
 1. LINEAR REGRESSION UNDER IDEAL CONDITIONS 

 

[1] What is “Regression Model”? 

 

Example: 

• Suppose you are interested in the average relationship between income (y) 

and education (x). 

• For the people with 12 years of schooling (x =12), what is the average 

income (E(y|x=12))? 

• For the people with x years of schooling, what is the average income 

(E(y|x))? 

• Regression model:  

ε+= )|( xyEy , 

  where ε is a disturbance (error) term with 0)|( =xE ε . 

• Regression analysis is aimed to estimate ).|( xyE  
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Digression to Probability Theory 

 

(1) Bivariate Distributions 

• Consider two random variables (RV), X and Y with a joint probability 

density function (pdf):  f(x, y) = Pr(X=x, Y=y). 

 

• Marginal (unconditional) pdf: 

   fx(x) = Σyf(x,y) = Pr(X = x) regardless of Y; 

   fy(y) = Σx f(x,y) = Pr(Y = y) regardless of X. 

 

• Conditional pdf: 

 f(y|x) = Pr(Y = y, given X = x) = f(x,y)/fx(x). 

 

• Stochastic independence: 

• X and Y are stochastically independent iff f(x,y) = fx(x)fy(y), for all x,y. 

  • Under this condition, f(y|x) = f(x,y)/fx(x) = [fx(x)fy(y)]/fx(x) = fy(y). 
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EX:  

 • Toss two coins, A and B. 

 • X = 1 if head from A; = 0 if tail from A. 

  Y = 1 if head from B; = 0 if tail from B. 

  f(x,y) = 1/4 for any x,y = 0, 1.  (4 possible cases) 

 

 • Marginal pdf of x: 

   fx(0) = Pr(X=0) regardless of y = f(0,1) + f(0,0) = 1/4 + 1/4 = 1/2. 

   fx(1) = Pr(X=1) regardless of y = f(1,1) + f(1,0) = 1/4 + 1/4 = 1/2. 

 

    fx(x) = 1/2, for x = 0, 1. 

   Similarly, fy(y) = 1/2, for y = 0, 1.  

 

 • Conditional pdf: 

   f(y = 1| x = 1) = f(1,1)/fx(1) = (1/4)/(1/2) = 1/2; 

f(y = 0| x = 1) = f(0,1)/fx(1) = 1/2. 

  →  f(y| x=1) = 1/2, for y = 0, 1. 

 

 • Find f(y|x=0) by yourself.  

 

 • Stochastic independence: 

   fx(x) = fy(y) = 1/2; fx(x)fy(y) = 1/4 = f(x,y), for any x and y. 

   Thus, x and y are stochastically independent. 

 



Expectation: 

 E[g(x,y)] = ΣxΣyg(x,y)f(x,y) [or ∫Ω
dxdyyxfyxg ),(),( ]. 

 

Means: 

 μx = E(x) = ΣxΣyxf(x,y) = Σxxfx(x). 

 μy = E(y) = ΣxΣyyf(x,y) = Σyyfy(y). 

 

Variances: 
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Covariance: 

 
cov( , ) [( )( )] ( )( ) ( , )

( ) ( , )
xy x y x y x y

x y x y x y

x y E x y x y f x y

E xy xyf x y

σ μ μ μ μ

μ μ μ μ

= = − − = Σ Σ − −

= − = Σ Σ −
 

 

Note:   σxy > 0 →  positively linearly related; 

σxy < 0 →  negatively linearly related; 

σxy = 0 →  no linear relation. 
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EX: x, y = 1, 0, with f(x,y) = 1/4. 

 E(xy) = ΣxΣyxyf(x,y)  

=  0×0×(1/4) + 0×1×(1/4)+ 1×0×(1/4) + 1×1×(1/4) = 1/4. 

 

Correlation Coefficient: 

 The correlation coefficient between x and y is defined by: 

yx

xy
xy σσ

σ
ρ = . 

 

Theorem: 

 -1 ≤ ρxy ≤  1. 

 

Note:  ρxy  → 1: highly positively linearly related; 

ρxy → -1; highly negatively linearly related; 

 ρxy →  0: no linear relation. 

 

Theorem: 

If X and Y are stochastically independent, then, σxy = 0. But, not vice versa. 
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Conditioning in a Bivariate Distribution: 

• X,Y: RVs with f(x,y). (e.g., Y = income, X = education) 

• Population of billions and billions: {(x(1),y(1)), .... (x(b),y(b))}. 

• Average of y(j) = E(y). 

• For the people earning a specific education level x, what is the average of y?   

 

Conditional Mean and Variance: 

• )|( xyE  = )|( xXyE =  = ( | )y yf y xΣ . 

• )|var( xy  = ( )22[( ( | )) | ] ( | ) ( | )yE y E y x x y E y x f y x− = Σ − . 

 

Regression model: 

• Let ε  = y - E(y|x) (deviation from conditional mean). 

• y = E(y|x) + y - E(y| x) = E(y|x) + ε  (regression model). 

• E(y|x) = explained part of y by x. 

  ε = unexplained part of y (called disturbance term). 

  E(ε|x) = 0 and var(ε| x) = var(y|x). 

 

Note: 

• E(y|x) may vary with x, i.e., E(y|x) is a function of x. 

• Thus, we can define Ex[E(y|x)], where Ex(•) is the expectation over x = 

Σx•fx(x) or  ∫Ω•fx(x)dx. 
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Theorem: (Law of Iterative Expectations) 

 E(y) [unconditional mean] = Ex[E(y|x)] . 

Proof: 

 E(y) = ΣxΣyyf(x,y) = ΣxΣyyf(y|x)fx(x) = Σx[Σyyf(y|x)]fx(x). 

 

Note: 

 For discrete RV, X with x = x1, ...,  

 E(y) = ΣxE(y|x)fx(x) = E(y|x=x1)fx(x1) + E(y|x=x2)fx(x2) + ... . 

 

Implication: 

If you know the conditional mean of y and the marginal distribution of x, you 

can also find the unconditional mean of y, too. 

 

EX 1: Suppose E(y|x) = 0, for all x.   E(y) = Ex[E(y|x)] = Ex(0) = 0. 

EX 2: E(y|x) =  β1 + β2x. →  E(y) = Ex(E(y|x)) = Ex(β1+ β2x) = β1+β2E(x). 

 

Question: When can E(y|x) be linear?  Answered later. 

 

Definition: 

 We say that y is homoskedastic if var(y|x) is constant. 

 

EX: y = E(y|x) + ε  with var(ε|x) = σ2 for all x(constant). 

  → var(y|x) = var[E(y|x)+ε|x] = var(ε|x) = σ2, for all x. 

  → y is homoskedastic. 



Graphical Interpretation of Conditional Means and Variances 

 • Consider the following population: 

 

 

y 

x 

E(y|x)=β1+β2x 

x1 x2

 

• E(y|x=x1) measures the average value of y for the group of x = x1. 

 • var(y|x=x1) measures the dispersion of y given x = x1. 

 • If var(y|x=x1) = var(y|x=x2) = ..., we say that y is homoskedastic. 

 • Law of iterative expectation: 

  E(y) = ΣxE(y|x)fx(x) = E(y|x=x1)Pr(x=x1) + E(y|x=x2)Pr(x=x2) + ... . 

 

Question: It is worth finding E(y|x)? 
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Theorem: (Decomposition of Variance) 

 var(y) = varx[E(y|x)] + Ex[var(y|x)]. 

 

Note: 

• varx[E(y|x)]  ≤ var(y), since Ex[var(y|x)] ≥  0. 

 • var(y)    = E[(y-E(y))2] 

= total variation of y. 

 varx[E(y|x)] = Ex[(E(y|x)-E(y))2] 

= a part of variation in y due to variation in E(y|x) 

       = variation in y explained by E(y|x). 

 

Coefficient of Determination: 

 R2 = varx[E(y|x)]/var(y). 

  →  Measure of worthiness of knowing E(y|x). 

  →  0 ≤  R2 ≤  1. 

Note: 

 • R2 = variation in y explained by E(y|x)/total variation of y. 

 • Wish R2 close to 1. 

 



Summarizing Exercise: 

•  A population with X (income=$10,000) and Y (consumption=$10,000). 

•  Joint pdf: 

Y\X 4 8 

1 1/2 0 

2  1/4 1/4 

 

• Graph for this population: 

   

y

x

1

2

4/3

4                    8

Regression
line

 
 

• Marginal pdf: 

Y\X 4 8 fy(y) 

1 1/2 0 1/2 

2 1/4 1/4 1/2 

fx(x) 3/4 1/4  
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• Means of X and Y: 

  • E(x) =  µx = Σxxfx(x) = 4×fx(4) + 8×fx(8) = 4×(3/4) + 8×(1/4) = 5. 

  • E(y) =  µy = Σyyfy(y) = 1.5. 

• Variances of X and Y: 

  • var(x) = σx
2 = Σx(x-µx)2fx(x)  

= (4-5)2fx(4) + (8-5)2fx(8) = 1×(3/4) + 9×(1/4) = 3. 

 • var(y) = σy
2  = 1/4. 

• Covariance between X and Y: 

  • σxy = E[(x-µx)(y-µy)] = E(xy) - µxµy = ΣxΣyxyf(x,y) - µxµy

     = 4×1×f(4,1)+4×2×f(4,2)+8×1×f(8,1)+8×2×f(8,2)-5×1.5 = 0.5. 

 • ρxy  = 
yx

xy

σσ
σ

   = 
4/13

5.0  ≅ 0.58. 

 

• Conditional Probabilities 

Y\X 4 8 fy(y) 

1 1/2 0 1/2 

2 1/4 1/4 1/2 

fx(x) 3/4 1/4  

 • f(y|x): 

Y\X 4 8 

1 2/3 0 

2 1/3 1 
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• Conditional mean: 

  • E(y|x=4) = Σyyf(y|x=4) = 1×f(y=1|x=4) + 2×f(y=2|x=4) 

= 1×(2/3) + 2×(1/3) = 4/3. 

 • E(y|x=8) = 2. 

    

y

x

1

2

4/3

4                    8  
 

• Conditional variance of Y: 

  • var(y|x=4) = Σy[y-E(y|x=4)]2f(y|x=4) = 6/27. 

 • var(y|x=8) = 0. 

 

• Law of iterative expectation: 

  • Ex[E(y|x)] = ΣxE(y|x)fx(x) = E(y|x=4)fx(4) + E(y|x=8)fx(8) 

     = (4/3)×(3/4) + 2×(1/4) = 1.5 = E(y)!!! 
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(2) Bivariate Normal Distribution 

Definition:   
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 where x, y ∈ ℜ. 

 

Facts: 

 • 2( ) ~ ( , )x x xf x N μ σ  and 2( ) ~ ( , )y yf y N yμ σ . 

 •  E(y|x) = β1 + β2x and var(y|x) is constant (see Greene). 

→ E(y|x) is linear in x and y is homoskedastic. 

 • If  σxy = 0 (or ρxy = 0), x and y are stochastically independent. 
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(3) Multivariate Distributions 

 

Definition: (Mean vector and covariance matrix) 

X1, ... , Xn : random variables. 

 Let x = [x1, .... , xn]′  (n×1 vector).  Then, 
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   → Cov(x) is symmetric. 

EX: If x is scalar, Cov(x) = E[(x-µ)2] = var(x). 

EX: x = [x1,x2]′ ; E(x) = µ = [µ1, µ2]′  

  x - µ = [x1-µ1, x2-µ2]′  
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  →  E[(x-µ)(x-µ)′] = Cov(x). 

 

Theorem: Cov(x) = E[(x-µ)(x-µ)′] = E(xx′) - µµ′. 

Proof: See Greene. 

 

Note:  In Greene, Cov(x) is denoted by Var(x). 
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Definition:  Covariance Matrix between Two Random Vectors 

 1 2( , ,..., )nX X X X ′=  and 1 2( , ,..., )mY Y Y Y ′=  are random vectors.  Then, 
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Definition: (Expectation of random matrix) 

 Suppose that Bij are RVs. Then,  
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(4) Multivariate Normal distribution 

Definition: 

X = [X1, ... , Xn]′  is a normal vector, i.e., each of the xj's is normal.  

 Let E(x) = µ = [µ1, ... , µn]′  and Cov(x) = Σ  = [Σij]n×n.  Then, 

x ~ N(µ,Σ). 

 

Pdf of x: 

 f(x) = f(x1, ... , xn) = (2π)-n/2 Σ -1/2exp[-(1/2)(x-µ)′Σ-1(x-µ)] , 

 where Σ  = det(Σ). 
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EX: 

 Let X be a single RV with N(µx,σx
2).  Then, 

f(x) = (2π)-1/2(σx
2)-1/2exp[-(1/2)(x-µx)(σx

2)-1(x-µx)]  
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EX: 

 Assume that all the Xi (i = 1, …, n) are iid with 2( , )x xN μ σ .  Then, 

  (1)  µ = E(x) = [µx, ... , µx]′ ;  

  (2)  Σ = Cov(x) = 2 2 2( , ,..., )x x xdiag σ σ σ  =  2
x nIσ . 

Using (1) and (2), we can show that f(x) = f(x1, ... , xn) =∏ ,  =
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Theorem:  Conditional normal distribution 

[y, x2, ... , xk]′  is a normal vector.  Then, 

E(y| x2,...,xk) = β1 + β2x2 + ... + βkxk = x*′; var(y|x*) = σ2. 

 where x* = (1, x2, ... , xk)′ and β = (β1, ... , βk)′ ].  That is, the regression of y on 

x1, ... , xk is linear & homoskedastic. 

Proof:  See Greene. 
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(5) Properties of the Covariance Matrix of a Random Vector 

Definition: 

Let X = [X1, ... , Xn]′  be a random vector and let c = [c1, ... , cn]′  be a n×1 vector 

of fixed constants.  Then, 

  c′x = x′c = c1x1 + ... + cnxn = Σjcjxj (scalar). 

 

Theorem: 

  (1) E(c′x) = c′E(x); 

  (2) var(c′x) = c′Cov(x)c. 

Proof:   

 (1) E(c′x) = E(Σjcjxj) = E(c1x1 + ... + cnxn)  

= c1E(x1) + ... + cnE(xn) = ΣjcjE(xj) = c′E(x).  

 (2) var(c′x) = E[(c′x - E(c′x))2] = E[{c′x - c′E(x)}2] 

  = E[{c′(x-E(x))}2] = E[{c′(x-E(x))}{c′(x-E(x))}] 

= E[{c′(x-E(x))}{(x-E(x))′c}] 

     = E[c′(x-E(x))(x-E(x))′c] = c′E[(x-E(x))(x-E(x))′]c = c′Cov(x)c.  

 

Remark: 

(2) implies that Cov(x) is always positive semidefinite. 

