Akaike info criterion	1.066352	
Schwarz criterion	1.113565			
Log likelihood	-166.0832	F-statistic	22.99070	
Durbin-Watson stat	1.755004	Prob(F-statistic)	0.000000	

- Mincerian wage equation for people living in Non-South (B):

Dependent Variable: LWAGE
Sample(adjusted): 1910 IF SOUTH = 0
Included observations: 616 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	5.893468	0.143314	41.12270	0.0000
EDUC	0.063453	0.007563	8.389865	0.0000
EXPER	-0.002798	0.015758	-0.177542	0.8591
EXPER^2	0.000744	0.000664	1.120953	0.2627
R-squared	0.103200	Mean dependent var	6.838013	
Adjusted R-squared	0.098804	S.D. dependent var	0.392769	
S.E. of regression	0.372861	Akaike info criterion	0.871250	
Sum squared resid	85.08351	Schwarz criterion	0.899973	
Log likelihood	-264.3451	F-statistic	23.47553	
Durbin-Watson stat	1.852473			

- Question:
- $\beta_{\mathrm{A} 1, \mathrm{o}}=\beta_{\mathrm{B} 1, \mathrm{o}}, \beta_{\mathrm{A} 2, \mathrm{o}}=\beta_{\mathrm{B} 2, \mathrm{o}}, \beta_{\mathrm{A} 3, \mathrm{o}}=\beta_{\mathrm{B} 3, \mathrm{o}}$ and $\beta_{\mathrm{A} 4, \mathrm{o}}=\beta_{\mathrm{B} 4, \mathrm{o}}$?
- If so, we can pool all observations to estimate:
(C) lwage $_{t}=\beta_{1}+\beta_{2}$ educ $_{t}+\beta_{3}$ exper $_{t}+\beta_{4}$ exper $_{t}^{2}+\varepsilon_{t}, t=1, \ldots, T$.

Dependent Variable: LWAGE
Method: Least Squares
Date: 02/05/02 Time: 13:57
Sample: 1935
Included observations: 935

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	5.517432	0.124819	44.20360	0.0000
EDUC	0.077987	0.006624	11.77291	0.0000
EXPER	0.016256	0.013540	1.200595	0.2302
EXPER^2	0.000152	0.000567	0.268133	0.7887
R-squared	0.130926	Mean dependent var	6.779004	
Adjusted R-squared	0.128126	S.D. dependent var	0.421144	
S.E. of regression	0.393240	Akaike info criterion	0.975474	
Sum squared resid	143.9675	Schwarz criterion	0.996183	
Log likelihood	-452.0343	F-statistic	46.75188	
Durbin-Watson stat	1.788764			

- Question:

How can we test $\mathrm{H}_{\mathrm{o}}: \beta_{\mathrm{A} 1, \mathrm{o}}=\beta_{\mathrm{B} 1, \mathrm{o}}, \beta_{\mathrm{A} 2, \mathrm{o}}=\beta_{\mathrm{B} 2, \mathrm{o}}, \beta_{\mathrm{A} 3, \mathrm{o}}=\beta_{\mathrm{B} 3, \mathrm{o}}$ and $\beta_{\mathrm{A} 4, \mathrm{o}}=\beta_{\mathrm{B} 4, \mathrm{o}}$?
(2) General Framework

Model For Group A:
(A) $y_{A t}=\beta_{\mathrm{A} 1}+\beta_{\mathrm{A} 2} \mathrm{x}_{\mathrm{At} 2}+\ldots+\beta_{\mathrm{Ak}} \mathrm{x}_{\mathrm{Atk}}+\varepsilon_{\mathrm{At}}, \mathrm{t}=1, \ldots, \mathrm{~T}_{\mathrm{A}}$.

Model For Group B:
(B) $\mathrm{y}_{\mathrm{Bt}}=\beta_{\mathrm{B} 1}+\beta_{\mathrm{B} 2} \mathrm{x}_{\mathrm{Bt} 2}+\ldots+\beta_{\mathrm{Bk}} \mathrm{x}_{\mathrm{Bt}}+\varepsilon_{\mathrm{Bt}}, \mathrm{t}=1, \ldots, \mathrm{~T}_{\mathrm{B}}$.

Under $H_{o}: \beta_{A j, o}=\beta_{B j, o}$ for any $j=1, \ldots, k$ (k restrictions), we can pool the data to estimate
(C) $\mathrm{y}_{\mathrm{t}}=\beta_{1}+\beta_{2} \mathrm{x}_{\mathrm{t} 2}+\ldots+\beta_{\mathrm{k}} \mathrm{x}_{\mathrm{tk}}+\varepsilon_{\mathrm{t}}, \mathrm{t}=1, \ldots, \mathrm{~T}\left(=\mathrm{T}_{\mathrm{A}}+\mathrm{T}_{\mathrm{B}}\right)$.

Assume that $\operatorname{var}\left(\varepsilon_{\mathrm{At}}\right)=\operatorname{var}\left(\varepsilon_{\mathrm{Bt}}\right)=\sigma_{o}^{2}$.
(3) Chow-Test Procedure.

STEP 1: Do OLS on (C) and get $\mathrm{SSE}_{\mathrm{C}}$.
STEP 2: Do OLS on (A) and (B); then get $\mathrm{SSE}_{\mathrm{A}}$ and $\mathrm{SSE}_{\mathrm{B}}$.
STEP 3: Compute the Chow-Test statistic.
Under H_{o},

$$
F_{\text {CHOW }}=\frac{\left(S S E_{C}-S S E_{A}-S S E_{B}\right) / k}{\left(S S E_{A}+S S E_{B}\right) /\left(T_{A}+T_{B}-2 k\right)} \sim f\left(k, T_{A}+T_{B}-2 k\right) .
$$

Example: Back to the Mincerian wage equation.
STEP 1: OLS results from all $\left(\mathrm{SSE}_{\mathrm{C}}=143.9675 ; \mathrm{T}_{\mathrm{A}}+\mathrm{T}_{\mathrm{B}}=935\right)$.
STEP 2: OLS results from South $\left(\mathrm{SSE}_{\mathrm{A}}=52.90976 ; \mathrm{T}_{\mathrm{A}}=319\right)$.
OLS results from Non-South $\left(\mathrm{SSE}_{\mathrm{B}}=85.08351 ; \mathrm{T}_{\mathrm{B}}=616\right)$.
STEP 3: Compute the Chow statistic:

$$
\begin{aligned}
F_{\text {CHOW }} & =\frac{\left(S S E_{C}-S S E_{A}-S S E_{B}\right) / k}{\left(S S E_{A}+S S E_{B}\right) /\left(T_{A}+T_{B}-2 k\right)} \\
& =\frac{(143.9675-85.08351-52.90976) / 4}{(85.08351+52.90976) /(935-8)} \\
& =10.033299
\end{aligned}
$$

c from $f(4,927)=2.37$ at 5% significance level. Since F $>\mathrm{c}$, we reject H_{0}. There is a structural difference between South and Non-South.

[Proof for Chow test]

- Assume $\varepsilon_{\mathrm{At}}$ and $\varepsilon_{\mathrm{Bt}}$ are iid $N\left(0, \sigma_{o}^{2}\right)$.
- Unrestricted Model: Merge Models (A) and (B):

Model A: $\mathrm{y}_{\mathrm{A}}=\mathrm{X}_{\mathrm{A}} \beta_{\mathrm{A}}+\varepsilon_{\mathrm{A}}$
Model B: $\mathrm{y}_{\mathrm{B}}=\mathrm{X}_{\mathrm{B}} \beta_{\mathrm{B}}+\varepsilon_{\mathrm{B}}$
$\rightarrow\left(^{*}\right) \quad\binom{y_{A}}{y_{B}}=\left(\begin{array}{cc}X_{A} & 0_{T_{A} \times k} \\ 0_{T_{B} \times k} & X_{B}\end{array}\right)\binom{\beta_{A}}{\beta_{B}}+\binom{\varepsilon_{A}}{\varepsilon_{B}} \rightarrow \mathrm{y}=\mathrm{X} * \beta_{*}+\varepsilon_{*}$.
$\left(\#\right.$ of obs $(T)=T_{A}+T_{B} ; \#$ of regressors $\left.=2 k\right)$
$\rightarrow \operatorname{OLS}$ on $(*): \hat{\beta}_{*}=\left(X_{*}{ }^{\prime} X_{*}\right)^{-1} X_{*}{ }^{\prime} y=\binom{\hat{\beta}_{A}}{\hat{\beta}_{B}}$.
$\rightarrow \mathrm{SSE}$ from this regression $=\mathrm{SSE}_{*}=\mathrm{SSE}_{\mathrm{A}}+\mathrm{SSE}_{\mathrm{B}}$ [Why?].