    → c′Cov(x)c ≥ 0, for any nonzero vector c. 

Proof: 

 For any nonzero vector c, c′Cov(x)c = var(c′x) ≥  0. 
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Remark: 

 • Cov(x) is symmetric and positive semidefinite (what does it mean?). 

• Usually, Cov(x) is positive definite, that is, c′Cov(x)c > 0, for any nonzero 

vector c. 

 

Definition: 

Let B = [bij]n x n be a symmetric matrix, and c = [c1, ... , cn]′.  Then, a scalar c′Bc 

is called a quadratic form of B. 

 

Definition: 

• If c′Bc > (<) 0 for any nonzero vector c, B is called positive (negative) 

definite. 

• If c′Bc  ≥ (≤ ) 0 for any nonzero c, B is called positive (negative) 

semidefinite. 

 



Theorem: 

 Let B be a symmetric and square matrix given by: 
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B is positive definite iff 1B , 2B , ... , nB  are all positive. B is negative definite 

iff 1B  < 0, 2B  > 0, 3B  < 0, ... . 

 

EX: 

Show that B is positive definite: 
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End of Digression 
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[2] Classical Linear Regression (CLR) Model 

 

Example: 

• Wish to find important determinants of individuals’ earnings and estimate 

the size of the effect of each determinant. 

• Data: (WAGE2.WF1 or WAGE2.TXT) 

  

# of observations (T):   935 
1. wage      monthly earnings 
2. hours                    average weekly hours 

  3. IQ                        IQ score 
  4. KWW                   knowledge of world work score 
  5. educ                      years of education 

6. exper                    years of work experience 
7. tenure                   years with current employer 
8. age                        age in years 
9. married                 =1 if married 
10. black                  =1 if black 
11. south                  =1 if live in south 
12. urban                  =1 if live in SMSA 
13. sibs                     number of siblings 
14. brthord               birth order 
15. meduc     mother's education 
16. feduc     father's education 
17. lwage                 natural log of wage 

 
What variables would be important determinants of log(wage)? 
From now on, we use both “log” and “ln” to refer to natural log.  



Mincerian Wage Equation: 
• Set y (dependent variable) = log(wage). 

• Set x• (vector of independent variables) = [1, educ, exper, exper2]′. 

 • x  = vector of independent variables (or explanatory variables, or 

regressors). 

i

• Use subscript “o” for “true value”. 

• Assume 2
1, 2, 3, 4,( | ) expo o o oE expy x educ erβ β β β= + + +i er  

• y = 2
1, 2, 3, 4,( | ) exp expo o o oE y x educ er erε β β β β+ = + + + +i ε  

• oy x β ε′= +i , where 1, 2, 3, 4,( , , ,o o o o )oβ β β β β ′=  

• Here, 

 • β2,o × 100 = %Δ in wage by one more year of education.  

 • (β3,o+2β4,oexper) × 100 = %Δ by one more year of exper.  

  

• Issues: 

• How to estimate βo’s? 

• Estimated β’s would not be equal to the true values of β (βo).  How close 

would our estimates to the true values?  
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Basic Assumptions for CLR 

(I call these assumptions Strong Ideal Conditions (SIC).) 

 

To understand SIC better; imagine a population of T-groups with the following 

properties. 

• For each group t = 1, 2,..., T, yt denotes the dependent variable and xt• = 

(xt1,xt2,...,xtk)′ denotes the vector of regressors. 

• The T-groups are assumed to be independent. 

• Your sample consists of T observations, each of which comes from each 

different group. 

 

As you may find, the above assumptions are unrealistic.  But under the 

assumptions, more intuitive discussions about the statistical properties of OLS 

can be made.  The statistical properties of OLS discussed later still hold even 

under more realistic assumptions. 

 

Notation: 
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)• 1( tE x  is the group population mean of x1 for group t, while E(x1) is the 

population mean of x1 for the whole population. 

 



We now discuss each of SIC in detail: 

  

(SIC.1) The conditional mean of yt (dependent variable) given xt• (vector of 

explanatory variables) is linear: 
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t 1, 1 2, 2 ,( | ) ...t t t t t o t o t o t k o tky E y x x x x xε β ε β β β ε• •′= + = + = + + + + , (1) 

   where 1 2( , ,..., )t t t tkx x x x• ′=  and 1, ,( ,..., )o o k oβ β β ′= . 

 

 Comment: 
• Usually, xt1 = 1 for all t.  That is, β1 is an overall intercept term. 

  • ( | ) 0t tE xε =i . 
  • ( ) [ ( | )] [ ( | )] (0)

t tt t x t t t x t t t xE x E E x x E x E x E 0
t

ε ε ε= = =
i ii i i i i =

i

o

. 
 

(SIC.2)  1, ,( ,..., )o o kβ β β ′=  is unique.  

 

 Comment: 

• No other *β  such that *( | )t t t o tE y x x xβ β′ ′= =i i i  for all t. 
• The uniqueness assumption of oβ  is called “identification” condition. 
• Rules out perfect multicollinearity (perfect linear relationship among the 

regressors): 
 • Suppose 1 2 3( , , )β β β β ′=  and 3 1t tx x x 2t= +  for all t. 
 • Set 1,* 1, 2,* 2, 3,* 3,; ;o oa a o aβ β β β β β= + = + = −  for an arbitrary a ∈ℜ . 

 • 
* 1 1,* 2 2,* 3 3,*

1 1, 2 2, 3 3, 1 2 3( )
t t t t

t o t o t o t t t

t o

x x x x
x x x a x x
x

x
β β β β

β β β
β

′ = + +

= + + + + −

′=

i

i

 

   • (SIC.2) rules out this possibility. 
 



(SIC.3) The variables, yt, xt1, … , xtk, have finite moments up to fourth order. 

 

 Comment: 
  • 2 2

2( )t tE y x , 3
3 4( )t tE x x , 4

3( t )E x , etc, exist. 
  • Rules out extreme outliers. 
 • We need this assumption for consistency and asymptotic normality of the 

OLS estimator. 
 • SIC implies the Weak Ideal Conditions (WIC) that will be discussed 

later. 
 • Violated if xt2 = t or 2 1,2t t 2tx x v−= + . 
 

(SIC.4) A random sample  is available and T k . ({ 1 2
1,...,

, , ,...,t t t tk
t T

y x x x
=

′) }

)

≥

 Comment: 

•  are iid (independently and identically distributed): ( 1 2, , ,...,t t t tky x x x ′

 • T groups which are iid with 

   t

t

y y
E E

x x
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠i

⎟  and t

t

y y
Cov Cov

x x
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠i

. 

 • One observation is drawn from each of the T group. 
• Could be appropriate for cross-section data. 
• Violated if time series data are used.  That is why we add “strong” for the 

name of the conditions. 
• If T , there are infinitely many k< *β  such that *t o tx xβ β′ ′=i i  for all t. For 

this case, the sample cannot identify β. 
• Implies no autocorrelation: cov( , ) 0t sε ε =  for all t s . ≠

 

 Linear Regressions under Ideal Conditions-24 
 



 Linear Regressions under Ideal Conditions-25 
 

o(SIC.5) 2var( | )t txε σ• = , for all xt•  (Homoskedasticity Assumption). 

Comment: 
• Often violated when cross-section data are used. 
• Consider the two different populations: 

o Population 1 (homoskedastic population): 
 homy = 1 + 2x2 + ε, where var(ε|x2) = 9. 

o Population 2 (heteroskedastic population): 
 hety = 1 + 2x2 + ε, where var(ε|x2) = x2

2. 
o x2 = 1, or 2, or 3, or 4, or 5, for both populations.  
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(SIC.6) The errors εt are normally distributed conditional on . tx •

 

(SIC.7) xt1 = 1, for all t = 1, ... , T. 

 

 Comment: 
• Optional.  Not critical. 
• This condition implies that β1,o is an overall intercept term. 
• Need this assumption for convenient interpretation of empirical R2. 

 

 



• Link between oβ  and covariances: 

 • Consider a simple regression model, 1, 2, 2t o o t t t oy x x tβ β ε β′ ε= + + = +i . 

 • Assume (SIC.1) – (SIC.4) and (SIC.7). 

 • ( ) ( )( ) ( )t t t t o t t t oE x y E x x E x xβ ε β• • • •′ ′= + = •  

  → ( ) ( ) oE x y E x x β• • •′=  

  → 1[ ( )] ( )o E x x E x yβ −
• • •= , 

   where, 

     ( ) 2 2
2 2 2

2 2 2 2

1 1 1
( ) 1

( ) ( )2

( )x E x
E x x E x E

x x x E x E x• •

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛
= = =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜

⎝ ⎠ ⎝ ⎠ ⎝⎝ ⎠

⎞
⎟
⎠

2

)

; 

    
2 2

1 (
( )

( )
y E y

E x y E y E
x x y E x y•

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛
= = =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜

⎝ ⎠ ⎝ ⎠ ⎝⎝ ⎠

⎞
⎟
⎠
. 

  → 2
2, 1, 2, 2

2

cov( , ) ; ( ) (
var( )o o

x y E y E x
x

β β β= = − )o . 
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Theorem: 
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t Let 1, ,t t o o t w oy x wβ β β′ ′= ≡ + +i i ε , where (1, )t tx w′ ′=i i , 1, ,( ,o o w )oβ β β ′ ′= , 

 and 2( ,..., )t t tw x x ′=i k , 2, ,( ,..., )w o o k oβ β β ′= .  Suppose that this model satisfies 

(SIC.1)-(SIC4) and (SIC.7).  Then, 

   ( ) ( )1 1( ) ( ) ( ) (o t t t tE x x E x )y E x x E x yβ − −
• • • • • •′ ′= = . 

 And, 

   
( ) ( )
( )

1
,

1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( , )
w o E w w E w E w E w y E w E y

Cov w Cov w y

β −
• • • • • •

−
• •

′ ′= − −

=
; 

 

Hint for proof: 

 
( )

( )

1 1 1
11 12 1 111 11 12

22 21 11 12 21 11
21 22

1 1
11 12 22 21 12 221 1

22 22 21

0
( )

0 0

0 0
( )

0

A A A A A
A A A A A A I

A A I

I
A A A A I A A

A A A

− − −
− −

− −
− −

⎛ ⎞ ⎛ ⎞⎛ ⎞
= + −⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

−⎛ ⎞ ⎛ ⎞
= + − −⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

−
, 

 where 0’s here are zero matrices. 

 



Implications: 

 • The slopes, 2,oβ , … , ,k oβ , measure the correlations between regressors and 

dependent variables. 

 • 2, 0oβ ≠  means non-zero correlation between yt and xt2.  It does not mean 

that xt2 causes yt.  2, 0oβ ≠  could mean that yt causes xt2. 

 • SIC do not talk about causality.  SIC may hold even if yt determines tx • :   

  It can be the case that 1, 2,( | )t t o o tE edu wage wageβ β= + . 

 • But, the regression model (1) is not meaningful if the x variables are not 

causal variables.  We would like to know by how much hourly wage rate 

increases with one more of education.  We would not be interested in how 

many more years of education an individual could have obtained if his/her 

current wage rate increased now by $1!   
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[3] Ordinary Least Squares (OLS) 
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}
tk

Definition: 

For a given sample  without perfect multicollinearity 

among regressors , the OLS estimator  = 

( ){ 1
1,...,

, ,...,t t tk
t T

y x x
=

′

1,...,tx x β̂ 1 2
ˆ ˆ ˆ( , ,..., )kβ β β ′  

minimizes: 
2

1 1( ) ( ... )
( ) ( ) ( )

T t t t tk k

t t t

S y x x
y x y X y X

β β β
β β β•

≡ Σ − − −
′ ′= Σ − = − −

, 

 where , and 1
T

t t=Σ = Σ

1 1

2 2
1 2; ; ( , ,..., )

: : t t t

T T

y x
y x

y X x x x

y x

•

•
•

•

tkx

′⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟′⎜ ⎟ ⎜ ⎟ ′= = =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟′⎝ ⎠ ⎝ ⎠

. 

 

Comment on the assumption of no perfect multicollinearity. 

• .  So, ( ) ( )rank X X rank X k′ = = t t tX X x x• •′ ′= Σ  is invertible. 

• If perfect multicollinearity exists, ( ) ( )rank X X rank X′ =  < .  So, k

t t tX X x′ = Σ i ix′

<

 is not invertible. 

• If T k , .  So, < ( ) ( ) min( , )rank X X rank X T k k′ = ≤ t t tX X x x• •′ ′= Σ  is not 

invertible.  T  is a case of perfect multicollinearity. k<

 



EX: Simple Regression Model 
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t• Wish to estimate 1, 1 2, 2t o t o ty x xβ β ε= + + : 

  2
1 2 1 1 2 2( , ) ( )T t t t tS y x xβ β β= Σ − − β . 

• The first order condition for minimization: 

1/TS β∂ ∂  = Σt2(yt-xt1β1-xt2β2)(-xt1) = 0 → Σt(xt1yt - xt1
2β1-xt1xt2β2) = 0 

2/TS β∂ ∂  = Σt2(yt-xt1β1-xt2β2)(-xt2) = 0 → Σt(xt2yt - xt1xt2β1-xt2
2β2) = 0 

→  Σtxt1yt = (Σtxt1
2)β1 + (Σtxt1xt2)β2

Σtxt2yt = (Σtxt1xt2)β1 + (Σtxt2
2)β2

→  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ΣΣ
ΣΣ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Σ
Σ

2

1
2

212

21
2

1

2

1

ˆ
ˆ

β
β

ttttt

ttttt

ttt

ttt

xxx
xxx

yx
yx

. 

→  But, this equation is equivalent to ˆX y X X β′ ′= . 

  →   = (X′X)β̂ -1X′y. 

 

Derivation of the OLS estimator for general cases: 

• ST(β) = (y′ - β′X′)(y - Xβ) = y′y - β′X′y - y′Xβ + β′X′Xβ . 

• Since y′Xβ is a scalar, y′Xβ = (y′Xβ)′ = β′X′y . 

• Thus, ST(β) = y′y - 2β′X′y + β′X′Xβ . 

• FOC for minimization of ST(β): 

1

2 1

( )

0
( )

0( ) 0
:

:
0

( )

T

T
T

k

T

k

S

S
S

S

β
β

β
β β

β

β
β

×

∂⎛ ⎞
⎜ ⎟∂
⎜ ⎟ ⎛ ⎞

∂⎜ ⎟ ⎜ ⎟∂ ⎜ ⎟ ⎜ ⎟∂≡ =⎜ ⎟ ⎜ ⎟∂
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎜ ⎟∂⎜ ⎟⎜ ⎟∂⎝ ⎠

= . 