- Restricted model:
$\beta_{\mathrm{A}, \mathrm{o}}=\beta_{\mathrm{B}, \mathrm{o}}$ (let us denote them by β): k restrictions.
\rightarrow Merge model (A) and (B) with the restriction (Model C):

$$
(* *)\binom{y_{A}}{y_{B}}=\binom{X_{A}}{X_{B}} \beta+\binom{\varepsilon_{A}}{\varepsilon_{B}} \rightarrow \mathrm{y}=\mathrm{X} \beta+\varepsilon
$$

\rightarrow OLS on this model (restricted OLS): $\hat{\beta}=\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}^{\prime} \mathrm{y}$.
$\rightarrow \mathrm{SSE}_{\mathrm{r}}=\mathrm{SSE}_{\mathrm{C}}$.

- F-test for $\beta_{\mathrm{A}, \mathrm{o}}=\beta_{\mathrm{B}, \mathrm{o}}$:

$$
\begin{aligned}
\mathrm{F} & =\left[\left(\mathrm{SSE}_{\mathrm{r}}-\mathrm{SSE}_{\mathrm{u}}\right) / \mathrm{k}\right] /\left[\mathrm{SSE}_{\mathrm{u}} /(\mathrm{T}-2 \mathrm{k})\right] \\
& =\left[\left(\mathrm{SSE}_{\mathrm{C}}-\mathrm{SSE}_{\mathrm{A}}-\mathrm{SSE}_{\mathrm{B}}\right) / \mathrm{k}\right] /\left[\left(\mathrm{SSE}_{\mathrm{A}}+\mathrm{SSE}_{\mathrm{B}}\right) /(\mathrm{T}-2 \mathrm{k})\right]
\end{aligned}
$$

- Chow test when $\operatorname{var}\left(\varepsilon_{A t}\right) \neq \operatorname{var}\left(\varepsilon_{B t}\right)$.

Under $\mathrm{H}_{\mathrm{o}}: \beta_{\mathrm{A}, \mathrm{o}}=\beta_{\mathrm{B}, \mathrm{o}}$,

$$
\begin{aligned}
\mathrm{W}_{\mathrm{T}}(\text { wald test })= & \left(\hat{\beta}_{A}-\hat{\beta}_{B}\right)^{\prime}\left[s_{A}{ }^{2}\left(X_{A}{ }^{\prime} X_{A}\right)^{-1}+s_{B}{ }^{2}\left(X_{B}{ }^{\prime} X_{B}\right)^{-1}\right]^{-1}\left(\hat{\beta}_{A}-\hat{\beta}_{B}\right) \\
& \rightarrow \chi^{2}(\mathrm{k}) .
\end{aligned}
$$

- Alternative form of Chow test [Assuming $\operatorname{var}\left(\varepsilon_{A t}\right)=\operatorname{var}\left(\varepsilon_{B t}\right)$.]
- Define a dummy variable:

$$
\mathrm{d}_{\mathrm{t}}=1 \text { if } t \in A ; \mathrm{d}_{\mathrm{t}}=0 \text { if } \mathrm{t} t \in B
$$

- Using all T observations, build up a model:

$$
\left(^{*}\right) \mathrm{y}_{\mathrm{t}}=\mathrm{x}_{\mathrm{t} 1} \beta_{1}+\ldots+\mathrm{x}_{\mathrm{tk}} \beta_{\mathrm{k}}+\left(\mathrm{d}_{\mathrm{t}} \mathrm{x}_{\mathrm{t} 1}\right) \beta_{\mathrm{k}+1}+\ldots+\left(\mathrm{d}_{\mathrm{t}} \mathrm{x}_{\mathrm{tk}}\right) \beta_{2 \mathrm{k}}+\varepsilon_{\mathrm{t}} .
$$

- Note that

$$
\begin{aligned}
& \mathrm{y}_{\mathrm{t}}=\mathrm{x}_{\mathrm{t} 1}\left(\beta_{1}+\beta_{\mathrm{k}+1}\right)+\ldots+\mathrm{x}_{\mathrm{tk}}\left(\beta_{\mathrm{k}}+\beta_{2 \mathrm{k}}\right)+\varepsilon_{\mathrm{t}}, \text { for } t \in A \\
& \mathrm{y}_{\mathrm{t}}=\mathrm{x}_{\mathrm{t} 1} \beta_{1}+\ldots+\mathrm{x}_{\mathrm{tk}} \beta_{\mathrm{k}}+\varepsilon_{\mathrm{t}}, \text { for } t \in B
\end{aligned}
$$

- If no difference between A and $B, \beta_{\mathrm{k}+1}=\ldots=\beta_{2 \mathrm{k}}=0$.

F test for $\mathrm{H}_{\mathrm{o}}: \beta_{\mathrm{k}+1, \mathrm{o}}=\ldots=\beta_{2 \mathrm{k}, \mathrm{o}}=0$ using OLS on $\left({ }^{*}\right)=$ Chow test!!!

Example: Return to South V.S. Non-South
Dependent Variable: LWAGE
Method: Least Squares
Date: 02/05/02 Time: 16:01
Sample: 1935
Included observations: 935

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	5.893468	0.148297	39.74107	0.0000
EDUC	0.063453	0.007826	8.107984	0.0000
EXPER	-0.002798	0.016306	-0.171577	0.8638
EXPER^2	0.000744	0.000687	1.083291	0.2790
SOUTH	-1.032999	0.265316	-3.893462	0.0001
SOUTH*EDUC	0.037600	0.014206	2.646802	0.0083
SOUTH*EXPER	0.056757	0.028159	2.015637	0.0441
SOUTH*EXPER^2	-0.001751	0.001172	-1.493727	0.1356
R-squared	0.166990	Mean dependent var	6.779004	
Adjusted R-squared	0.160700	S.D. dependent var	0.421144	
S.E. of regression	0.385824	Akaike info criterion	0.941648	
Sum squared resid	137.9933	Schwarz criterion	0.983064	
Log likelihood	-432.2203	F-statistic	26.54749	
Durbin-Watson stat	1.825679			Prob(F-statistic)

Wald Test:

Equation: Untitled

Null Hypo.:	$C(5)=0$		
	C(6) $=0$		
	$\mathrm{C}(7)=0$		
	$\mathrm{C}(8)=0$		
F-statistic	10.03332	Probability	0.000000
Chi-square	40.13328	Probability	0.000000

(4) What if $\mathrm{T}_{\mathrm{B}}<\mathrm{k}$?