 



But, 

 ∂(β′X′y)/∂β = X′y; 

 ∂(β′X′Xβ)/∂β = 2X′Xβ. 

[In fact, for any k×1 vector d, ∂(β′d)/∂β = d; and, for any k×k symmetric 

matrix A, ∂(β′Aβ)/∂β = 2Aβ.] 

Thus, FOC implies 

 

 1
( ) 2 2 0T

k
S X y X Xβ β

β ×

∂ ′ ′= − + =
∂

 

  →  

 10kX y X X β ×′ ′− =   (2)
  
 

→  Solving (2), we have  
1ˆ ( )X X X yβ −′ ′= . 

 

SOC (second order condition) for minimization: 

 
2 2( ) ( )T T

i j k k

S Sβ β
β β β β

×

⎡ ⎤∂ ∂
= ⎢ ⎥′∂ ∂ ∂ ∂⎣ ⎦

 = 2X′X, 

which is a positive definite matrix for any value of β.  That is, the function 

ST(β) is globally convex.  This indicates that  indeed minimizes Sβ̂ T(β). 

[Here, we use the fact that ∂(β′Aβ)/∂β∂β′ = 2A for any symmetric matrix A.]  
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Theorem:  . 1ˆ ( )X X X yβ −′ ′=

 

Definition:  

• t'th residual: ˆ
t t te y x β′= − i  (can be viewed as an estimate of εt). 

• Vector of residuals: ( )1
ˆ,..., Te e e y X β′= = − .  

 

Theorem:   10kX e ×′ =

Proof: 

From the proof of the previous theorem, 

1
ˆ 0kX y X X β ×′ ′− =  → 1

ˆ( ) 0kX y X X eβ ×′ ′ 0− = → = . 

 

Corollary: 

If (SIC.7) holds (  for all t: β1 1tx = 1 is the intercept), Σtet = 0. 

Proof: 

11 21 1 11

12 22 2 22

1 2 1

... 0

... 0
: : : :: :

... 0

T t t t

T t t t

k k Tk t tk tT k

x x x x ee
x x x x ee

X e

x x x x ee
×

Σ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥Σ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥′ = =
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥Σ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦

= . 

→ Σtxt1et = 0 → Σtet = 0 (by SIC.7). 
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Question: 

 Consider the following two models: 

  (A) yt = xt1β1 + xt2β2 + xt3β3 + εt; 

 (B) yt = xt1β1 + xt2β2 + εt. 

Are the OLS estimates of β1 and β2 from (A) the same as those from (B)? 

 

Digression to Matrix Algebra 

Definition:  Let A be a T×p matrix. 

P(A) = A(A′A)-1A′ (T×T matrix called “projection matrix”);  

M(A) = IT - P(A) = IT - A(A′A)-1A′ (T×T matrix called “residual maker). 

 

Facts: 

1) P(A) and M(A) are both symmetric and idempotent: 

P(A)′ = P(A), M(A)′ = M(A), P(A)P(A) = P(A), M(A)M(A) = M(A). 

2) P(A) and M(A) are psd (positive semi-definite). 

3) P(A)M(A) = 0T×T (orthogonal). 

4) P(A)A = [A(A′A)-1A′]A = A. 

5) M(A)A = [IT-P(A)]A = A - P(A)A = A - A = 0T×T. 

End of Digression 

 

Theorem: e = M(X)y. 

<Proof>  . 1 1( ) [ ( ) ] ( )T Te y X I y X X X X y I X X X X y M X yβ − −′ ′ ′ ′= − = − = − =
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Frisch-Waugh Theorem: 

 Partition X into [XA,XB]  and B ( , )A Bβ β β′ ′ ′= . Let Aβ  be the OLS estimate of βA 

from a regression of the model y = Xβ + ε = XAβA + XBβB + ε.  Then, 

 1[ ( ) ] (A B A A BA X M X X X M X ) yβ −′ ′= . 

That is, Aβ  is obtained by regressing M(XB)y on M(XB)XA. 

 

Comment: 

Aβ  is different from the OLS estimate of βA from a regression of y on XA. 

 

Theorem: 

 Consider the following models: 

  (A) yt = β1 + β2xt2 + β3xt3 + error 

  (B) yt = α1 + α2xt2  + error 

  (C) xt3 = δ1 + δ2xt2 + error 

 Then, 2 22 3α β δ β= + . 
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Theorem: 

 Consider the following two models: 

  (A) yt = β1 + β2xt2 + ... + βkxtk + εt; 

  (B) 2 2 2( ) ... ( )t t k tk ky y x x x x errorβ β− = − + + − + . 

 Then, the OLS estimates of β2, ... , βk from the regression of (A) are the same as 

the OLS estimates of β2, ..., βk from the regression of (B). 

Proof : 

 Model (A) can be written as 

1 * *1Ty X Xβ β β= = + + ε , 

 where 1T is the T×1 vector of ones and β* = (β2,...,βk)′. Then, 

( ) 1

* * ** (1 ) (1 )T TX M X X M yβ
−

′ ′= . 

 Observe that: 

( )1 2(1 ) ...T TM y y y y y y y ′= − − − . 

 Now, complete the proof by yourself.
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[4] Goodness of Fit 

Question: How well does your regression explain yt?  

 

Example: 

• A simple regression model: yt = β1 + β2xt2 + εt, with β1,o = β2,o = 1. 

• For population A, σo
2 = 1.  For population B, σo

2 = 10. 
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• Clearly, the regression line ( |t t )E y x i  explains Population A better. 

• How can we measure the goodness of fit of ( |t t )E y x i ? 

 

Definition: 

• "Fitted value" of yt: ˆˆ t ty x β′= i  (an estimate of ( |t t )E y x i ). 

• Vector of fitted values: ˆŷ X β= . 
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Definition: 
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)SSE = 2ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) (t t te e y X y X y y y y y yβ β′ ′ ′= − − = − − = Σ − . 

(Unexplained sum of squares) 

→ Measures unexplained variation of yt. 

→ SSE/T is an estimate of Ex[var(y|x)]. 

SSR = 2)ˆ( yytt −Σ , where tt yTy Σ= −1  (Explained sum of squares). 

→ Measures variation of yt explained by regression. 

→ SSR/T is an estimate of varx[E(y|x)]. 

SST = 2)( yytt −Σ  (Total sum of squares) 

→ SST/T measures total variation of yt. 

 

Theorem:  SSE = Σtet
2 = . yXyy ′′−′ β̂

Proof: 

 SSE =  =  )ˆ()ˆ( ββ XyXy −′− βββ ˆˆˆ2 XXyXyy ′′+′′−′

   =  = . yXXXXXyXyy ′′′′+′′− −1)(ˆˆ2' ββ yXyy ′′−′ β̂

 

Theorem: 

SST = 2)( yytt −Σ = 22 yTytt −Σ , 

SSR = 2ˆ yTyX −′′β  [if (SIC.7) holds]. 

Proof: For SSR, see Schmidt. 
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Theorem: 

Suppose that xt1 = 1, for all t (that is, (SIC.7) holds).  Then, SST = SSE + SSR. 

Proof: Obvious. 

 

Implication: 

Total variation of yt equals sum of explained and unexplained variations of yt. 

 

Definition: [Measure of goodness of fit] 

R2 = 1 - (SSE/SST) = (SST-SSE)/SST. 

 

Theorem: 

Suppose that xt1 = 1, for all t (SIC.7).  Then, R2 = SSR/SST and 0 ≤ R2 ≤ 1. 

 

Note: 

1) If (SIC.7) holds, then, R2 = 1 - (SSE/SST) = SSR/SST. 

2) If (SIC.7) does not hold, then, 1 - (SSE/SST) ≠ SSR/SST. 

3) 1 - (SSE/SST) can never be greater than 1, but it could be negative. 

SSR/SST can never be negative, but it could be greater than 1. 

 



Definition: 

Ru
2 (uncentered R2)  = yyyy ′′ /ˆˆ  = . 22 /ˆ tttt yy ΣΣ

 

Note: 

• Some people use Ru
2, when the model has no intercept term. 

• 0 ≤ Ru
2 ≤ 1, since e′e + yy ˆˆ ′  = y′y. [Why? Try it at home.] 

→ This holds even if (SIC.7) does not hold. 

• If y  = 0, then, Ru
2 = R2. 

 

Definition: 

An estimator of covariance between yt and  (which be viewed as an estimate 

of ) is defined by: 

tŷ

)|( •tt xyE

 1ˆ ˆcov( , ) ( )( )
1t t t t te y y y y y

T
y= Σ − −

−
, 

where tt yTy ˆ~ 1Σ= − .  Similarly, the estimators of var(yt) and var( ) are defined 

by: 

tŷ

 2 21 1ˆ ˆvar( ) ( ) ; var( ) ( )
1 1t t t t t te y y y e y y y

T T
= Σ − = Σ −

− −
. 

Then, the estimated correlation coefficient between yt and  is defined by: tŷ

 
)ˆvar()var(

)ˆ,cov(ˆ
tt

tt

yeye
yye

=ρ . 
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Note: 

1) 0 ≤  ≤ 1, whether (SIC. 7) holds or not. 2ρ̂

2) If (SIC.7) holds, yy =~ . 

3) If (SIC.7) holds, 1-(SSE/SST) = SSR/SST = . 2ρ̂

 

Remark for the case where (SIC.7) holds: 

1) If R2 = 1, yt and  are perfectly correlated (perfect fit). tŷ

2) If R2 = 0, yt and  have no correlation. tŷ

→ Regression may not be much useful. 

3) Does a high R2 always mean that your regression is good? 

 [Answer] 

 No.  If you use more regressors, then, you will get higher R2.  In particular, if 

k = T, R2 = 1. 

4) R2 tends to exaggerate goodness of fit when T is small. 

 

Definition: [Adjusted R2, Theil (1971)] 

 
)1/(
)/(12

−
−

−=
TSST

kTSSER . 

Comment: 

• 2R R< 2  unless k > 1 and R2 < 1. 

• 2R  could be negative. 
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[Proof for the fact that R2 increases with k] 

Theorem:  Let A = [A1,A2].  Then,  

M(A)Aj = 0; P(A)Aj = Aj, j = 1, 2; P(A) = P(A1) + P[M(A1)A2]. 

 

Theorem:   = P(X)y and e = M(X)y. ŷ

Proof:  Because ˆŷ X β=  = X(X′X)-1X′y = P(X)y.  And e = y – P(X)y = M(X)y. 

 

Lemma:  SSE = y′M(X)y = y′y - y′P(X)y. 

Proof: . [ ( ) ] ( ) ' ( ) ( ) ( )SSE e e M X y M X y y M X M X y y M X y′ ′ ′ ′= = = =

 

Theorem: 

When k increases, SSE never increases. 

Proof: 

Compare: 

Model 1: y = Xβ + ε 

Model 2: y = Xβ + Zγ + υ = Wξ + υ, 

where W = [X,Z] and ξ = [β′,γ′]′. 

SSE1 = SSE from M1 = y′M(X)y = y′y - y′P(X)y 

SSE2 = SSE from M2 = y′M(W)y = y′y - y′P(W)y 

  = y′y - y′[P(X)+P{M(X)Z}]y 

  = y′y - y′P(X)y - y′P{M(X)Z}y 

SSE1 - SSE2 = y′P{M(X)Z}y ≥ 0. 
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[5] Statistical Properties of the OLS estimator 

 

(1) Random Sample: 

• A population (of billions and billions) 

x(1), ... , x(b)

 
 Here, the x(j) are the members of the population. 

• θ: An unknown parameter of interest (e.g., population mean or population 

variance.) 

o If we know the pdf of this population, we could easily compute θ.  But 

if you do not know the pdf? 

• Need to estimate θ, using a random sample {x1, ... , xT} of size T from the 

population. 
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• What do we mean by “random sample”? 

• A sample that represents the population well. 

• Divide the population into T groups such that the groups are 

stochastically independent and the pdf of each group is the same as the 

pdf of the whole population.  Then, draw one from each group:  Then, the 

x1, ... , xT should be iid (independently and identically distributed). 

• “Random sample” means a sample obtained by this sampling strategy. 

• An example of nonrandom sampling: 

• Suppose you wish to estimate the % of supporters of the Republican 

Party in the Phoenix metropolitan area. 

• t is a zip-code area.  Choose a person living in a street corner from 

each t. 

• If you do, your sample is not random.  Because rich people are likely 

to live in corner houses!  Republicans are over-sampled! 

 

• Let θ̂  be an estimator of  θ.  What properties should θ̂  have? 

 

(2) Criteria for “good” estimators 

1) Unbiasedness. 

2) Small variance. 

3) Distributed following a known form of pdf (e.g., normal, or χ2). 
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Definition: (Unbiasedness) 

 If ˆ( ) oE θ θ= , then we say that θ̂  is an unbiased estimator of θ. 

Comment: 

• Consider the set of all possible random samples of size T: 

                 Estimate 

Sample 1: {x1
[1], x2

[1], ... , xT
[1]}  →  ]1[θ̂  

Sample 2: {x1
[2], x2

[2], ... , xT
[2]}  →  ]2[θ̂  

Sample 3: {x1
[3], x2

[3], ... , xT
[3]}  →  ]3[θ̂  

          : 

Sample b′: {x1
[b′], x2

[b′], ... , xT
[b′]}  →  ][ˆ b′θ . 

• Consider the population of Sθ ≡{ ]1[θ̂ , ... , ][ˆ b′θ }. 

• Unbiasedness of θ̂  means that E(θ̂ ) = population average of Sθ  = θo.  

 

Definition: (Relative Efficiency) 

Let θ̂  and θ  be unbiased estimators of θ.  If  < )ˆvar(θ )var(θ , we say that θ̂  

is more efficient than θ . 

 

Comment: 

 If θ̂  is more efficient than θ , it means that the value of θ̂  that I can obtain 

from a particular sample would be generally closer to the true value of θ (θo) 

than the value of θ . 
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Example: 

 • A population is normally distributed with N(μ,σ2), where μo = 0 and σo
2 = 9. 

 • {x1,x2, ... , xT} is a random sample (T = 100): 

 • Two possible unbiased estimators of μ: tt xT
x Σ=

1  and 1xx = . 

 • 1 1 1( ) ( )t t t t t o oE x E x E x
T T T

μ μ⎛ ⎞= Σ = Σ = Σ =⎜ ⎟
⎝ ⎠

; 1( ) ( ) oE x E x μ= = . 

 • Which estimator is more efficient? 

  • 
2 2 2

21 1 1var( ) var var( ) o
t t t t t ox x x

T T T T
σσ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= Σ = Σ = Σ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
; 

  • 2
1var( ) var( ) ox x σ= = .   

  • Thus, 
2

2var( ) var( )o
ox x

T
σ σ= < = , if T > 1. 

 

Gauss Exercise: 

 • From N(0,9), draw 1,000 random samples of size equal to T = 100. 

 • For each sample, compute x  and x . 

 • Draw a histogram for each estimator. 

 • Gauss program name: mmonte.prg. 
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/* 
** Monte Carlo Program for sample mean 
*/ 

 
seed   = 1; 
tt     = 100; @ # of observations @ 
iter   = 1000; @ # of sets of different data @ 

 
storem  = zeros(iter,1) ; 
stores  = zeros(iter,1) ;  

 
i = 1; do while i <= iter; 

 
@ compute sample mean for each sample @ 

 
x = 3*rndns(tt,1,seed); 
m = meanc(x); 
storem[i,1]  = m; 
stores[i,1]  = x[1,1]; 

 
i = i + 1; endo; 

 
@ Reporting Monte Carlo results @ 

 
output file = mmonte.out reset; 

 
format /rd 12,3; 

 
"Monte Carlo results"; 
"-----------"; 
"Mean of x bar     ="  meanc(storem); 
"mean of x rou     ="  meanc(stores); 
library pgraph; 
graphset; 

 
v = seqa(-10, .2, 100); 
{a1,a2,a3}=hist(storem,v);  
@ {b1,b2,b3}=hist(stores,v);  @ 

 
output off ; 



 

 
  x  

 
x  
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Extension to the Cases with Multiple Parameters: 

 • θ = (θ1,θ2, ... , θp)′ is a unknown parameter vector. 

 

Definition: (Unbiasedness) 

θ̂  is unbiased iff ˆ( ) oE θ θ= : 

 

1 1,

2,2

,

ˆ( )
ˆ( )ˆ( )

::
ˆ( )

o

o
o

p op

E

E
E

E

θ θ
θθ

θ θ

θθ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

. 

 

Definition: (Relative Efficiency) 

 Suppose that θ̂  and θ  are unbiased estimators.  Let c = (c1,c2, ... , cp)′ is a 

nonzero vector.   θ̂  is said to be more efficient than θ , iff )ˆvar()var( θθ cc ′≥′  

for any nonzero vector c. 

 

Remark: 

 )ˆvar()var( θθ cc ′≥′ . 

  ↔ 0)ˆ()( ≥′−′ cCovccCovc θθ , for any nonzero c. 

  ↔ 0)]ˆ()([ ≥−′ cCovCovc θθ , for any nonzero c. 

  ↔ )ˆ()( θθ CovCov −  is positive semi-definite. 
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Comment: 

 • Let θ = (θ1,θ2)′ and c = (c1,c2)′. 

 • Suppose you wish to estimate c′θ = c1θ1 + c2θ2. 

 • If, for any nonzero c, var(c′θ ) = var(c1 1θ +c2 2θ ) ≥ var(c1 1̂θ +c2 2θ̂ ) = 

var(c′θ̂ ), we say that θ̂  is more efficient than θ . 

 

Example: 

 • Let 1 2( , )θ θ θ ′= .  Suppose ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

5.11
15.1

)(;
10
01

)ˆ( θθ CovCov . 

 • Note that: 

 = 1 < 1.5 = )ˆvar( 1θ )var( 1θ ;  = 1 < 1.5 = )ˆvar( 2θ 2var( )θ . 

 • But, 

 ACovCov ≡⎥
⎦

⎤
⎢
⎣

⎡
=−

5.01
15.0

)ˆ()( θθ   → 075.0;05.0 21 <−=>= AA . 

 • A is neither positive nor negative semi-definite. 

 • θ̂  is not necessarily more efficient than θ . 

 • For example, suppose you wish to estimate θ1-θ2 = c′θ (where c = (1,-1)′): 

  • var(c′θ̂ ) = c′Cov(θ̂ )c = 2; var(c′θ ) = c′Cov(θ )c = 1. 

  • That is, for the given c = (1,-1)′, c′θ  is more efficient than c′θ̂ . 

  • This example is a case where relative efficiency of estimators depends on 

c.  For such cases, we can’t claim that one estimator is superior to others.  
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Theorem: 

 If  θ̂  is more efficient than θ , )var()ˆvar( jj θθ ≤ , for all j = 1, ..., p.  But not 

vice versa. 

Proof:  

Choose c = (1,0,...,0)′.  Then, you can show )var()ˆvar( 11 θθ ≤ .  Now, choose c 

= (0,1,0,....,0)′.  Then, we can show )var()ˆvar( 22 θθ ≤ .  Keep doing this until j 

= p. 

 

 Linear Regressions under Ideal Conditions-50 
 



(3) Population Projection 

 • Suppose you have data from all population members (say, t = 1, …., B).  

 • Assume that 1
1( ) B

t t tE x x x x
B• • = • •′ = Σ ′   is pd, where 1 1tx =  for all t. 

 • Let 1, 2,( ,..., )p p pβ β β ′=  be the OLS estimator obtained using all population: 

  Notice that pβ  is a population parameter vector.  Denote 

Pr ( | )t t toj y x x pβ• •′= . 

 • Let ,p t t te y x pβ′= − i , where t = 1, … , B. 

 • Population projection model: 

,Pr ( | )t t t t t py oj y x x ep tε β′= + =i i + . 

 • By definition, pβ  always exists.  Notice that (SIC.1) assumes that the 

conditional mean of  is linear in : ty tx i ( | )t t t oE y x x β′=i i .  In contrast, the 

population projection of  is always linear. ty

 

Theorem: 

  for all j = 1, … , k.  That is,  ( )j pE x e = 0 1( ) 0p kE x e ×=i . 

Proof: 

 Recall  → .  That is, 10kX e ×′ = 1 0T
t t t kx e= • ×Σ = 1 1 ,

1( ) B
p t t p tE x e x e

B• = • 0= Σ = . 

 

Comment: 

 •   → ( )pE x e• = 0 0( | )pE e x• = , although the latter implies the former. 
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Theorem: 
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) ( ) 1( ) (p E x x E x yβ −
• • •′= . 

Proof: 

 ( )
1

1

1 1 1
1 1B B B B

1p t t t t t t t t t t t tx x x y x x x
B B

β
−

−

= • • = • = • • = •
⎛ ⎞′ ′= Σ Σ = Σ Σ⎜ ⎟
⎝ ⎠

y . 

 

Comment: 

 • Intuitively, the OLS estimator is a consistent estimator of pβ . 

 • Notice that under (SIC.1)-(SIC.4), o pβ β= ! 

 • Under (SIC.1)-(SIC.4), ( | ) Pr ( | )t t t t t oE y x oj y x x β• • ′•= = . 

 • Thus, under (SIC.1)-(SIC.4), the OLS estimator is a consistent estimator of 

oβ . 

 



(4) The Stochastic Properties of the OLS Estimator. 
 
(SIC.8) The regressor xt1, … , xtk ( tx • ) are nonstochastic. 
 
 Comment: 
  • The whole population consists of T groups, and each group has fixed xt•. 

We draw yt from each group.  The value of yt would change over different 

trials, but the value of xt• remains the same. 

  • Can be replaced by the assumption that 1( | ,..., ) 0t TE x xε • • =  for all t 

(assumption of strictly exogenous regressors). This assumption holds as 

long as (SIC.1) - (SIC.4) hold.  If you do not use (SIC.8), the distributions 

of β̂  and 2s  obtained below the conditional ones conditional on 

. 1 2, ,..., Tx x xi i i

 

Theorem: 

Assume (SIC.1)-(SIC.6) and (SIC.8).  Then, 

• ˆ( ) oE β β=  (unbiased) 

•  2 1ˆ( ) ( )oCov X Xβ σ −′=

• 2( ) oE s 2σ= , where 2 2/( ) /( ) /( )t ts SSE T k e T k e e T k′= − = Σ − = −

)

)

 

[even if the εt are not normal, that is, (SIC.6) does not hold] 

•  . 2 1ˆ ~ ( , ( )o oN X Xβ β σ −′

•   and  (so sβ̂ SSE 2) are stochastically independent. 

•  [if (SIC.6) holds.] 2 2/ ~ (oSSE T kσ σ −
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Comment: 

 • As discussed later, we need to estimate . 2 1ˆ( ) ( )oCov X Xβ σ −′=

 • We can use s2 to estimate ˆ( )Cov β . 

 

Numerical Exercise: 

 • yt = β1 + β2xt2 + β3xt3 + εt, T = 5: 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
−
−

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

421
111
001
111
421

;

3
1
1
0
0

Xy . 

 • Then, 

 ; ;
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=′

34010
0100

1005
XX

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=′

13
7
5

yX  11=′yy ; y  = 1. 

 

1) Compute : β̂

 (X′X)-1=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

14/107/1
010/10

7/1035/17
. 

 . 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
214.0

7.0
571.0

13
7
5

14/107/1
010/10

7/1035/17

ˆ
ˆ
ˆ

ˆ

3

2

1

β
β
β

β
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2) Compute s2: 

 SSE = y′y - y′X  = 0.46 β̂

  → s2 = SSE/(T-k) = 0.46/(5-3) = 0.23 

 

3) Estimate ˆ( )Cov β : 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=′ −

14/107/1
010/10

7/1035/17
23.0)( 12 XXs = . 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

016.00032.0
0023.00
032.00112.0

  

4) Compute SSE, SSR and SST: 

 • SST = y′y - T 2y = 11 - 5×(1)2 = 6; 

 • SSE = y′y -  = 11 -  = 0.46 yX 'β̂ ′ ( )
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

13
7
5

214.07.0571.0

 • SSR = SST – SSE = 5.54. 

  

5) Compute R2 and 2R . 

 • R2 = SSR/SST  =5.54/6 = 0.923 

 • 2R  = 1 - )923.01(
35
151)1(1 2 −

−
−

−=−
−
− R

kT
T  = 0.846. 
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[Proofs of the General Results under SIC] 

1) Some useful results: 

 a) Let 1( ,..., )Tε ε ε ′= .  Then, the model t t oy x tβ ε•′= +  (t = 1, … , T) can be 

written as oy X β ε= + .  [Be careful that ε  is a vector from now on!] 

 b) 1( ) 0TE ε ×= , because ( ) [ ( | )] (0) 0
t tt x t t xE E E x Eε ε
• • •

= = =  for all t. 

 c)  2( ) ( ) ( ) ( ) ( ) o TE E E E Covεε εε ε ε ε σ′ ′ ′= − = = I , because cov( , ) 0t sε ε =  by 

(SIC.4) and 2var( )t oε σ=  by (SIC.5). 

 d) Under (SIC.8), 1( ) ( ) 0kE X X Eε ε ×′ ′= = . 

 

2) Show that ˆ( ) oE β β=  and 2 1ˆ( ) ( )oCov X Xβ σ −′= . 

 

Lemma D.1:  
1ˆ ( )o X X Xβ β ε−′ ′= + . 

Proof: 

 oy X β ε= + . 

1 1ˆ ( ) ( ) ( ) ( )o oX X X 1y X X X X X Xβ β ε β− −′ ′ ′ ′= = + = + ε− ′ . 

 

Theorem: (Unbiasedness) 
ˆ( ) oE β β= . 

Proof: 
1 1ˆ( ) [ ( ) ] ( ) ( )o oE E X X X X X X E oβ β ε β ε− −′ ′ ′ ′= + = + = β . 
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Theorem: 
2 1ˆ( ) ( )oCov X Xβ σ −′= . 

Proof: 
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]Cov( ) = β̂ 1[ ( )oCov X X Xβ ε−′ ′+  

   =  1 1[( ) ] ( ) ( )[( ) ]Cov X X X X X X Cov X X Xε ε− −′ ′ ′ ′ ′ ′= 1− ′

1−

1−

       =   1 2 1 2 1( ) ( ) ( ) ( ) ( )o T o TX X X I X X X X X X I X X Xσ σ− − −′ ′ ′ ′ ′ ′=

       = . 2 1 1 2( ) ( ) ( )o oX X X X X X X Xσ σ− −′ ′ ′ ′=

 

3) Show 2 2( ) oE s σ= . 

 

Lemma D.2: 

SSE = ( ) ( )e e y M X y M Xε ε′ ′ ′= = . 

Proof: 

SSE = y′M(X)y = (Xβ+ε)′M(X)(Xβ + ε) = (β′X′+ε′)M(X)ε = ε′M(X)ε. 

 

Theorem: 
2( ) ( ) oE SSE T k σ= − . 

 



Digression to Matrix Algebra: 

Definition: (trace of a matrix) 

B = [bij]n x n → tr(B) = Σn
i=1bii = sum of diagonals. 

 

Lemma D.3: 

For Am×n and Bn×m, tr(AB) = tr(BA). 

Lemma D.4: 

If B is an idempotent n×n matrix, 

rank(B) = tr(B). 

 

[Comment] 

• For Lemma D.4, many econometrics books assume B to be also symmetric.  

But the matrix B does not have to be. 

• An idempotent matrix does not have to be symmetric:  For example, 
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⎜
⎝ ⎠

1
0 0⎝ ⎠

a1/ 2 1
1/ 4 1/ 2

⎛ ⎞
⎟ ; ⎛ ⎞

⎜ ⎟  

• Theorem DA.1:    

  The eigenvalues of an idempotent matrix, say B, are ones or zeros. 

  <Proof> 2 2λξ ξ ξ λξ λ= = = =B B B ξ . 

 



• Theorem DA.2: 

  tr(B) = sum of the eigenvalues of B, where B is n×n. 

 <Proof> 1det( ) ( )...( )λ λ λ λ λ− = − − nI B  

     → 1 1
11 22 1( ... ) ( ... )λ λ λ λ− −+ + + = + +n n

nn nb b b . 

 

• Theorem DA.3: 

  rank (B) = # of non-zero eigenvalues of B [See Greene.] 

 

• Lemma  D.4 is implied by Theorems DA.1-3.  

 

Example: 

Let A be T×k (T > k).  Show that rank[IT-A(A′A)-1A′] = T - k. 

[Solution] 

rank[IT-A(A′A)-1A′]   

   = tr(IT - A(A′A)-1A′) 

   = tr(IT) - tr[A(A′A)-1A′] = T - tr[(A′A)-1A′A] 

   = T - tr(Ik) = T - k. 

End of Digression. 
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3) Show 2 2( ) oE s σ= : 

2 2

2 1 2

( ) ( ( ) ) [ { ( ) }] [ { ( ) }]
[ ( ) ( )] [ ( ) ] [ ( )]

[ ( ) ] ( )
o T o

o T o

E SSE E M X E tr M X E tr M X
tr M X E tr M X I tr M X

tr I X X X X T k

ε ε ε ε ε

εε σ σ

σ σ−

′ ′= = =

′= = =

′ ′= − = −

ε ′

2

  

→ 2 2( ) ( /( )) ( ) /( ) [ ( )] /( )o oE s E SSE T k E SSE T k T k T kσ σ= − = − = − − =

)

. 