- Can't estimate β for Group B.
- Alternative test procedure (Chow predictive test):

STEP 1: Do OLS on (C) and get $\mathrm{SSE}_{\mathrm{C}}$.
STEP 2: Do OLS on (A); then get SSE $_{\mathrm{A}}$.
STEP 3: Compute an alternative Chow-test statistic. Under H_{0},

$$
F_{\text {ACHOW }}=\frac{\left(S S E_{C}-S S E_{A}\right) / T_{B}}{\left(S S E_{A}\right) /\left(T_{A}-k\right)} \sim f\left(T_{B}, T_{A}-k\right)
$$

- What is this?
- $y_{A}=X_{A} \beta+\varepsilon_{A} \quad$ for Group $A ;$
$y_{B}=X_{B} \beta+I_{T_{B}} \gamma+\varepsilon_{B} \quad$ for Group B,
where $\gamma=\left(\gamma_{1}, \ldots, \gamma_{T_{B}}\right)^{\prime}$.
$\bullet\left(\begin{array}{c}y_{B, 1} \\ y_{B, 2} \\ : \\ y_{B, T_{B}}\end{array}\right)=\left(\begin{array}{ccccc}x_{B, 1} \cdot & 1 & 0 & \ldots & 0 \\ x_{B, 2} \cdot & 0 & 1 & \ldots & 0 \\ : & : & : & & : \\ x_{B, T_{B}} . & 0 & 0 & \ldots & 1\end{array}\right)\left(\begin{array}{c}\beta \\ \gamma_{1} \\ : \\ \gamma_{T_{B}}\end{array}\right)+\left(\begin{array}{c}\varepsilon_{B, 1} \\ \varepsilon_{B, 2} \\ : \\ \varepsilon_{B, T_{B}}\end{array}\right)$.
- $\binom{y_{A}}{y_{B}}=\left(\begin{array}{cc}X_{T_{A} \times k} & 0_{T_{A} \times T_{B}} \\ X_{T_{B} \times k} & I_{T_{B} \times T_{B}}\end{array}\right)\left(\begin{array}{c}\beta \\ \gamma_{1} \\ : \\ \gamma_{T_{B}}\end{array}\right)+\binom{\varepsilon_{A}}{\varepsilon_{B}}$
- $\mathrm{SSE}_{\mathrm{A}}=\mathrm{SSE}$ from regression of the above model.
- $\mathrm{F}_{\mathrm{ACHOW}}=\mathrm{F}$ for $\mathrm{H}_{0}: \gamma_{1}=\ldots=\gamma_{T_{B}}=0$.

[9] Forecasting

- Model: $\mathrm{y}_{\mathrm{t}}=\beta_{1 \mathrm{x}_{\mathrm{t} 1}}+\beta_{2} \mathrm{x}_{\mathrm{t} 2}+\ldots+\beta_{\mathrm{k}} \mathrm{x}_{\mathrm{tk}}+\varepsilon_{\mathrm{t}}$.
- Wish to predict y_{0} given $\mathrm{x}_{01}, \mathrm{x}_{02}, \ldots, \mathrm{x}_{0 \mathrm{k}}$.
- $y_{0}=x_{0}^{\prime} \beta+\varepsilon_{0}, x_{0}^{\prime}=\left(x_{01}, \ldots, x_{0 k}\right)$.
- $\hat{y}_{0}=x_{0}^{\prime} \hat{\beta}$ (point forecast of y_{0}).

Theorem:
Under (SIC.1)-(SIC.6) and (SIC.8), $\left(y_{0}-\hat{y}_{0}\right) \sim N\left(0, \sigma_{o}^{2}\left[1+x_{0}^{\prime}\left(X^{\prime} X\right)^{-1} x_{0}\right]\right)$.
Proof:

$$
\begin{aligned}
& \hat{y}_{0}=x_{0}^{\prime} \hat{\beta}=x_{0}^{\prime}\left[\beta_{o}+\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon\right]=x_{0}^{\prime} \beta_{o}+x_{0}^{\prime}\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon . \\
& y_{0}= x_{0}^{\prime} \beta_{o}+\varepsilon_{0} . \\
& \rightarrow \quad y_{0}-\hat{y}_{0}=\varepsilon_{0}-x_{0}^{\prime}\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon . \\
& \rightarrow \quad \text { Since } \varepsilon_{0} \text { and } \varepsilon \text { are normal, so is }\left(y_{0}-\hat{y}_{0}\right) . \\
& \rightarrow \quad E\left(y_{0}-\hat{y}_{0}\right)= 0 . \\
& \rightarrow \quad \operatorname{var}\left(y_{0}-\hat{y}_{0}\right)=\operatorname{var}\left(\varepsilon_{0}-x_{0}^{\prime}\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon\right) \\
&=\operatorname{var}\left(\varepsilon_{0}\right)+\operatorname{var}\left[x_{0}^{\prime}\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon\right] \\
&=\sigma_{o}^{2}+x_{0}^{\prime}\left(X^{\prime} X\right)^{-1} X^{\prime} \operatorname{Cov}(\varepsilon)\left[x_{0}^{\prime}\left(X^{\prime} X\right)^{-1} X^{\prime}\right]^{\prime} \\
&=\sigma_{o}^{2}+\sigma_{o}^{2} x_{0}^{\prime}\left(X^{\prime} X\right)^{-1} x_{0} .
\end{aligned}
$$

Theorem:
Under (SIC.1)-(SIC.6) and (SIC.8), $\frac{y_{0}-\hat{y}_{0}}{\sqrt{s^{2}\left(1+x_{0}^{\prime}\left(X^{\prime} X\right)^{-1} x_{0}\right)}} \sim t(T-k)$.

Implication:
Let c be a critical value for two-tail t-test given a significance level (say, 5\%):

$$
\operatorname{Pr}\left(-c<\frac{y_{0}-\hat{y}_{0}}{\operatorname{se}\left(y_{0}-\hat{y}_{0}\right)}<c\right)=0.95
$$

where $\operatorname{se}\left(y_{0}-\hat{y}_{0}\right)=\sqrt{s^{2}\left(1+x_{0}{ }^{\prime}\left(X^{\prime} X\right)^{-1} x_{0}\right)}$. This implies that:

$$
\operatorname{Pr}\left(\hat{y}_{0}-c \times s e<y_{0}<\hat{y}_{0}+c \times s e\right)=0.95 .
$$

Forecasting Procedure:
STEP 1: Let $x_{0}^{\prime}=\left(x_{01}, x_{02}, \ldots, x_{0 k}\right)$.
STEP 2: Compute $\hat{y}_{0}=x_{0}^{\prime} \hat{\beta}$.
STEP 3: Compute $\operatorname{se}\left(y_{0}-\hat{y}_{0}\right)=\sqrt{s^{2}\left(1+x_{0}{ }^{\prime}\left(X^{\prime} X\right)^{-1} x_{0}\right)}$.
STEP 4: From given $\mathrm{df}=\mathrm{T}-\mathrm{k}$ and confidence level, find c .
STEP 5: Compute $\operatorname{Pr}\left(\hat{y}_{0}-c \times s e<y_{0}<\hat{y}_{0}+c \times s e\right)=0.95$.

Numerical Example:
$\left(X^{\prime} X\right)^{-1}=\left(\begin{array}{ccc}0.1 & 0 & 0 \\ 0 & 5 & -7 \\ 0 & -7 & 10\end{array}\right) ; \hat{\beta}=\left(\begin{array}{c}1.2 \\ -1 \\ 2\end{array}\right) ; T=10 ; s^{2}=14.514$.
And $x_{02}=1$ and $x_{03}=1$.

STEP 1: Let $x_{0}^{\prime}=\left(1, x_{02}, x_{03}\right)=(1,1,1)$.
STEP 2: Compute $\hat{y}_{0}=x_{0}^{\prime} \hat{\beta}=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)\left(\begin{array}{c}1.2 \\ -1 \\ 2\end{array}\right)=2.2$.
STEP 3: Compute se $=\sqrt{s^{2}\left(1+x_{0}{ }^{\prime}\left(X^{\prime} X\right)^{-1} x_{0}\right)}=\sqrt{14.514 \times(1+1.1)}=5.52$.
STEP 4: From given $\mathrm{df}=10-3=7$ and $\alpha=5 \%, \mathrm{c}=2.365$.
STEP 5: $\quad \hat{y}_{0}-\mathrm{c} \times \mathrm{se}=2.2-2.365 \times 5.52=-10.855$.
$\hat{y}_{0}+\mathrm{c} \times \mathrm{se}=2.2+2.365 \times 5.52=15.255$.
$\operatorname{Pr}\left(-10.855<\mathrm{y}_{\mathrm{o}}<15.255\right)=0.95$.
"Dynamic" and "Static" Forecasts in Eviews

- For the analysis of cross-section data, they are the same.
- For the analysis of time-series data, they could be different.
- When a regression model uses lagged dependent variables as regressors, it is called a dynamic model.
- Consider a simple dynamic model $\mathrm{y}_{\mathrm{t}}=\beta_{1}+\beta_{2} \mathrm{y}_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}$.
- "Dynamic" Forecast [Multiple Period Forecast]: Suppose you estimate β 's using observations up to $t=100$. Using the estimates, you would like to forecast y_{101} and y_{102}. For this case, if you use "dynamic forecast", Eviews will compute point forecasts of y_{101} and y_{102} by

$$
\hat{y}_{101}=\hat{\beta}_{1}+\hat{\beta}_{2} y_{100} ; \hat{y}_{102}=\hat{\beta}_{1}+\hat{\beta}_{2} \hat{y}_{101}
$$

- "Static" Forecast [One Period Forecast]: If you choose "static forecast", Eviews will compute point forecasts of y_{101} and y_{102} by

$$
\hat{y}_{101}=\hat{\beta}_{1}+\hat{\beta}_{2} y_{100} ; \hat{y}_{102}=\hat{\beta}_{1}+\hat{\beta}_{2} y_{101} .
$$

Observe that "static forecast" use y_{101} instead of \hat{y}_{101} to forecast y_{102}.