 

4) Show the normality of . β̂

 

Lemma D. 5: 

Let zT×1  ~ N(μT×1, ΩT×T).  Suppose that A is a k×T nonstochastic matrix.  Then, 

b + Az  ~ N(b + Aμ, AΩA′). 

 

Theorem:  ~ β̂ 2 1( , ( )o oN X Xβ σ −′  

Proof: 
1ˆ ( )o X X Xβ β ε−′ ′= +  

→   ~ N(ββ̂ o+(X′X)-1X′E(ε), (X′X)-1X′Cov(ε)X(X′X)-1)  

     = 2 1( , ( )o oN X Xβ σ )−′ . 
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5) Show that  and SSE are stochastically independent. β̂

 

Lemma D.6: 
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)I

Let Q be a T×T (nonstochastic) symmetric and idempotent matrix.  Suppose 

.  Then,  2
1~ (0 ,T o TNε σ×

 2
2 ~ (
o

Q r)ε ε χ
σ
′

, r = tr(Q). 

Proof: See Schmidt. 

 

Lemma D.7: 

Suppose that Q is a T×T (nonstochastic) symmetric and idempotent and B is a 

m×T nonstochastic matrix.   If , Bε and ε′Qε are 

stochastically independent iff BQ = 0

2
1~ (0 ,T o TNε σ× )I

mxT. 

Proof: See Schmidt.  

 

Theorem: 
2

2
2 2

( ) ~ ( )
o o

T k s SSE T kχ
σ σ
− .= −  

And,  and sβ̂ 2 are stochastically independent.  



Proof:  
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2
o1) Note that 2 2 2( ) / / ( ) /o oT k s SSE M Xσ σ ε ε σ′− = = . 

Since M(X) is idempotent and symmetric and tr(M(X)) = T-k, by Lemma D.7, 
2 2( ) / ~ ( )oM X Tε ε σ χ′ − k . 

2) Note that 1ˆ ( )o X X Xβ β −′− = ε′

k

 (by Lemma D.1); (T-k)s2 = SSE = ε′M(X)ε. 

Note that (X′X)-1X′M(X) = 0kxT .  Therefore, Lemma D.7 applies, i.e., SSE and 

 are stochastically independent.  So are sβ̂ 2 and . β̂

 

Theorem: . 2 4var( ) 2 /( )os Tσ= −

Proof: 

Since , 2 2 2( ) / ~ ( )oT k s T kσ χ− − 2 2var[( ) / ] 2( )oT k s T kσ− = −  (since 

var(χ2(r)) = 2r), and  implies 

. 

2 2 2[( ) / ] var( ) 2( )oT k s T kσ− = −

k2 4var( ) 2 /( )os Tσ= −

 

Remark: 

Let θ = ⎟
⎠

⎞
⎜
⎝

⎛
2σ

β
 and .  Then,  ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

2

ˆˆ
s
βθ

2 1
1
4

1

( ) 0
ˆ( ) 20

o k

o
k

X X
Cov

T k

σ
θ σ

−
×

×

′⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

. 



[6] Efficiency of  and sβ̂ 2

Question: 

 Are the OLS estimators,  and sβ̂ 2, the best estimators among the unbiased 

estimators of β and σ2? 

 

Theorem:  (Gauss-Markov) 

Under (SIC.1) – (SIC.5) (ε may not be normal) and (SIC.8),  is the best 

linear unbiased estimator (BLUE) of β. 

β̂

 

Comment: 

Suppose that β  is an estimator which is linear in y; that is, there exists a T×k 

matrix C such that β  = C′y.  Let us assume that ( ) oE β β= .  Then, the above 

theorem means that Cov( β ) - Cov( ) is psd, for anyβ̂ β . 
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Proof of Gauss-Markov (A Sketch):  

Let β  be an unbiased estimator linear in y: That is, there exists a T×k matrix C 

such that β  = C′y.  Let C′ = (X′X)-1X' + D′.  Then, 

E( 1 ˆ( ) [( ) ] ( ) ( )oE E X X X y D y E D y E D yβ β−′ ′ ′ ′= + = + = +β ′ . 

Since β  is unbiased, it must be that: 

E(D′y) = 0  → E[D′(Xβ+ε)] = 0 → D′Xβ + D′E(ε) = 0  

   → D′Xβo = 0. 

Since this result must hold whatever βo is, D′X = 0k×k.  Then,  

β  = C′y = [(X′X)-1X′ + D′]y =  [(X′X)-1X′ + D′](Xβo + ε) 

=  βo + [(X′X)-1X′ + D′]ε 

After some algebra, you can show that (do this by yourself): 

Cov( β ) = Cov( ) + σβ̂ o
2D′D [using the fact that D′X = 0]. 

Then, you can show:  

Cov( β ) - Cov( ) = σβ̂ o
2D′D is psd (by the theorem below) 

 

Digression to Matrix Theory 

Theorem:  

 Suppose A is p×q nonzero matrix.  Then, A′A is psd.  If rank(A) = q, then, A′A 

is pd.  

End of Digression 
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Theorem: 

Under (SIC.1) – (SIC.6) (ε should be normal) and (SIC.8),  and sβ̂ 2 are the 

most efficient estimators of β and σ2. [(SIC.7) does not have to hold.] 

 

Digression to Mathematical Statistics 

(1) Cases in which θ (unknown parameter) is scalar. 

 

Definition: (Likelihood function) 

 • Let {x1, ... , xT} be a sample from a population. 

•  It does not have to be a random sample. 

• xt is a scalar. 

 • Let f(x1,x2, ... , xT,θo) be the joint density function of x1, ... , xT. 

• The functional form of f is known, but not θo. 

 • Then, LT(θ) ≡ f(x1, ... , xT, θ) is called “likelihood function”. 

  • LT(θ) is a function of θ given x1, ... , xT. 

  • The functional form of f is known, but not θo. 

 

Definition: (log-likelihood function) 

 lT(θ) = ln[f(x1, ... , xT,θ)]. 
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Example: 

 • {x1, ... , xT}: a random sample from a population distributed with f(x,θo). 

 • f(x1, ... , xT, θo) = . ∏ =

T

t otxf
1

),( θ

 →  LT (θ) = f(x1, ... , xT, θ) = ∏ =

T

t txf
1

),( θ . 

  →  lT(θ) = ( )∏ =

T

t txf
1

),(ln θ  = ),(ln θtt xfΣ . 

 

Definition: (Maximum Likelihood Estimator (MLE)) 

 MLE MLEθ̂  maximizes lT(θ) given data points x1, ... , xT. 

 

Theorem: (Minimum Variance Unbiased Estimator) 

 If E( MLEθ̂ ) = θo, then MLEθ̂  is the MVUE.  If E( MLEθ̂ ) ≠ θo, but if there exists a 

function g( MLEθ̂ ) such that E[g( MLEθ̂ )] = θo, then, g( MLEθ̂ ) is the MVUE. 

 

Example: 

 • {x1, ... , xT} is a random sample from a population following a Poisson 

distribution [i.e., f(x,θ) = e-θθx/x! (suppressing subscript “o” from θ)]. 

 • Note that E(x) = var(x) = θo for Poisson distribution. 

 • lT(θ) = Σtln[f(xt,θ)] = -θT + (ln(θ))Σtxt - Σtln(xt!) 

 • FOC of maximization: 01/ =Σ+−=∂∂ ttT xT
θ

θ . 

 • Solving this, MLEθ̂  = 
T
xttΣ = x . 
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(2) Extension to the Cases with Multiple Parameters. 

Definition: 

 • θ = [θ1,θ2, ... , θp]′. 

 • LT(θ) = f(x1, ..., xT,θ) = f(x1, ... , xT, θ1, ... , θp). 

 • lT(θ) = ln[f(x1, ... , xT,θ) = ln[f(x1, ... , xT, θ1, ... , θp)]. 

   • xt could be a vector. 

   • If {x1, ... , xT} is a random sample from a population with f(x,θo),  

     lT(θ) = ( )∏ =

T

t txf
1

),(ln θ  = ),(ln θtt xfΣ . 

 

Definition: (MLE) 

 MLE MLEθ̂  maximizes lT(θ) given data (vector) points x1, ... , xT.  That is, MLEθ̂  

solves 

 

1

2

1

0
:
0
0

/)(
:

/)(
/)(

)(

×
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂∂

∂∂
∂∂

=
∂

∂

ppT

T

T

T

θθ

θθ
θθ

θ
θ . 

 

Theorem: (Minimum Variance Unbiased Estimator) 

 If E( MLEθ̂ ) = θo, then MLEθ̂  is the MVUE.  If E( MLEθ̂ ) ≠ θo, but if there exists a 

function g( MLEθ̂ ) such that E[g( MLEθ̂ )] = θo, then, g( MLEθ̂ ) is the MVUE. 

 Linear Regressions under Ideal Conditions-67 
 



Comment: 

 Let θ  be any unbiased estimator of θo.  The above theorem implies that 

[ )ˆ()( MLECovCov θθ − ] is psd. 

 

Example: 

 • Let {x1, ... , xT} be a random sample from 2( ,o oN )μ σ . 

 • Since {x1, ... , xT} is a random sample, ( )tE x oμ=  and 2var( )t ox σ= . 

 • Let θ = (μ,v)′, where v = σ2. 

  • ⎥
⎦

⎤
⎢
⎣

⎡ −
−=⎥

⎦

⎤
⎢
⎣

⎡ −
−= −−

v
xv

v
x

v
xf tt

t 2
)(exp)()2(

2
)(exp

2
1),(

2
2/12/1

2 μπμ
π

θ . 

  • 
21 1 (ln[ ( , )] ln(2 ) ln( )

2 2 2
t

t
xf x v

v
)μθ π −

= − − − . 

  • 
2( )( ) ln(2 ) ln( )

2 2 2
t t

T
T T xv

v
μθ π Σ −

= − − − . 

  • MLE solves FOC: 

    (1) 0)()1)((2
2
1)(

=
−Σ

=−−Σ−=
∂

∂
v

xx
v

tt
tt

T μμ
μ
θ ; 

    (2) 
2

2
( ) ( ) 0

2 2
T t tT x
v v v
θ μ∂ Σ −

= − + =
∂

. 

  • From (1): 

(3) 0)( =−Σ μtt x  → Σtxt - Tμ = 0 → x
T
xtt

MLE =
Σ

=μ̂ . 
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• Substituting (3) in to (2): 

    (4) -Tv + Σt(xt- MLEμ̂ )2 = 0 → 2)(1ˆ xx
T

v ttMLE −Σ= . 

  • Thus, 

 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−Σ=⎟

⎠

⎞
⎜
⎝

⎛
= 2)(1

ˆ
ˆˆ

xx
T

x

v ttMLE

MLE
MLE

μ
θ . 

 • Note that: 

   • ˆ( )MLEE μ  = ( )E x  = ⎟
⎠
⎞

⎜
⎝
⎛ Σ tt xT

E 1 = )(1
tt xE

T
Σ  = otT

μΣ
1  = oμ . 

   • ˆ( )MLEE v  = 21
oT

T σ−  (by the fact that 2 21 ( )
1 t t oE x x

T
σ⎡ ⎤Σ − =⎢ ⎥−⎣ ⎦

) 

     → Let ˆ ˆ( )
1MLE MLE

Tg v v
T

=
−

. 

→ Clearly, 2 21ˆ[ ( )] ( )
1MLE t t oE g v E x x

T
σ⎡ ⎤= Σ − =⎢ ⎥−⎣ ⎦

. 

     → Thus, ˆ( )MLEg v  is MVUE of 2σ . 
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(3) Extension to Conditional density 

Definition: 

 • Conditional density of yt: ( , | )t o tf y xθ i , θ = [θ1,θ2, ... , θp]′. 

 • . 1( ) ( , | )T
T t tL f yθ θ== Π itx

t • lT(θ) = 1( ) ln( ( | , ))T
T t tL f y xθ θ== Σ . 

 

Example: 

 • Assume that ( ,  iid and )t ty x′i ( , , | ) ~ ( , )t o o t t o of y v x N x vβ β′i i . 

 • 21 1( , , | ) exp ( )
22t t t tf y v x y x

vv
β β

π
⎛ ⎞′= − −⎜ ⎟
⎝ ⎠

i i . 

 • 2

( , ) ln ( , , | )
1ln(2 ) ln ( )

2 2 2
1ln(2 ) ln ( ) ( )

2 2 2

T t t t

t t t

l v f y v x
T T v y x

v
T T v y X y X

v

β β

π β

π β β

= Σ

′= − − − Σ −

′= − − − − −

i

. 

 

End of Digression 
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Return to Efficiency of OLS estimator 
 
Proof: 

We already know that ˆ( ) oE β β=  and 2( ) oE s 2σ= .  Thus, it is sufficient to 

show that  and sβ̂ 2 are MLE or some functions of MLE.  Under (SIC.1) – 

(SIC.6) and (SIC.8), 

ε ~ N(0T×1, voIT) → y ~ N(Xβo,voIT), where vo = 2
oσ . 

Therefore, we have the following likelihood function of y, 

  LT(β,v) = 1
/ 2

1 1exp ( ) ( ) ( )
2(2 )

TT
T

y X vI y X
vI

β β
π

−⎡ ⎤′− − −⎢ ⎥⎣ ⎦
 

     = 1
/ 2 / 2

1 1exp ( ) ( ) ( )
(2 ) 2 TT T y X vI y X

v
β β

π
−⎡ ⎤′− − −⎢ ⎥⎣ ⎦

 

 Then,  

 lT(β,v) = -(T/2)ln(2π) -(T/2)ln(v) - (y-Xβ)′(y-Xβ)/(2v) 

= -(T/2)ln(2π) -(T/2)ln(v) - (1/2v)[y′y-2β′X′y+β′X′Xβ]. 

→  FOC:  ∂lT(β,v)/∂β = -(1/2v)[-2X′y + 2X′Xβ] = 0k×1      (i) 

     ∂lT(β,v)/∂v = -(T/2v) + (1/2v2)(y-Xβ)′(y-Xβ) = 0    (ii) 

→  From (i), X′y - X′Xβ = 0k×1 → MLEβ̂   = (X′X)-1X′y = . β̂

→  From (ii), MLEv̂  = SSE/T → s2 is a function of MLEv̂ . 

[s2 = [T/(T-k)] MLEv̂ ] 
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[7] Testing Linear Hypotheses 

(1) Testing a single restriction on β: 

• Ho: Rβo - r = 0, where R is 1×k and r is a scalar. 

 

Example: yt = xt1β1 + xt2β2 + xt3β3 + εt. 

 • We would like to test Ho: β3,o = 0. 

•  Define R = [0 0 1] and r = 0. 

•  Then, Rβo - r = 0 → β3,o = 0. 

• Ho: β2,o - β3,o = 0 (or β2,o = β3,o). 

• Define R = [0 1 -1] and r = 0. 

• Rβo - r = 0 → β2,o - β3,o = 0 

• Ho: 2β2,o + 3β3,o = 3. 

• R = [0 2 3] and r = 3. 

• Rβ - r = 0 → Ho. 

 

Theorem: (T-Statistics Theorem) 

Assume that (SIC.1)-(SIC.6) and (SIC.8) hold.  Under Ho: Rβo - r = 0, 

 )(~
ˆ

kTt
s

rRt
R

−
−

=
β , 

where RXXsRsR ′′= − ])([ 12 . 
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Corollary: 

Let se( ) = square root of the j’th diagonal of sjβ̂ 2(X′X)-1.  Then, under Ho: βj = 

βj
*,  

 )(~
)ˆ(

ˆ *

kTt
se

t
j

jj −
−

=
β
ββ . 

Proof: 

Let R = [0 0 ... 1 ... 0]; that is, only the j′th entry of R equals 1.  Let r = βj
*. Then, 

 
)ˆ(

ˆ

)ˆvar(

ˆ

)(

ˆˆ **

12

*

j

jj

j

jjjj

R seRXXRss
rRt

β
ββ

β

βββββ −
=

−
=

′′

−
=

−
=

−
. 

 

Comment: 

 • T-Statistics Theorem implies the following: 

  • Imagine that you collect billions and billions (b) of different samples. 

 • For each sample, compute the t statistic for the same hypothesis Ho.  

Denote the population of these t statistics by {t[1], t[2], ..., t[b]}. 

 • The above theorem indicates that the population of t-statistics is 

distributed as t(T-k). 
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How to reject or accept Ho

<Case 1> Ho: Rβo = r and Ha: Rβo ≠ r. 

 • For simplicity, consider a case with T-k = 25. 

• Ho: βj,o = 0 and Ha: βj,o ≠ 0. 

 

 
 

 • If you choose α = 5% (significance level), the probability that your 

t-statistic computed with a sample lies between –2.06 and 2.06 is 95% 

(confidence level).  Call 2.06 “critical value” (c). 

 • So, if the value of your t-statistic is outside of (-2.06, 2.06) [(-c, c)], you 

could say, “My t-value is quite an unlikely number I can obtain, if Ho is 

indeed correct”.  In this sense, you reject Ho. 

 • If the value of your t-statistic is inside of (-2.06,2.06), you can say, “My 

t-value is a possible number I can get if Ho is correct.”  In this sense, you 

accept (do not reject) Ho. 
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 • Another way to determine acceptance/rejection (P-value): 

  • Suppose you have t = 1.85 and T-k = 40 

  • Find the probability that a t-random variable is outside of (-1.85, 1.85). 

 
  • This probability is called p-value.  This value is the minimum α value 

with which you can reject Ho.  Thus, your choice of α > p-value, reject 

Ho.  If your choice of α < p-value, do not reject Ho.   
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<Case 2> Ho: Rβo = r and Ha: Rβo > r. 

 • T-k = 28, Ho: βj,o = 0 and Ha: βj,o > 0. 

 

 
 

 • Here, you strongly believe that βj,o cannot be negative.  If so, you would 

regard negative t-statistics as evidence for Ho.  So, your 

acceptance/rejection decision depends on how positively large the value of 

your t-statistic is. 

• Choose a critical value (c = 1.701) as in the above graph at 5% significance 

level.  Then, reject Ho in favor of Ha, if t > c (=1.701).  Do not reject Ho, if t 

< c. 
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<Case 3> Ho: Rβo = r and Ha: Rβo < r. 

 • T-k = 18, Ho: βj,o = 0 and Ha: βj,o < 0. 

 

 
 

 • Here, you strongly believe that βj,o cannot be positive.  If so, you would 

regard a positive value of a t-statistic as evidence favoring Ho.  So, your 

acceptance/rejection decision depends on how negatively large the value of 

your t-statistic is. 

• Choose a critical value (-c = -1.734) as in the above graph at a given 

significance level.  Then, reject Ho in favor of Ha, if t < -c (= -1.734).  Do not 

reject Ho, if t > -c. 
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Numerical Example: 

• Use 95% of confidence level. 

• y = β1 + β2x2t + β3x3t + εt. 

 • ; ; T = 10. 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=′ −

14.14560.1010
60.10157.720

0045.1
)( 12 XXs

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=
2
1
2.1

β̂

 

 • Ho: β2,o = β3,o against Ha: β2,o ≠ β3,o

   →  Ho: β2,o - β3,o = 0. 

   →  Ho: 1•β2,o + (-1)• β3,o = 0. 

   →  R = (0,1,-1) and r = 0. 

   →  t = -0.14 

   →  df = 10 – 3 = 7 → c = 2.365 

   →  Since –2.365 (-c) < t < 2.365 (c), do not reject Ho. 

 

• Ho: β2,o + β3,o = 1 ; Ha: β2,o + β3,o ≠ 1 

   →  t = 0, c = 2.365. 
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[Proof of T-Statistics Theorem] 

Digression to Probability Theory 

1) Standard Normal Distribution: (z ~ N(0,1)) 

 • Pdf: φ(z) = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

2
exp

2
1 2z
π

, -∞ < z < ∞. 

2) χ2 (Chi-Square) Distribution 

 • Let z1, ... , zk be random variables iid with N(0,1). 

 • Then, y =  ~ χ2
1 i

k
i z=Σ 2(k). 

 • Here, y > 0, k = degrees of freedom. 

 • E(y) = k and var(y) = 2k. 

 

3) Student t Distribution 

 • Let z ~ N(0,1) and y ~ χ2(k).  Assume that z and y are stochastically 

independent. 

 • Then, 
ky

zt
/

=  ~ t(k). 

 • E(t) = 0, k > 1; var(t) = k/(k-2), k > 2. 

 • As k → ∞, var(t) → 1.  In fact, t → z. 

 • The pdf of t is similar to that of z, but t has ticker tails. 

 • f(t) is symmetric around t = 0. 
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4) F Distribution 

 • Let y1 ~ χ2(k1) and y2 ~ χ2(k2) be stochastically independent. 

• Then, 
22

11

/
/
ky
kyf =  ~ f(k1,k2). 

 • f(1,k2) = [t(k2)]2. 

 • If f ~ f(k1,k2), k1f → χ2(k1) as k2 → ∞. 

 

Gauss Exercise: 

•  z ~ N(0,1); t ~ t(4); y ~ χ2(2); f ~ f(2,10). 

 • Gauss program name: dismonte.prg 
/* 
** Monte Carlo Program for z, x-square, t and f distribution 
*/ 

 
@ Data generation under Classical Linear Regression Assumptions @ 
new;  
seed   = 1; 
iter   = 10000; @ # of sets of different data points @ 

 
z = zeros(iter,1); 
t = zeros(iter,1); 
x = zeros(iter,1); 
f = zeros(iter,1); 
 
i = 1; do while i <= iter; 
z[i,1] = rndns(1,1,seed); 
t[i,1] = rndns(1,1,seed)./sqrt( sumc(rndns(4,1,seed)^2)/4 ); 
x[i,1] = sumc(rndns(2,1,seed)^2); 
f[i,1] = ( sumc( rndns(2,1,seed)^2 )/2 )./ (sumc( rndns(10,1,seed)^2 )/10) ; 
i = i + 1; endo ; 
 
@ Histograms @ 
 
library pgraph; 
graphset; 
ytics(0,6,0.1,0) ; 
v = seqa(-8,0.1,220);  
@ {a1,a2,a3}=histp(z,v); @ 
@ {b1,b2,b3}=histp(t,v); @ 
 
library pgraph; 
graphset; 
ytics(0,10,0.1,0);  
w = seqa(0, 0.1, 330); 
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@ {c1,c2,c3} = histp(x,w); @ 
{d1,d2,d3} = histp(f,w);  

 
 

 
          z ~ N(0,1) 

 
     t ~ t(4) 
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        y ~ χ2(2)  

 
    f ~ f(2,10) 

End of Digression 
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Lemma T.1: 

Under (SIC.1)-(SIC.6) and (SIC.8),  and sβ̂ 2 are stochastically independent. 

(See Schmidt.) 

Lemma T.2: 

 Under (SIC.1)-(SIC.6) and (SIC.8),  

 )(~)ˆ( kTt
s

R
R

−
− ββ . 

Proof: 

Define σR = 2 ( )o R X X Rσ −′ 1 ′ .  Note that: 

 
ˆ( ) 0

R

RE β β
σ

⎡ ⎤−
=⎢ ⎥

⎣ ⎦
; 1)ˆ(var =⎥

⎦

⎤
⎢
⎣

⎡ −

R

R
σ

ββ . 

[Why?]  Furthermore, since  is normal, so is β̂ ˆ( ) / RR β β σ− .  That is, 

)1,0(~)ˆ(
1 NRq

Rσ
ββ −

≡ . 

 Note that 
2 1 2 2 2

2 2 22 1

( ) ( ) ( )
( )( )

R

R o oo

Rs X X Rs s T k s Tq
T k T kR X X R

χ
σ σ σσ

−

−

′ ′ k− −
≡ = = = ==

− −′ ′
. 

Note that q1 and q2 are stochastically independent because  and sβ̂ 2 are 

stochastically independent by Lemma T.1.  Therefore, we have: 

)(~
)/()(

)1,0()ˆ(
2

2

1 kTt
kTKT

N
q
q

s
R

R

−
−−

==
−

χ
ββ . 
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Proof of T-Statistics Theorem: 

Under Ho, 
ˆ ˆ ˆ( ) ~ ( )o o

R R R

R r R R Rt t
s s s

β β β β β− − −
= = = −T k . 

 Then, the result immediately follows from Lemma T.2. 

 

(2) Testing several restrictions 

Assume that R is m×k and r is m×1 vector, and Ho: Rβo = r. 

 

Example: 

• A model is given: yt = xt1β1,o + xt2β2,o + xt3β3,o + εt. 

• Wish to test for Ho: β1,o = 0 and β2,o + β3,o = 1. 

•  Define: 

⎥
⎦

⎤
⎢
⎣

⎡
=

110
001

R ; ⎥
⎦

⎤
⎢
⎣

⎡
=

1
0

r  

Then, Ho → Rβo = r. 

 

Theorem: (F-Statistics Theorem) 

Assume that all of SIC holds.  Under Ho: Rβo = r, 
2 1 1ˆ ˆ( ) [ ( ) ] ( ) ~ ( , )R r Rs X X R R rF f m T k

m
β β− −′ ′ ′− −

≡ − . 
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Comment: 
2 1 1

1 1

ˆ ˆ( ) [ ( ) ] ( )

ˆ ˆ( ) [ ( ) ] ( ) /
/( )

R r Rs X X R R r
m

R r R X X R R r m
SSE T k

β β

β β

− −

− −

′ ′ ′− −

′ ′ ′− −
=

−

. 

 

Comment: 

 F-Statistics Theorem implies the following: 

 • Imagine that you collect billions and billions (b) of different samples. 

 • For each sample, compute the F statistic for the same hypothesis Ho.  Denote 

the population of these F statistics as {F[1], F[2], ... , F[b]}. 

 • The above theorem indicates that the population of the F-statistics is 

distributed as f(m,T-k). 

 

How to reject or accept Ho

 • When you use the F-test, it is important to note that the hypothesis you 

actually test is not Ho: Rβo = r.  It is rather (with some exaggerations) the 

hypothesis that: 

Ho′: (Rβo-r)′[R(X′X)-1R′]-1(Rβo-r) = 0. 

If so, your alternative hypothesis should be that 

Ha′: (Rβo-r)′[R(X′X)-1R′]-1(Rβo-r) > 0, 

  because R(X′X)-1R′ is pd.  So, the F-test is a one-tail by nature. 
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 • Suppose m = 3 and T-k = 60. 

 

 
 

 • If you choose α = 5% (significance level), the probability that your 

F-statistic computed with a sample is greater than 2.76 (confidence level).  

Call 2.76 “critical value” (c). 

 • So, if the value of your F-statistic is greater (smaller) than c, reject (do not 

reject) Ho. 
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An Alternative Representation of F-Statistic  

Definition: (Restricted OLS) 

Restricted OLS estimators β~  and 2~σ  are defined as follows: β~  minimizes 

ST(β) = (y-Xβ)′(y-Xβ) subject to the restriction Rβ = r.  Given β~ , 2~σ is 

computed by . ( ) ( ) /(y X y X T k mβ β′− − − + )

)

 

Theorem: 
1 1ˆ ˆ( ) [ ( ) ](X X R R X X R R rβ β β− −′ ′ ′ ′= − − . 

Proof: See Greene. 

 

Theorem: 

Under Ho: Rβo - r = 0, 

( ) oE β β= . 

2 1 1ˆ( ) ( ) ( ) [ ( ) ] ( )oCov Cov X X R R X X R R X Xβ β σ 1− − −′ ′ ′ ′ ′= − . 

Proof: 

Show it by yourself.  Use the fact that for any pd matrix A, BAB′ is a psd 

matrix whatever nonzero conformable matrix B. 

 

Theorem: 

Assume that (SIC.1)-(SIC.6) and (SIC.8) hold (whether (SIC.7) holds or not).  

If Ho is correct, then, β~  is more efficient than . β̂

Proof:  Show it by yourself. 
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Theorem 

Let ˆ ˆ( ) ( )SSE y X y Xβ β′= − − ; ( ) (rSSE y X y X )β β′= − − .  Then,  

)/(
/)(/)(

2 kTSSE
mSSESSE

s
mSSESSEF rr

−
−

=
−

= . 

Proof: See Greene. 

 

Remark: 

• Consider a model: yt = xt1β1 + xt2β2 + xt3β3 + xt4β4 + εt. 

• Wish to test for Ho: β3,o = β4,o = 0. 

• To find β~ , do OLS on: 

(*) yt = xt1β1 + xt2β2 + εt . 

 • Denote the OLS estimates by 1
~β  and 2

~β .  Then, the restricted OLS 

estimate of β is given by  = [ 1
~β , 2

~β , 0, 0]′. 

  • Also, set SSE from (*) as SSEr. 

 • Test Ho: β2,o + β3,o = 1 and β4,o = 0. 

  • yt = xt1β1 + xt2β2 + xt3β3 + xt4β4 + εt. 

→  yt = xt1β1 + xt2β2 + xt3(1-β2) + εt. 