- If you have data points up to $t=100$, and if you would like to forecast y at $t=101$ and $t=102$, you'd better to use "dynamic forecast."
- The formula of forecasting standard errors taught in the class can be used for static forecasts. But the standard errors for dynamic forecasts are much more complicated.
[Exercise for Static Forecast]
- Use ECN2002.wf1 (data from 1959:1 to 1995:12).
- For the definitions of the variables, see ECN2002.XLS.
- Forecasting ldpi $=\log (\mathrm{DPI})$ using regression results from 1959:1 to 1995:12.

Dependent Variable: LDPI
Method: Least Squares
Date: 02/07/02 Time: 11:31
Sample(adjusted): 1959:07 1995:12
Included observations: 438 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.008851	0.003062	2.890236	0.0040
LDPI(-1)	0.802184	0.047680	16.82446	0.0000
LDPI(-2)	0.130495	0.061254	2.130386	0.0337
LDPI(-3)	0.086545	0.061535	1.406419	0.1603
LDPI(-4)	0.045344	0.061534	0.736894	0.4616
LDPI(-5)	0.078119	0.061248	1.275461	0.2028
LDPI(-6)	-0.143010	0.047695	-2.998423	0.0029
R-squared	0.999933		Mean dependent var	7.280527
Adjusted R-squared	0.999932	S.D. dependent var	0.889422	
S.E. of regression	0.007340	Akaike info criterion	-6.97510	
Sum squared resid	0.023220	Schwarz criterion	-6.90986	
Log likelihood	1534.547	F-statistic	1069361.	
Durbin-Watson stat	2.014603		Prob(F-statistic)	0.000000

Forecast: LDPIFS	
Actual: LDPI	
Forecast sample: 1996:01 2001:12	
Included observations: 71	
Root Mean Squared Error	0.005262
Mean Absolute Error	0.003230
Mean Abs. Percent Error	0.036666
Theil Inequality Coefficient	0.000300
\quad Bias Proportion	0.106970
Variance Proportion	0.005447
Covariance Proportion	0.887582

[Exercise for Dynamic Forecast]

(1) Motivation

- If the regressors x_{t}. are stochastic, all t and F tests are wrong (bad news).
- The t and F tests require the OLS estimator $\hat{\beta}$ to be unbiased.
- Recall how we have shown the unbiasedness of $\hat{\beta}$ under (SIC.8):

$$
\begin{gathered}
\hat{\beta}=\beta_{o}+\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon \\
\rightarrow E(\hat{\beta})=\beta+E\left[\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon\right] \stackrel{?}{=} \beta+\left(X^{\prime} X\right)^{-1} X^{\prime} E(\varepsilon) .
\end{gathered}
$$

- Unbiasedness of $\widehat{\beta}$ does not require nonstochastic regressors. It only requires:

$$
\begin{equation*}
E\left(\varepsilon_{t} \mid x_{1 \bullet}, \ldots, x_{T \bullet}\right)=0, \text { for all } \mathrm{t} . \tag{*}
\end{equation*}
$$

Or $E(\varepsilon \mid X)=0_{T \times 1}$.
Under this assumption,

$$
\begin{aligned}
E(\hat{\beta}) & =E_{X}(E(\hat{\beta} \mid X))=E_{X}\left(E\left(\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon \mid X\right)\right) \\
& =E_{X}\left(\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} E(\varepsilon \mid X)\right)=E_{X}(\beta)=\beta
\end{aligned}
$$

- But, for some cases, condition $(*)$ does not hold. For example, $x_{t}=y_{t-1}$. In this case, $\mathrm{E}\left(\varepsilon_{\mathrm{t}-1} \mid \mathrm{y}_{\mathrm{t}-1}\right) \neq 0$. For this case, we can no longer say that $\widehat{\beta}$ is an unbiased estimator.
- An example for models with lagged dependent variables as regressors:
$y_{t}=\beta_{1} x_{t 1}+\beta_{2} x_{t 2}+\beta_{3} y_{t-1}+\varepsilon_{t} . \rightarrow \beta_{2} /\left(1-\beta_{3}\right)=$ long-run effect of $x_{t 2}$.
- If the ε_{t} are not normally distributed, all t and F tests are wrong (bad news).
- Can we use them if T is large?
- Recall that the t and F statistics follow t and f distributions, respectively, only if $\hat{\beta}$ is normally distributed. But if the ε_{t} are not normally distributed, $\hat{\beta}$ is no longer normal.

Digression to Mathematical Statistics

Large-Sample Theories

1. Motivation:

- $\hat{\theta}_{T}$: An estimator from a sample of size $\mathrm{T},\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$.

I use subscript " T " to emphasize the fact that an estimator is a function of sample size T .

- What would be the statistic properties of $\hat{\theta}_{T}$ when T is infinitely large?
- What do we wish?
[We wish the distribution of $\hat{\theta}_{T}$ would become more condensed around θ_{o} as T increases.]

2. Main Points:

Rough Definition of Consistency

- Suppose that the distribution of $\hat{\theta}_{T}$ becomes more and more condensed around θ_{o} as T increases. Then, we say that $\hat{\theta}_{T}$ is a consistent estimator. And we use the following notation:

$$
\operatorname{plim}_{\mathrm{T} \rightarrow \infty} \hat{\theta}_{T}=\theta_{\mathrm{o}}\left(\text { or } \hat{\theta}_{T} \rightarrow_{\mathrm{p}} \theta_{\mathrm{o}}\right) .
$$

- The law of large numbers (LLN) says that a sample mean \bar{X}_{T} (\bar{X} from a sample size equal to T) is a consistent estimator of μ_{o}. What does it mean?
- Gauss Exercise:
- A population with $\mathrm{N}(1,9)$.
- 1000 different random samples of $\mathrm{T}=10$ to compute \bar{X}_{10}.
- 1000 different random samples of $\mathrm{T}=100$ to compute \bar{X}_{100}.
- 1000 different random samples of $\mathrm{T}=5000$ to compute \bar{x}_{5000}.

- conmonte.prg

```
/*
** Monte Carlo Program to Demonstrate Efficiency of Sample Mean
*/
@ Data generation from N(1,9) @
seed = 1;
tt1 = 10; @ # of observations @
tt2 = 100; @ # of observations @
tt3 = 1500; @ # of observations @
iter = 1000; @ # of sets of different data @
storx10 = zeros(iter,1) ;
storx100 = zeros(iter,1) ;
storx5000 = zeros(iter,1);
i = 1; do while i <= iter;
@ compute sample mean for each sample @
x10 = 1 + 3*rndns(tt1,1,seed);
x100 = 1 + 3*rndns(tt2,1,seed);
x5000 = 1 + 3*rndns(tt3,1,seed);
storx10[i,1] = meanc(x10);
storx100[i,1] = meanc(x100);
storx5000[i,1] = meanc(x5000);
i = i + 1; endo;
@ Reporting Monte Carlo results @
library pgraph;
graphset;
v = seqa(-2, .05, 120);
ytics(0,25,0.1,0);
@ {a1,a2,a3}=histp(storx10,v); @
@ {b1,b2,b3}=histp(storx100,v); @
    {b1,b2,b3}=histp(storx5000,v);
```


- Relation between unbiasedness and consistency:
- Biased estimators could be consistent.

Example: Suppose that $\tilde{\theta}_{T}$ is unbiased and consistent.
Define $\hat{\theta}_{T}=\tilde{\theta}_{T}+1 / \mathrm{T}$.
Clearly, $\mathrm{E}\left(\hat{\theta}_{T}\right)=\theta_{\mathrm{o}}+1 / \mathrm{T} \neq \theta_{\mathrm{o}}$ (biased).
But, $\operatorname{plim}_{\mathrm{T} \rightarrow \infty} \hat{\theta}_{T}=\operatorname{plim}_{\mathrm{T} \rightarrow \infty} \tilde{\theta}_{T}=\theta_{\mathrm{o}}$ (consistent).

- A unbiased estimator $\hat{\theta}_{T}$ is consistent if $\operatorname{var}\left(\hat{\theta}_{T}\right) \rightarrow 0$ as $\mathrm{T} \rightarrow 4$.

Example: Suppose that $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$ is a random sample from $N\left(\mu_{o}, \sigma_{o}^{2}\right)$.
$\mathrm{E}\left(\bar{x}_{T}\right)=\mu_{0}$.
$\operatorname{var}\left(\bar{x}_{T}\right)=\sigma_{\mathrm{o}}{ }^{2} / \mathrm{T} \rightarrow 0$ as $\mathrm{T} \rightarrow \infty$.
Thus, \bar{x}_{T} is a consistent estimator of μ_{o}.

Law of Large Numbers (LLN)

Case of scalar random variables

- Komogorov's Strong LLN:

Suppose that $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$ is a random sample from a population with finite μ and σ^{2}. Then, $\operatorname{plim}_{\mathrm{T} \rightarrow \infty} \bar{X}_{T}=\mu_{0}$.

- Generalized Weak LLN (GWLLN):
- $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$ is a sample (not necessarily a random sample)
- Define $E\left(x_{1}\right)=\mu_{1,0}, \ldots, E\left(x_{T}\right)=\mu_{T, 0}$.
- The variances of the $\mathrm{x}_{\mathrm{t}}(\mathrm{t}=1, \ldots, \mathrm{~T})$ are finite and may be different over different t .
- Then, under suitable assumptions, $\operatorname{plim}_{\mathrm{T} \rightarrow \infty} \bar{x}_{T}=\lim _{\mathrm{T} \rightarrow \infty} \frac{1}{T} \Sigma_{\mathrm{t}} \mu_{o, t}$.

Case of Vector Random Variables

- GWLLN
- $\mathrm{x}_{\mathrm{t}}: \mathrm{p} \times 1$ random vector.
- $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$ is a sample.
- Let $\mathrm{E}\left(\mathrm{x}_{1}\right)=\mu_{1, \mathrm{o}}(\mathrm{p} \times 1), \ldots, \mathrm{E}\left(\mathrm{x}_{\mathrm{T}}\right)=\mu_{\mathrm{T}, \mathrm{o}}$.
- Assume that $\operatorname{Cov}\left(\mathrm{x}_{\mathrm{j}}\right)$ are well-defined and finite.
- Then, under suitable assumptions. plim $\lim _{T \rightarrow \infty} \bar{X}_{T \rightarrow \infty} \frac{1}{T} \Sigma_{t} \mu_{o, t}$.

Central Limit Theorems (CLT) -Asymptotic Normality

Case of scalar random variables

- Motivation:
- Suppose that $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$ is a random sample from a population with finite μ and σ^{2}.
- We know $\bar{X}_{T} \rightarrow \mu_{\mathrm{o}}$ as $\mathrm{T} \rightarrow \infty$. But we can never have an infinitely large sample!!!
- For finite T, \bar{X}_{T} is still a random variable. What statistical distribution could approximate the true distribution of \bar{X}_{T} ?
- Lindberg-Levy CLT:
- Suppose that $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$ is a random sample from a population with finite μ and σ^{2}.
- Then, $\sqrt{T}\left(\bar{x}_{T}-\mu_{o}\right) \rightarrow_{d} N\left(0, \sigma_{o}^{2}\right)$ and $\sqrt{\mathrm{T}} \frac{\bar{x}_{T}-\mu_{\mathrm{o}}}{\sigma_{\mathrm{o}}} \rightarrow_{\mathrm{d}} \mathrm{N}(0,1)$.
- Implication of CLT:
- $\sqrt{T}\left(\bar{x}_{T}-\mu_{o}\right) \approx N\left(0, \sigma_{o}^{2}\right)$, if T is large.
- $E\left[\sqrt{T}\left(\bar{x}_{T}-\mu_{o}\right)\right]=\sqrt{T}\left[E\left(\bar{x}_{T}\right)-\mu_{o}\right] \approx 0 \rightarrow \mathrm{E}\left(E\left(\bar{x}_{T}\right) \approx \mu_{o}\right.$.
- $\operatorname{var}\left[\sqrt{T}\left(\bar{x}_{T}-\mu_{o}\right)\right]=T \bullet \operatorname{var}\left(\bar{x}_{T}-\mu_{o}\right)=T \bullet \operatorname{var}\left(\bar{x}_{T}\right) \approx \sigma_{0}^{2}$ $\rightarrow \operatorname{var}\left(\bar{X}_{T}\right) \approx \sigma_{0}^{2} / T$.
- $\bar{X}_{T} \approx N\left(\mu_{o}, \sigma_{o}^{2} / T\right)$, if T is large.

Case of random vectors

- GCLT
- $\left\{\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{T}}\right\}$: a sequence of $\mathrm{p} \times 1$ random vectors.
- For any $t, E\left(y_{t}\right)=0_{p \times 1}$ and $\operatorname{Cov}\left(y_{t}\right)$ is well defined and finite.
- Under some suitable conditions (acceptable for Econometrics I, II),

$$
\frac{1}{\sqrt{T}} \Sigma_{t} y_{t} \rightarrow_{d} N\left(0_{p \times 1}, \lim _{T \rightarrow \infty} \frac{1}{T} \operatorname{Cov}\left(\Sigma_{t} y_{t}\right)\right)
$$

- Note:
- $\operatorname{Cov}\left(y_{t}\right)\left[\operatorname{var}\left(y_{t}\right)\right.$ if y_{t} is a scalar] could differ across different t.
- The y_{t} could be correlated as long as $\lim _{n \rightarrow \infty} \operatorname{cov}\left(y_{t}, y_{t+n}\right)=0$ (ergodic).
- If $E\left(y_{t} \mid y_{t-1}, y_{t-2}, \ldots\right)=0$ (Martingale Difference Sequence), the y_{t} 's are linearly uncorrelated. Then,

$$
\frac{1}{\sqrt{T}} \Sigma_{t} y_{t} \rightarrow_{d} N\left(0_{p \times 1}, \lim _{T \rightarrow \infty} \frac{1}{T} \Sigma_{t} \operatorname{Cov}\left(y_{t}\right)\right) .
$$

End of Digression

(2) Weak Ideal Conditions (WIC)

Consider the following linear regression model:

$$
y_{t}=x_{t 0}^{\prime} \beta+\varepsilon_{t}=x_{t t} \beta_{1}+x_{t 2} \beta_{2}+\ldots+x_{t k} \beta_{k}+\varepsilon_{t} .
$$

(WIC.1) The conditional mean of y_{t} (dependent variable) given $\mathrm{x}_{1}, \mathrm{x}_{2} ., \ldots, \mathrm{x}_{\mathrm{t}}$, ε_{1}, \ldots, and $\varepsilon_{\mathrm{t}-1}$ is linear in x_{t} :

$$
y_{t}=E\left(y_{t} \mid x_{1 \bullet}, \ldots, x_{t \bullet}, \varepsilon_{1}, \ldots, \varepsilon_{t-1}\right)+\varepsilon_{t}=x_{t 0}^{\prime} \beta_{o}+\varepsilon_{t} .
$$

Comment:

- Implies $E\left(\varepsilon_{t} \mid x_{1}, x_{2}, \ldots, x_{t}, \varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{t-1}\right)=0$.
- No autocorrelation in the $\varepsilon_{t}: \operatorname{cov}\left(\varepsilon_{t}, \varepsilon_{s}\right)=0$ for all $t \neq s$.
- Regressors are weakly exogenous and need not be strictly exogenous.
- $E\left(x_{s} . \varepsilon_{t}\right)=0_{k \times 1}$ for all $\mathrm{t} \geq \mathrm{s}$, but could be that $E\left(x_{s}, \varepsilon_{t}\right) \neq 0$ for some $\mathrm{s}>\mathrm{t}$.
(WIC.2) β_{o} is unique.
(WIC.3) The series $\left\{\mathrm{x}_{\mathrm{t}}\right\}$ are covariance-stationary and ergodic.