→  yt - xt3 = xt1β1 + (xt2-xt3)β2 + εt . (**) 

 • Do OLS on (**) and get 1
~β  and 2

~β .  Set  = 1 - 3
~β 2

~β  and 4
~β  = 0.  Set 

SSEr = SSE from OLS on (**). 
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Theorem 

Let 1
~β  be the OLS estimator β1 for a model yt = β1 + εt.  Then, 1

~β  = y .   

Proof: Do this by yourself. 

 

Theorem: (Overall Significance F Test) 

The model is given: 

yt = xt1β1 + xt2β2 + ... + xtkβk + εt. (*) 

Assume that this model satisfies all of SIC (including SIC.7).  Consider Ho: β2,o 

= ... = βk,o = 0.  The F-statistic for this hypothesis is given by 

2

2

11 R
R

k
kTF

−−
−

=  ~ f(k-1,T-k), 

where R2 is from the original model (*). 
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Example: 

 • Consider WAGE2.WF1 

• Data: (WAGE2.WF1 or WAGE2.TXT – from Wooldridge’s website) 
# of observations (T):   935 
1. wage                     monthly earnings 
2. hours                    average weekly hours 

  3. IQ                        IQ score 
  4. KWW                  knowledge of world work score 
  5. educ                     years of education 

6. exper                    years of work experience 
7. tenure                   years with current employer 
8. age                       age in years 
9. married                =1 if married 
10. black                  =1 if black 
11. south                  =1 if live in south 
12. urban                 =1 if live in SMSA 
13. sibs                    number of siblings 
14. brthord               birth order 
15. meduc    mother's education 
16. feduc     father's education 
17. lwage                 natural log of wage 

 
 • Estimate the Mincerian wage equation: 

     log(wage) = β1 + β2Educ + β3Exper + β4Exper2 + ε 



  Estimation Results by Eviews: 
 

Dependent Variable: LWAGE 
Method: Least Squares 
Sample: 1 935 
Included observations: 935 

     
Variable Coefficient Std. Error t-Statistic Prob. 

     
C 5.517432 0.124819 44.20360 0.0000

EDUC 0.077987 0.006624 11.77291 0.0000
EXPER 0.016256 0.013540 1.200595 0.2302

EXPER^2 0.000152 0.000567 0.268133 0.7887
     

R-squared 0.130926     Mean dependent var 6.779004
Adjusted R-squared 0.128126     S.D. dependent var 0.421144
S.E. of regression 0.393240     Akaike info criterion 0.975474
Sum squared resid 143.9675     Schwarz criterion 0.996183
Log likelihood -452.0343     F-statistic 46.75188
Durbin-Watson stat 1.788764     Prob(F-statistic) 0.000000

     
 

 

 • Ho: Education does not improve individuals’ productivity. 

• Ha: Education matters, but its effect could be either positive or negative. 

  →  Ho: β2,o = 0 Vs. Ha: β2,o ≠ 0. 

  →  2

2

ˆ 0 11.77291ˆ( )
t

se
β

β
−

= = ; c = 1.96 at 5% significance level. 

    →  Since t ∉ (-1.96, 1.96), reject Ho! 

  →  P-value for this t statistic = 0.0000; α = 0.05. 
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 • Ho: Education does not improve individuals’ productivity. 

Ha: Education improves individuals’ productivity. 

  →  Ho: β2,o = 0 Vs. Ha: β2,o > 0. 

    →  t = 
)ˆ(
0ˆ

2

2

β
β
se

−  = 11.77291; c = 1.645 at 5% significance level. 

      Since c < t, reject Ho in favor of Ha. 

 

 • Ho: Work experience does not improve individuals’ productivity. 

   →  Ho: β3,o = β4,o = 0. 

  Ha: Work experience matters. 

    →  Ha: β3,o ≠ 0 and/or β4,o ≠ 0.  

 
Wald Test: 
Equation: Untitled 

     
Null 
Hypothesis: 

C(3)=0 

 C(4)=0 
     

F-statistic 17.94867  Probability 0.000000
Chi-square 35.89734  Probability 0.000000

 

   →  F = 17.94867; c from f(2,931) = 2.6 (at α = 5%). 

     →  Reject Ho. 

   →  Or, p-val of F = 0.0000 < 0.05 = α.  So, reject Ho. 
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Example:  (Cobb-Douglas production function) 

• Setup: L = labor; K = capital; Q = output. 

• The Cobb-Douglas production function is given: 

 32 t
t t tQ AL K eβ εβ= , 

where A is constant.  Taking log for both sides, we have: 

(*) 1 2 3log( ) log( ) log( )t tQ L t tKβ β β ε= + + +

tL

tK

, 

  where β1 = ln(A). 

• Estimation: Do OLS on (*), and estimate β’s. 

• Interpretation of β’s: 

β2 =  = Elasticity of output with respect to labor. log( ) / log( )tQ∂ ∂

β3 =  = Elasticity of output with respect to capital. log( ) / log( )tQ∂ ∂

β2 + β3 = scale of economy (r) 

[increasing returns to scale if r > 1] 

• Using F- or t-test methods, we can test Ho: β2,o + β3,o = 1. 

• A drawback of Cobb-Douglas 

• When you use the Cobb-Douglas production function, you are assuming 

that the elasticities are constant over different levels of L and L.  In 

reality, elasticities might change over different L and K. 
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Example: (Translog Production Function) 

• Setup: 

1 2 3
2 2

4 5 6

log( ) log( )
log( ) (log( )) (log( )) (log( ))(log( ))

2 2

t t

t t t
t t

L K
Q L K L K t

β β β

β β β

+ +⎧ ⎫
⎪ ⎪= ⎨ ⎬

+ + +⎪ ⎪⎩ ⎭
ε+

. 

 • Testing Cobb-Douglas: 

   • Do a F-test for Ho: 4, 5, 6, 0o o oβ β β= = = . 

• Estimating elasticities: 

• Let ( )log L  and log( )K  be chosen values of log(Lt) and log(Kt). 

[You may choose sample means.] 

• Observe that ηQL =   = βlog( ) / log( )Q∂ ∂ L 2 + β4log(L) + β6log(K). 

• Thus, a natural estimate of ηQL is given: 

2 4 6
ˆ ˆ ˆˆ log( ) log( )QL L K ˆRη β β β= + + = β , 

   where R = (0,1,0,log( )L ,0,log( )K ). 

  • var( ˆQLη ) = ˆvar( )Rβ  = ˆ( )RCov Rβ ′. 

   Thus, ˆˆ( ) ( )QLse RCovη β R′= . 
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[Proofs of the theorems related with F-statistic] 

Theorem: 

Under Ho: Rβo = r, 
1 1ˆ ˆ( ) [ ( ) ] ( ) / ~ ( ,

/( )
R r R X X R R r mF f

SSE T k
β β− −′ ′ ′− −

= −
−

)m T k

2

. 

Proof: 

Let g = 1 1ˆ ˆ( ) [ ( ) ] ( ) / oR r R X X R R rβ β− −′ ′ ′− − σ ; and let h = 2/ oSSE σ  = 
2( ) / oT k s 2σ− .  Note that F = (g/m)/[h/(T-k)].  We already know that h ~ 

χ2(T-k).  Therefore, we can complete the proof by showing that (i) g is χ2(m), 

and that (ii) g and h are stochastically independent. 

 (i)  Note that under Ho,  
1ˆ ˆ ˆ( ) ( )R r R R R R X X Xβ β β β β − ε′ ′− = − = − = . 

Therefore, we have: 
1 1 1 1

2 2
( ) [ ( ) ] ( )

o o

X X X R R X X R R X X X Qg ε ε ε ε
σ σ

− − − −′ ′ ′ ′ ′ ′ ′ ′
= ≡ . 

We can see that Q is symmetric and idempotent with Rank(Q) = m. Since ε ~ 

, g ~ χ2
1(0 , )T o TN σ× I 2(m). [See Schmidt.] 

 (ii)  h = SSE/σ2 = ε′M(X)ε/σ2 ~ χ2(T-k).  Note that M(X)Q = 0.  Therefore, g 

and h are stochastically independent. [See Schmidt.] 
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Theorem: 

Under Ho: Rβo - r = 0, 

( ) oE β β= ) ; 

2 1 1 1ˆ( ) ( ) ( ) [ ( ) ] ( )oCov Cov X X R R X X R R X Xβ β σ 1− − − −′ ′ ′ ′ ′= − . 

Proof: 

(i) β  =   
11 1ˆ ( ) ( ) (X X R R X X R R rβ β

−− −′ ′ ′ ′⎡ ⎤− −⎣ ⎦ )

)ε −

1

  =  
11 1 1ˆ ( ) ( ) ( ( )oX X R R X X R R R X X X rβ β

−− − −′ ′ ′ ′ ′ ′⎡ ⎤− +⎣ ⎦

  = 
11 1 1( ) ( ) ( ) ( )o X X X X X R R X X R R X X Xβ ε ε

−− − −′ ′ ′ ′ ′ ′ ′⎡ ⎤+ − ⎣ ⎦
− ′  

  = 
11 1 1 1[( ) ( ) ( ) ( ) ]o X X X X X R R X X R R X X Xβ ε

−− − − −′ ′ ′ ′ ′ ′ ′ ′⎡ ⎤+ − ⎣ ⎦  

 → ( ) oE β β= . 

(ii) Derive ( )Cov β  by yourself. 

 

Theorem (Overall Significance Test) 

The model is given: 

(*)  yt = xt1β1 + xt2β2 + ... + xtkβk + εt. 

The null hypothesis is given by Ho: β2,o = ... = βk,o = 0.  Assume that 

(SIC.1)-(SIC.8) (including (SIC.7)) hold.  Then, the F-statistic for Ho is given 

by: 
2

21 1
T k RF
k R

−
=

− −
 ~ f(k-1,T-k), 

where R2 is from the above-unrestricted model (*). 
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Proof: 

The restricted model is given by: yt = β1 + εt.  Since 1β   = y , 

SSEr = 2( ) ( ) (t t ty X y X y x )β β β•′ ′− − = Σ −  

= 2
1 2 2( ...t t t tk ky x x )β β βΣ − − − −  

= 2 2
1( ) (t t t ty yβΣ − = Σ − )y  = SST. 

Observe that: 

2

2

( ) /( 1)
/( ) 1

1 /
1 / 1 1

r u

u

SSE SSE k T k SST SSEF
SSE T k k SSE

T k SSE SST T k R
k SSE SST k R

− − − −
= =

− −

− − −
= =

− − −

. 
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[8] Tests of Structural Changes 

(1) Motivation: 

Relationships among economic variables may change over time or across 

different genders (Ch. 7.4 in Greene) 

 

Example 1: 

Oil shocks during 70’s may have changed firms’ production functions 

permanently. 

Example 2: 

Effects of schooling on wages may be different over different regions.  [Why?  

Perhaps because of different industries across different regions.] 

 

• Data: (WAGE2.WF1 or WAGE2.TXT – from Wooldridge’s website) 
# of observations (T):   935 
1. wage                     monthly earnings 
2. hours                    average weekly hours 

  3. IQ                        IQ score 
  4. KWW                  knowledge of world work score 
  5. educ                     years of education 

6. exper                    years of work experience 
7. tenure                   years with current employer 
8. age                       age in years 
9. married                =1 if married 
10. black                  =1 if black 
11. south                  =1 if live in south 
12. urban                 =1 if live in SMSA 
13. sibs                    number of siblings 
14. brthord               birth order 
15. meduc    mother's education 
16. feduc     father's education 
17. lwage                 natural log of wage 
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 • Mincerian wage equation for people living in South (A): 

Dependent Variable: LWAGE 
Sample(adjusted): 28 935 IF  SOUTH = 1 
Included observations: 319 after adjusting endpoints 

     
Variable Coefficient Std. Error t-Statistic Prob. 

C 4.860469 0.233695 20.79831 0.0000
EDUC 0.101053 0.012594 8.024086 0.0000

EXPER 0.053960 0.024386 2.212751 0.0276
EXPER^2 -0.001007 0.001009 -0.997829 0.3191

     
R-squared 0.179628     Mean dependent var 6.665056
Adjusted R-squared 0.171815     S.D. dependent var 0.450349
S.E. of regression 0.409838     Akaike info criterion 1.066352
Sum squared resid 52.90976     Schwarz criterion 1.113565
Log likelihood -166.0832     F-statistic 22.99070
Durbin-Watson stat 1.755004     Prob(F-statistic) 0.000000

     

 • Mincerian wage equation for people living in Non-South (B): 

Dependent Variable: LWAGE 
Sample(adjusted): 1 910 IF  SOUTH = 0 
Included observations: 616 after adjusting endpoints 

     
Variable Coefficient Std. Error t-Statistic Prob. 

C 5.893468 0.143314 41.12270 0.0000
EDUC 0.063453 0.007563 8.389865 0.0000

EXPER -0.002798 0.015758 -0.177542 0.8591
EXPER^2 0.000744 0.000664 1.120953 0.2627

     
R-squared 0.103200     Mean dependent var 6.838013
Adjusted R-squared 0.098804     S.D. dependent var 0.392769
S.E. of regression 0.372861     Akaike info criterion 0.871250
Sum squared resid 85.08351     Schwarz criterion 0.899973
Log likelihood -264.3451     F-statistic 23.47553
Durbin-Watson stat 1.852473     Prob(F-statistic) 0.000000
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• Question: 

• βA1,o = βB1,o, βA2,o = βB2,o, βA3,o = βB3,o and βA4,o = βB4,o? 

• If so, we can pool all observations to estimate:  

(C) lwaget = β1 + β2educt + β3expert + β4expert
2 + εt, t = 1, ... , T. 

 
Dependent Variable: LWAGE 
Method: Least Squares 
Date: 02/05/02   Time: 13:57 
Sample: 1 935 
Included observations: 935 

     
Variable Coefficient Std. Error t-Statistic Prob. 

     
C 5.517432 0.124819 44.20360 0.0000

EDUC 0.077987 0.006624 11.77291 0.0000
EXPER 0.016256 0.013540 1.200595 0.2302

EXPER^2 0.000152 0.000567 0.268133 0.7887
     

R-squared 0.130926     Mean dependent var 6.779004
Adjusted R-squared 0.128126     S.D. dependent var 0.421144
S.E. of regression 0.393240     Akaike info criterion 0.975474
Sum squared resid 143.9675     Schwarz criterion 0.996183
Log likelihood -452.0343     F-statistic 46.75188
Durbin-Watson stat 1.788764     Prob(F-statistic) 0.000000

     

 

 • Question: 

How can we test Ho: βA1,o = βB1,o, βA2,o = βB2,o, βA3,o = βB3,o and βA4,o = βB4,o? 

 



(2) General Framework 

Model For Group A: 

(A) yAt = βA1 + βA2xAt2 + ... + βAkxAtk + εAt , t = 1, ... , TA.  