Comment:

- (WIC.2)-(WIC.3) implies that

$$
p \lim _{T \rightarrow \infty} T^{-1} X^{\prime} X=p \lim _{T \rightarrow \infty} T^{-1} \Sigma_{t} x_{t \bullet} x_{t \bullet}^{\prime} \equiv Q_{o} \text { is finite and pd. }
$$

- $Q_{o}=\lim _{T \rightarrow \infty} T^{-1} \Sigma E\left(x_{t} x_{t 0}^{\prime}\right)$ [By GWLLN].
- Rules out perfect multicollinearity among regressors.
(WIC.4) The data need not be a random sample.
(WIC.5) $\operatorname{var}\left(\varepsilon_{t} \mid x_{1 \bullet}, x_{2 \bullet}, \ldots, x_{t \bullet}, \varepsilon_{1}, \ldots, \varepsilon_{t-1}\right)=\sigma_{o}^{2}$ for all t.
(No-Heteroskedasticity Assumption).
(WIC.6) The error terms ε_{t} are normally distributed conditionally on $\mathrm{x}_{1} ., \ldots, \mathrm{x}_{\mathrm{t}}$, $\varepsilon_{1}, \ldots, \varepsilon_{\mathrm{t}-1}$.
(WIC.7) $\mathrm{x}_{\mathrm{t} 1}=1$, for all $\mathrm{t}=1, \ldots, \mathrm{~T}$.

Comment:

$$
\mathrm{SIC} \rightarrow \text { WIC. }
$$

(3) Statistical Properties of the OLS estimator under WIC:

Theorem (Consistency/Asymptotic Normality Theorem):
Under (WIC.1)-(WIC.5),

$$
p \lim _{T \rightarrow \infty} \hat{\beta}=\beta_{o}(\text { consistent }) .
$$

$$
p \lim _{T \rightarrow \infty} s^{2}=\sigma_{o}^{2}(\text { consistent })
$$

$$
\sqrt{T}\left(\hat{\beta}-\beta_{o}\right) \rightarrow_{d} N\left(0_{k \times 1}, \sigma_{o}^{2} Q_{o}^{-1}\right)
$$

Implication:

$$
\hat{\beta} \approx N\left(\beta_{o}, \sigma_{o}^{2}\left(T Q_{o}\right)^{-1}\right) \rightarrow \hat{\beta} \approx N\left(\beta_{o}, s^{2}\left(X^{\prime} X\right)^{-1}\right),
$$

if T is reasonably large.

Implication:

1) t test for $H_{0}: R \beta_{o}-r=0(R: 1 \times k$, r : scalar $)$ is valid if T is large.

Use z-table to find critical value.
2) For $H_{0}: R \beta_{o}-r=0(R: m \times k, r: m \times 1)$, use $\mathrm{W}_{\mathrm{T}}=\mathrm{mF}$ which is asymptotically $\chi^{2}(\mathrm{~m})$ distributed. [Why?]

$$
\text { - } \begin{aligned}
\mathrm{W}_{\mathrm{T}} & =(R \hat{\beta}-r)^{\prime}\left[R \operatorname{Cov}(\hat{\beta}) R^{\prime}\right]^{-1}(R \hat{\beta}-r) \\
& =(R \hat{\beta}-r)^{\prime}\left[R s^{2}\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \hat{\beta}-r)=\mathrm{mF}
\end{aligned}
$$

Theorem (Efficiency Theorem):
Under (WIC.1)-(WIC.6), the OLS estimators are efficient asymptotically.
(4) Testing Nonlinear restrictions:

General form of hypotheses:

- Let $\mathrm{w}(\theta)=\left[\mathrm{w}_{1}(\theta), \mathrm{w}_{2}(\theta), \ldots, \mathrm{w}_{\mathrm{m}}(\theta)\right]^{\prime}$, where $\mathrm{w}_{\mathrm{j}}(\theta)=\mathrm{w}_{\mathrm{j}}\left(\theta_{1}, \theta_{2}, \ldots, \theta_{\mathrm{p}}\right)=\mathrm{a}$ function of $\theta_{1}, \ldots, \theta_{\mathrm{p}}$.
- H_{0} : The true $\theta\left(\theta_{0}\right)$ satisfies the m restrictions, $w(\theta)=0_{m \times 1}(m \leq p)$.

Examples:

1) θ : a scalar

$$
\mathrm{H}_{0}: \theta_{\mathrm{o}}=2 \rightarrow \mathrm{H}_{0}: \theta_{\mathrm{o}}-2=0 \rightarrow \mathrm{H}_{\mathrm{o}}: \mathrm{w}(\theta)=0, \text { where } \mathrm{w}(\theta)=\theta-2 .
$$

2) $\theta=\left(\theta_{1}, \theta_{2}, \theta_{3}\right)^{\prime}$.

$$
\begin{aligned}
\mathrm{H}_{0}: & \theta_{1, \mathrm{o}}^{2}=\theta_{2, \mathrm{o}}+2 \text { and } \theta_{3, \mathrm{o}}=\theta_{1, \mathrm{o}}+\theta_{2, \mathrm{o}} . \\
& \rightarrow \mathrm{H}_{\mathrm{o}}: \theta_{1, \mathrm{o}}^{2}-\theta_{2, \mathrm{o}}-2=0 \text { and } \theta_{3, \mathrm{o}}-\theta_{1, \mathrm{o}}-\theta_{2, \mathrm{o}}=0 . \\
& \rightarrow \mathrm{H}_{\mathrm{o}}: w(\theta)=\binom{w_{1}(\theta)}{w_{2}(\theta)}=\binom{\theta_{1}^{2}-\theta_{2}-2}{\theta_{3}-\theta_{1}-\theta_{2}}=\binom{0}{0} .
\end{aligned}
$$

3) linear restrictions

$$
\begin{aligned}
& \theta= {\left[\theta_{1}, \theta_{2}, \theta_{3}\right]^{\prime} . } \\
& \mathrm{H}_{0}: \theta_{1, \mathrm{o}}=\theta_{2, \mathrm{o}}+2 \text { and } \theta_{3, \mathrm{o}}=\theta_{1, \mathrm{o}}+\theta_{2, \mathrm{o}} \\
& \rightarrow \mathrm{H}_{0}: w\left(\theta_{o}\right)=\binom{w_{1}\left(\theta_{o}\right)}{w_{2}\left(\theta_{o}\right)}=\binom{\theta_{1, o}-\theta_{2, o}-2}{\theta_{3, o}-\theta_{1, o}-\theta_{2, o}}=\binom{0}{0} . \\
& \quad \rightarrow \mathrm{H}_{0}: w\left(\theta_{o}\right)=\left(\begin{array}{lll}
1 & -1 & 0 \\
-1 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
\theta_{1, o} \\
\theta_{2, o} \\
\theta_{3, o}
\end{array}\right)-\binom{2}{0}=R \theta_{o}-r .
\end{aligned}
$$

Remark:
If all restrictions are linear in $\theta, \mathrm{H}_{\mathrm{o}}$ takes the following form:

$$
\mathrm{H}_{\mathrm{o}}: \mathrm{R} \theta_{\mathrm{o}}-\mathrm{r}=0_{\mathrm{m} \times 1},
$$

where R and r are known $\mathrm{m} \times \mathrm{p}$ and $\mathrm{m} \times 1$ matrices, respectively.

Definition:

$$
W(\theta) \equiv \frac{\partial w(\theta)}{\partial \theta^{\prime}}=\left(\begin{array}{cccc}
\frac{\partial w_{1}(\theta)}{\partial \theta_{1}} & \frac{\partial w_{1}(\theta)}{\partial \theta_{2}} & \ldots & \frac{\partial w_{1}(\theta)}{\partial \theta_{p}} \\
\frac{\partial w_{2}(\theta)}{\partial \theta_{1}} & \frac{\partial w_{2}(\theta)}{\partial \theta_{2}} & \ldots & \frac{\partial w_{2}(\theta)}{\partial \theta_{p}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial w_{m}(\theta)}{\partial \theta_{1}} & \frac{\partial w_{m}(\theta)}{\partial \theta_{2}} & \ldots & \frac{\partial w_{m}(\theta)}{\partial \theta_{p}}
\end{array}\right)_{m \times p} .
$$

Example: (Nonlinear restrictions)
Let $\theta=\left[\theta_{1}, \theta_{2}, \theta_{3}\right]^{\prime}$.
$\mathrm{H}_{\mathrm{o}}: \theta_{1, \mathrm{o}}{ }^{2}-\theta_{2, \mathrm{o}}=0$ and $\theta_{1, \mathrm{o}}-\theta_{2, \mathrm{o}}-\theta_{3, \mathrm{o}}{ }^{2}=0$.

$$
\rightarrow w(\theta)=\binom{\theta_{1}^{2}-\theta_{2}}{\theta_{1}-\theta_{2}-\theta_{3}^{2}} ; W(\theta)=\left(\begin{array}{ccc}
2 \theta_{1} & -1 & 0 \\
1 & -1 & -2 \theta_{3}
\end{array}\right)
$$

Example: (Linear restrictions)

$$
\begin{aligned}
& \theta=\left[\theta_{1}, \theta_{2}, \theta_{3}\right]^{\prime} \\
& \mathrm{H}_{0}: \theta_{1, \mathrm{o}}=0 \text { and } \theta_{2, \mathrm{o}}+\theta_{3, \mathrm{o}}=1 . \\
& \quad \rightarrow w(\theta)=\binom{\theta_{1}}{\theta_{2}+\theta_{3}}-\binom{0}{1}=\binom{0}{0} \rightarrow w(\theta)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
\theta_{1} \\
\theta_{2} \\
\theta_{3}
\end{array}\right)-\binom{0}{1}=\binom{0}{0},
\end{aligned}
$$

which is of form $w(\theta)=R \theta-r$.

Theorem:

Under (WIC.1)-(WIC.5),

$$
\sqrt{T}\left(w(\hat{\beta})-w\left(\beta_{o}\right)\right) \rightarrow_{d} N\left(0_{m \times 1}, W\left(\beta_{o}\right) \sigma^{2} Q_{o}^{-1} W\left(\beta_{o}\right)^{\prime}\right) .
$$

Proof:
Taylor's expansion around β_{0} :

$$
w(\hat{\beta})=w\left(\beta_{o}\right)+W(\bar{\beta})\left(\hat{\beta}-\beta_{o}\right),
$$

where $\bar{\beta}$ is between $\hat{\beta}$ and β_{o}. Since $\hat{\beta}$ is consistent, so is $\bar{\beta}$. Thus,

$$
\begin{aligned}
\sqrt{T}\left(w(\hat{\beta})-w\left(\beta_{o}\right)\right) & \approx W\left(\beta_{o}\right) \sqrt{T}\left(\hat{\beta}-\beta_{o}\right) \\
& \rightarrow_{d} N\left(0_{m \times 1}, W\left(\beta_{o}\right) \sigma^{2} Q_{o}^{-1} W\left(\beta_{o}\right)^{\prime}\right) .
\end{aligned}
$$

Implication:

$$
\left(w(\widehat{\beta})-w\left(\beta_{o}\right)\right) \approx N\left(0_{m \times 1}, W(\widehat{\beta}) s^{2}\left(X^{\prime} X\right)^{-1} W(\hat{\beta})^{\prime}\right) .
$$

Theorem:
Under (WIC.1)-(WIC.5) and $\mathrm{H}_{\mathrm{o}}: \mathrm{w}\left(\beta_{\mathrm{o}}\right)=0$,

$$
W_{T}=w(\widehat{\beta})^{\prime}\left[W(\widehat{\beta}) \operatorname{Cov}(\hat{\beta}) W(\widehat{\beta})^{\prime}\right]^{-1} w(\widehat{\beta}) \Rightarrow \chi^{2}(m)
$$

Proof:
Under $\mathrm{H}_{0}: \mathrm{w}\left(\beta_{0}\right)=0$,

$$
w(\hat{\beta}) \approx N\left(0_{m \times 1}, W(\hat{\beta}) \operatorname{Cov}(\hat{\beta}) W(\hat{\beta})^{\prime}\right)
$$

For a normal random vector $h_{m \times 1} \sim N\left(0_{m \times 1}, \Omega_{m \times m}\right), h^{\prime} \Omega^{-1} h \sim \chi^{2}(m)$. Thus, we obtain the desired result.

Question: What does "Wald test" mean?
A test based on the unrestricted estimator only.
(5) When the WIC are violated:

CASE 1: Simple dynamic model, $\mathrm{y}_{\mathrm{t}}=\beta \mathrm{y}_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}$.

- SIC is violated. But WIC hold, if the ε_{t} i.i.d. $N\left(0, \sigma_{o}^{2}\right)$ and $-1<\beta_{\mathrm{o}}<1$.
- If $\beta_{o}=1$, WIC is also violated. For this case, the OLS is consistent, but not normally distributed.
- For simplicity, set $\mathrm{y}_{0}=0$.
- $\mathrm{y}_{\mathrm{t}}=\Sigma_{s=1}^{t} \varepsilon_{s} \rightarrow \operatorname{var}\left(\mathrm{y}_{\mathrm{t}}\right)=\mathrm{E}\left(\mathrm{y}_{\mathrm{t}}{ }^{2}\right)=\mathrm{t} \sigma_{\mathrm{o}}{ }^{2}$.
- $\operatorname{plim}(1 / \mathrm{T}) \Sigma_{\mathrm{t}} \mathrm{x}_{\mathrm{t}} \cdot \mathrm{x}_{\mathrm{t}}{ }^{\prime}{ }^{\prime}=\operatorname{plim}(1 / \mathrm{T}) \Sigma_{\mathrm{t}} \mathrm{y}_{\mathrm{t}-1}{ }^{2}=\lim (1 / \mathrm{T}) \Sigma_{\mathrm{t}} \mathrm{E}\left(\mathrm{y}_{\mathrm{t}-1}{ }^{2}\right)(\mathrm{by}$ GWLLN $)$

$$
\begin{aligned}
& =\lim (1 / \mathrm{T}) \Sigma_{\mathrm{t}}(\mathrm{t}-1){\sigma_{\mathrm{o}}}^{2}=\lim (1 / \mathrm{T})[\mathrm{T}(\mathrm{~T}-1) / 2]{\sigma_{\mathrm{o}}}^{2} \\
& =\lim [(\mathrm{T}-1) / 2]{\sigma_{\mathrm{o}}}^{2} \rightarrow \infty(\text { WIC. } 3 \text { violated. })
\end{aligned}
$$

CASE 2: Deterministic trend model, $y_{t}=\beta t+\varepsilon_{t}$.

- $\operatorname{plim}(1 / T) \Sigma_{\mathrm{t}} \mathrm{x}_{\mathrm{t}} \cdot \mathrm{x}_{\mathrm{t}} \cdot{ }^{\prime}=\operatorname{plim}(1 / \mathrm{T}) \Sigma_{\mathrm{t}} \mathrm{t}^{2}=\frac{1}{T} \frac{T(T+1)(2 T+1)}{6} \rightarrow \infty$.
- WIC. 3 is violated. But OLS estimator is consistent and asymptotically normal.

CASE 3: Simultaneous Equations models.

- (a) $c_{t}=\beta_{1, o}+\beta_{2, o} y_{t}+\varepsilon_{t} ;$ (b) $c_{t}+i_{t}=y_{t}$
- $(a) \rightarrow(b): y_{t}=\beta_{1, o}+\beta_{2, o} y_{t}+\varepsilon_{t}+i_{t}$.
- $y_{t}=\left[\beta_{1, o} /\left(1-\beta_{2, o}\right)\right]+i_{t}\left[1 /\left(1-\beta_{2, o}\right)\right]+\varepsilon_{t} /\left(1-\beta_{2, o}\right)$.
- y_{t} is correlated with ε_{t} in (a).
- OLS is inconsistent.

CASE 4: Measurement errors:

- $\mathrm{y}_{\mathrm{t}}=\beta_{\mathrm{o}} \mathrm{x}_{\mathrm{t}}{ }^{*}+\varepsilon_{\mathrm{t}}($ true model $)$.
- But we can observe $x_{t}=x_{t}^{*}+v_{t}\left(v_{t}\right.$: measurement error $)$.
- If we use x_{t} for $x_{t}{ }^{*}$,

$$
y_{t}=x_{t} \beta_{o}+\left[\varepsilon_{\mathrm{t}}-\beta_{\mathrm{o}} \mathrm{v}_{\mathrm{t}}\right] \text { (model we estimate). }
$$

- x_{t} and $\left(\varepsilon_{\mathrm{t}}-\beta_{\mathrm{o}} \mathrm{v}_{\mathrm{t}}\right)$ correlated.
- OLS is inconsistent.
- $y_{t}{ }^{*}=\beta_{0} x_{t}+\varepsilon_{\mathrm{t}}($ true model $)$.
- But we can observe $y_{t}=y_{t}{ }^{*}+v_{t}$.
- If we use y_{t} for $\mathrm{y}_{\mathrm{t}}{ }^{*}$,

$$
y_{t}=x_{t} \beta_{o}+\left[\varepsilon_{t}+v_{t}\right] \text { (model we estimate) }
$$

x_{t} and $\left(\varepsilon_{\mathrm{t}}+\mathrm{v}_{\mathrm{t}}\right)$ uncorrelated.

- OLS is consistent.
[Proofs of Consistency and Asymptotic Normality Theorems]
(1) Show $p \lim \hat{\beta}=\beta_{o}$.
$\hat{\beta}=\beta_{o}+\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon=\beta_{o}+\left(T^{-1} \Sigma_{t} X_{t} ._{t}{ }^{\prime}\right) T^{-1} \Sigma_{t} X_{t \bullet} \varepsilon_{t}$.
$p \lim _{T \rightarrow \infty} T^{-1} \Sigma_{t} x_{t \bullet} x_{t \bullet}^{\prime}=Q_{o} \quad($ by WIC. 3$)$
$p \lim _{T \rightarrow \infty} T^{-1} \Sigma_{t} x_{t} \varepsilon_{t}=\lim _{T \rightarrow \infty} \Sigma_{t} E\left(x_{t} \varepsilon_{t}\right)$ [by GWLLN]

$$
=\lim \mathrm{T}^{-1} \Sigma_{\mathrm{t}} 0[\text { by WIC. } 1]=0
$$

$\rightarrow \quad \operatorname{plim} p \lim _{T \rightarrow \infty} \hat{\beta}=\beta_{o}+\left(Q_{o}\right)^{-1} 0=\beta_{o}$.
(2) Show plim s ${ }^{2}=\sigma_{0}{ }^{2}$.
$\operatorname{plim} \mathrm{s}^{2}=\operatorname{plim} \mathrm{SSE} / \mathrm{T}$.
$\mathrm{SSE} / \mathrm{T}=\varepsilon^{\prime} \mathrm{M}(\mathrm{X}) \varepsilon / \mathrm{T}=\varepsilon^{\prime} \varepsilon / T-\varepsilon^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon / T$

$$
\begin{aligned}
& =T^{-1} \Sigma_{t} \varepsilon_{t}^{2}-\left(T^{-1} \varepsilon^{\prime} X\right)\left(T^{-1} X^{\prime} X\right)^{-1}\left(T^{-1} X^{\prime} \varepsilon\right) \\
& =T^{-1} \Sigma_{t} \varepsilon_{t}^{2}-\left(T^{-1} \Sigma_{t} \varepsilon_{t} X_{t \cdot}^{\prime}\right)\left(T^{-1} \Sigma_{t} x_{t \bullet} x_{t \bullet}^{\prime}\right)^{-1}\left(T^{-1} \Sigma_{t} x_{t} \varepsilon_{t}\right)
\end{aligned}
$$

$p \lim _{T \rightarrow \infty} T^{-1} \Sigma_{t} \varepsilon_{t}^{2}=\lim _{T \rightarrow \infty} T^{-1} \Sigma_{t} E\left(\varepsilon_{t}^{2}\right)=\lim _{T \rightarrow \infty} T^{-1} \Sigma_{t} \sigma_{o}^{2}=\sigma_{o}^{2}$.
$p \lim _{T \rightarrow \infty} T^{-1} \Sigma_{t} X_{t} \varepsilon_{t}=0$.
$\rightarrow p \lim _{T \rightarrow \infty} s^{2}=\sigma_{o}^{2}-0^{\prime}\left(Q_{o}\right)^{-1} 0=\sigma_{o}^{2}$.
(3) Show $\sqrt{T}(\hat{\beta}-\beta) \rightarrow_{d} N\left(0_{k \times 1}, \sigma_{o}^{2} Q_{o}^{-1}\right)$.

$$
\begin{aligned}
\hat{\beta} & =\beta_{o}+\left(T^{-1} \Sigma_{t} x_{t 0} x_{t 0}^{\prime}\right) T^{-1} \Sigma_{t} x_{t 0} \varepsilon_{t} \\
& \rightarrow(\hat{\beta}-\beta)=\left(T^{-1} \Sigma_{t} x_{t 0} x_{t 0}^{\prime}\right) T^{-1} \Sigma_{t} x_{t 0} \varepsilon_{t} \\
& \rightarrow \sqrt{T}(\hat{\beta}-\beta)=\left[T^{-1} \Sigma_{t} x_{t 0} x_{t 0}^{\prime}\right]^{-1}\left(\frac{1}{\sqrt{T}} \Sigma_{t} x_{t 0} \varepsilon_{t}\right) . \\
& \rightarrow \text { By GCLT with martingale difference, }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{\sqrt{T}} \Sigma_{t} x_{t} \varepsilon_{t} \rightarrow{ }_{d} \mathrm{~N}\left(0, \lim \mathrm{~T}^{-1} \Sigma_{\mathrm{t}} \operatorname{Cov}\left(\mathrm{x}_{\mathrm{t}} \varepsilon_{\mathrm{t}}\right)\right) \\
& \operatorname{Cov}\left(x_{t} \varepsilon_{t}\right)=E\left(x_{t} \varepsilon_{t} \varepsilon_{t} x_{t 0}^{\prime}\right)=E\left(\varepsilon_{t}^{2} x_{t} x_{t \bullet}^{\prime}\right) \\
& =E_{x_{t}}\left[E\left(\varepsilon_{t}^{2} x_{t 0} x_{t 0}^{\prime} \mid x_{t 0}\right)\right] \text { (by LIE) } \\
& =E_{x_{0}}\left[E\left(\varepsilon_{t}^{2} \mid x_{t 0}\right) x_{t 0} x_{t-}^{\prime}\right]=E_{x_{t}}\left(\sigma_{o}^{2} x_{t 0} x_{t 0}^{\prime}\right)=\sigma_{o}^{2} E\left(x_{t 0} x_{t 0}^{\prime}\right) \text {. } \\
& \lim _{T \rightarrow \infty} T^{-1} \operatorname{Cov}\left(x_{t 0} \varepsilon_{t 0}\right)=\sigma_{o}^{2} \lim _{T \rightarrow \infty} T^{-1} \Sigma_{t} E\left(x_{t 0} x_{t 0}^{\prime}\right)=\sigma_{o}^{2} Q_{o} . \\
& \rightarrow \frac{1}{\sqrt{T}} \Sigma_{t} x_{t} \varepsilon_{t} \rightarrow{ }_{d} N\left(0_{k \times 1}, \sigma_{o}^{2} Q_{o}\right) . \\
& \rightarrow \sqrt{T}\left(\hat{\beta}-\beta_{o}\right) \rightarrow_{d} N\left(\left(Q_{o}\right)^{-1} 0_{k \times 1},\left(Q_{o}\right)^{-1} \sigma_{o}^{2} Q_{o}\left(Q_{o}\right)^{-1}\right)=N\left(0_{k \times 1}, \sigma_{o}^{2}\left(Q_{o}\right)^{-1}\right)
\end{aligned}
$$