Model For Group B: 

(B) yBt = βB1 + βB2xBt2 + ... + βBkxBtk + εBt, t = 1, ... , TB. 

Under Ho: βAj,o = βBj,o for any j = 1, ... , k (k restrictions), 

we can pool the data to estimate 

(C) yt = β1 + β2xt2 + ... + βkxtk + εt, t = 1, ... , T ( = TA+TB). B

 

 Assume that var(εAt) = var(εBt) = 2
oσ . 

 

(3) Chow-Test Procedure. 

STEP 1:  Do OLS on (C) and get SSEC. 

 STEP 2:  Do OLS on (A) and (B); then get SSEA and SSEB.  

STEP 3:  Compute the Chow-Test statistic. 

Under Ho, 

( ) / ~ ( , 2 )
( ) /( 2 )

C A B
CHOW A B

A B A B

SSE SSE SSE kF f
SSE SSE T T k

− −
= +

+ + −
k T T k− . 
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Example: Back to the Mincerian wage equation. 

STEP 1:  OLS results from all (SSEC = 143.9675; TA+TB = 935). 

STEP 2:  OLS results from South (SSEA = 52.90976; TA = 319). 

OLS results from Non-South (SSEB = 85.08351; TB = 616). 

STEP 3:  Compute the Chow statistic: 

( ) /
( ) /( 2 )
(143.9675 85.08351 52.90976) / 4

(85.08351 52.90976) /(935 8)
10.033299

C A B
CHOW

A B A B

SSE SSE SSE kF
SSE SSE T T k

− −
=

+ + −
− −

=
+ −

=

 

c from f(4,927) = 2.37 at 5% significance level.  Since F > c, we 

reject Ho.  There is a structural difference between South and 

Non-South. 
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[Proof for Chow test] 

• Assume εAt and εBt are iid 2(0, )oN σ .  

• Unrestricted Model:  Merge Models (A) and (B): 

Model A: yA = XAβA + εA

Model B: yB = XBβB + εB B

→ (*) 
0

0
A

B

A T kA A

T k BB B

Xy
Xy

A

B

β ε
β ε

×

×

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛
= ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜

⎝ ⎠ ⎝ ⎠ ⎝⎝ ⎠

⎞
+ ⎟

⎠

.

 → y = X*β* + ε* . 

(# of obs (T) = TA+TB; # of regressors = 2k)  

→ OLS on (*):  1
* * * *

ˆ
ˆ ( )

ˆ
A

B

X X X y
β

β
β

−
⎛ ⎞

′ ′= = ⎜ ⎟⎜ ⎟
⎝ ⎠

→ SSE from this regression = SSE* = SSEA + SSEB [Why?]. B

 

• Restricted model: 

βA,o = βB,o (let us denote them by β): k restrictions. 

→ Merge model (A) and (B) with the restriction (Model C): 

     (**) A A

B B

y X
y X

A

B

ε
β

ε
⎛ ⎞ ⎛ ⎞ ⎛

= +⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝

⎞
⎟
⎠

 → y = Xβ + ε 

→ OLS on this model (restricted OLS): β̂  = (X′X)-1X′y. 

→ SSEr = SSEC. 
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• F-test for βA,o = βB,o: 

F = [(SSEr-SSEu)/k]/[SSEu/(T-2k)] 

= [(SSEC-SSEA-SSEB)/k]/[(SSEA+SSEB)/(T-2k)]. 

 

• Chow test when var(εAt) ≠ var(εBt). 

Under Ho: βA,o = βB,o, 

WT (wald test) = 2 1 2 1 1ˆ ˆ ˆ ˆ( ) [ ( ) ( ) ] ( )A B A A A B B B A Bs X X s X Xβ β β− − −′ ′′− + β−

A

 

→  χ2(k). 

 

• Alternative form of Chow test [Assuming var(εAt) = var(εBt).] 

• Define a dummy variable: 

dt = 1 if t ; d∈ t = 0 if t t B∈ . 

 

• Using all T observations, build up a model: 

(*) yt = xt1β1 + ... + xtkβk + (dtxt1)βk+1 + ... + (dtxtk)β2k + εt. 

• Note that 

yt = xt1(β1+βk+1) + ... + xtk(βk+β2k) + εt, for t A∈ , 

yt = xt1β1 + ... + xtkβk + εt, for t B∈ . 

• If no difference between A and B, βk+1 = ... = β2k = 0. 

F test for Ho: βk+1,o = ... = β2k,o = 0 using OLS on (*) = Chow test!!! 
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Example: Return to South V.S. Non-South 
Dependent Variable: LWAGE 
Method: Least Squares 
Date: 02/05/02   Time: 16:01 
Sample: 1 935 
Included observations: 935 

     
Variable Coefficient Std. Error t-Statistic Prob. 

     
C 5.893468 0.148297 39.74107 0.0000

EDUC 0.063453 0.007826 8.107984 0.0000
EXPER -0.002798 0.016306 -0.171577 0.8638

EXPER^2 0.000744 0.000687 1.083291 0.2790
SOUTH -1.032999 0.265316 -3.893462 0.0001

SOUTH*EDUC 0.037600 0.014206 2.646802 0.0083
SOUTH*EXPER 0.056757 0.028159 2.015637 0.0441

SOUTH*EXPER^2 -0.001751 0.001172 -1.493727 0.1356
     

R-squared 0.166990     Mean dependent var 6.779004
Adjusted R-squared 0.160700     S.D. dependent var 0.421144
S.E. of regression 0.385824     Akaike info criterion 0.941648
Sum squared resid 137.9933     Schwarz criterion 0.983064
Log likelihood -432.2203     F-statistic 26.54749
Durbin-Watson stat 1.825679     Prob(F-statistic) 0.000000

     

 
Wald Test: 
Equation: Untitled 
Null Hypo.: C(5)=0 

 C(6)=0 
 C(7)=0 
 C(8)=0 

F-statistic 10.03332  Probability 0.000000
Chi-square 40.13328  Probability 0.000000

     

 

 



(4) What if TB < k? 

 • Can’t estimate β for Group B. 

 • Alternative test procedure (Chow predictive test): 

 STEP 1:  Do OLS on (C) and get SSEC. 

  STEP 2:  Do OLS on (A); then get SSEA. 

 STEP 3:  Compute an alternative Chow-test statistic.  Under Ho, 

( ) / ~ ( ,
( ) /( )

C A B
ACHOW B A

A A

SSE SSE TF f
SSE T k

)T T k−
= −

−
. 

 • What is this? 

 • 
;

,
B

A A A

B B T B

y X for Group A
y X I for Group B

β ε
β γ ε

= +
= + +

 

   where ( )1,...,
BTγ γ γ ′= . 

 • . 

,1,1 ,1

,2 1 ,2,2

, ,
,

1 0 ... 0

0 1 ... 0
: :: : : :

0 0 ... 1B B
B

BB B

B BB

B T T B T
B T

xy
y x

y x

β ε
γ ε

γ ε

⎛ ⎞′⎛ ⎞ ⎛ ⎞ ⎛⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟′⎜ ⎟ ⎜ ⎟ ⎜= +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟⎜ ⎟′⎝ ⎠ ⎝ ⎠ ⎝⎝ ⎠

i

i

i

:

B

⎞
⎟
⎟
⎟
⎟⎟
⎠

 • 10
:

A A B

B B B

B

T k T TA A

B BT k T T

T

Xy
y X I

β
γ ε

ε
γ

× ×

× ×

⎛ ⎞
⎜ ⎟⎛ ⎞⎛ ⎞ ⎛⎜ ⎟= +⎜ ⎟⎜ ⎟ ⎜⎜ ⎟⎜ ⎟⎝ ⎠ ⎝⎝ ⎠⎜ ⎟⎜ ⎟
⎝ ⎠

⎞
⎟
⎠

 

 • SSEA = SSE from regression of the above model. 

 • FACHOW = F for Ho: 1 ... 0
BTγ γ= = = .  
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[9] Forecasting 

 

• Model: yt = β1xt1 + β2xt2 + ... + βkxtk + εt. 

• Wish to predict y0 given x01, x02, ... , x0k. 
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y x • 0 0 0β ε′= + 0 01 0( ,..., )kx x x′ =, . 

 •  = 0ŷ 0
ˆx β′  (point forecast of y0). 

 

Theorem: 

Under (SIC.1)-(SIC.6) and (SIC.8), . 2 1
0 0 0 0ˆ( ) ~ (0, [1 ( )oy y N x X X xσ −′ ′− + ])

Proof: 

0ŷ  = 1 1
0 0 0 0

ˆ [ ( ) ] ( )o ox x X X X x x X X Xβ β ε β− −′ ′ ′ ′ ′ ′ ′ ′= + = + ε

0

. 

0 0 oy x β ε′= + . 

→  1
0 0 0 0ˆ ( )y y x X X Xε ε−′ ′ ′− = − . 

→  Since ε0 and ε are normal, so is 0 0ˆ( )y y− . 

→  . 0 0ˆ( )E y y− = 0

→   = 0 0ˆ( )var y y− 1
0 0var( ( ) )x X X Xε ε−′ ′ ′−  

 = 1
0 0var( ) var[ ( ) ]x X X Xε ε−′ ′ ′+  

 = 2
oσ  + 1 1

0 0( ) ( )[ ( ) ]x X X X Cov x X X Xε− −′ ′ ′ ′ ′ ′ ′ 

 = 2
oσ  + 2 1

0 0( )o x X X xσ −′ ′ . 

 



Theorem: 

Under (SIC.1)-(SIC.6) and (SIC.8), 0 0

2 1
0 0

ˆ ~ ( )
(1 ( ) )

y y t T k
s x X X x−

−
−

′ ′+
. 

 

Implication: 

Let c be a critical value for two-tail t-test given a significance level (say, 5%): 

0 0

0 0

ˆPr 0.95
ˆ( )

y yc c
se y y

⎛ ⎞−
− < < =⎜ ⎟−⎝ ⎠

, 

 where 2
0 0 0 0ˆ( ) (1 ( ) 1 )se y y s x X X x−′ ′− = + .  This implies that: 

0 0 0ˆ ˆPr( ) 0.95y c se y y c se− × < < + × = . 

 

Forecasting Procedure: 

STEP 1:  Let . 0 01 02 0( , ,..., kx x x x′ = )

STEP 2:  Compute 0 0
ˆŷ x β′= . 

STEP 3:  Compute 0 0ˆ( )se y y−  = 2 1
0 0(1 ( ) )s x X X x−′ ′+ . 

STEP 4:  From given df = T-k and confidence level, find c. 

STEP 5:  Compute 0 0 0ˆ ˆPr( ) 0.95y c se y y c se− × < < + × = . 
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Numerical Example: 

1 2

0.1 0 0 1.2
ˆ( ) 0 5 7 ; 1 ; 10; 14.514

0 7 10 2
X X T sβ−

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟′ = − = − = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

. 

And x02 = 1 and x03 = 1.  

 

STEP 1:  Let . 0 02 03(1, , ) (1,1,1)x x x′ = =

STEP 2:  Compute . ( )0 0

1.2
ˆˆ 1 1 1 1 2.2

2
y x β

⎛ ⎞
⎜ ⎟′= = − =⎜ ⎟⎜ ⎟
⎝ ⎠

STEP 3:  Compute se = 2 1
0 0(1 ( ) )s x X X x−′ ′+  = 14.514 (1 1.1)× +  = 5.52. 

STEP 4:  From given df = 10-3 = 7 and α = 5%, c = 2.365. 

STEP 5:  - c×se = 2.2 - 2.365×5.52 = -10.855. 0ŷ

0ŷ +c×se = 2.2 + 2.365×5.52 = 15.255.  

Pr(-10.855 < yo < 15.255) = 0.95. 
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“Dynamic” and “Static” Forecasts in Eviews 

 • For the analysis of cross-section data, they are the same. 

 • For the analysis of time-series data, they could be different. 

• When a regression model uses lagged dependent variables as regressors, it is 

called a dynamic model. 

• Consider a simple dynamic model yt = β1 + β2yt-1 + εt. 

• “Dynamic” Forecast [Multiple Period Forecast]:  Suppose you estimate 

β’s using observations up to t = 100.  Using the estimates, you would like 

to forecast y101 and y102.  For this case, if you use “dynamic forecast”, 

Eviews will compute point forecasts of y101 and y102 by 

101 1 2 100
ˆ ˆŷ yβ β= + ; 102 1 2 101

ˆ ˆˆ ˆy yβ β= + . 

• “Static” Forecast [One Period Forecast]:  If you choose “static forecast”, 

Eviews will compute point forecasts of y101 and y102 by 

101 1 2 100
ˆ ˆŷ yβ β= + ; 102 1 2 101

ˆ ˆŷ yβ β= + . 

Observe that “static forecast” use y101 instead of  to forecast y101ŷ 102. 

• If you have data points up to t = 100, and if you would like to forecast y at 

t = 101 and t = 102, you’d better to use “dynamic forecast.” 

• The formula of forecasting standard errors taught in the class can be used 

for static forecasts. But the standard errors for dynamic forecasts are 

much more complicated. 
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[Exercise for Static Forecast]   

• Use ECN2002.wf1 (data from 1959:1 to 1995:12). 

 • For the definitions of the variables, see ECN2002.XLS. 

 • Forecasting ldpi = log(DPI) using regression results from 1959:1 to 

1995:12. 

 
Dependent Variable: LDPI 
Method: Least Squares 
Date: 02/07/02   Time: 11:31 
Sample(adjusted): 1959:07 1995:12 
Included observations: 438 after adjusting endpoints 

     
Variable Coefficient Std. Error t-Statistic Prob. 

     
C 0.008851 0.003062 2.890236 0.0040

LDPI(-1) 0.802184 0.047680 16.82446 0.0000
LDPI(-2) 0.130495 0.061254 2.130386 0.0337
LDPI(-3) 0.086545 0.061535 1.406419 0.1603
LDPI(-4) 0.045344 0.061534 0.736894 0.4616
LDPI(-5) 0.078119 0.061248 1.275461 0.2028
LDPI(-6) -0.143010 0.047695 -2.998423 0.0029

     
R-squared 0.999933     Mean dependent var 7.280527
Adjusted R-squared 0.999932     S.D. dependent var 0.889422
S.E. of regression 0.007340     Akaike info criterion -6.97510
Sum squared resid 0.023220     Schwarz criterion -6.90986
Log likelihood 1534.547     F-statistic 1069361.
Durbin-Watson stat 2.014603     Prob(F-statistic) 0.000000

     



8.6

8.7

8.8

8.9

9.0

1996 1997 1998 1999 2000 2001

LDPIFS

Forecast: LDPIFS
Actual: LDPI
Forecast sample: 1996:01 2001:12
Included observations: 71

Root Mean Squared Error 0.005262
Mean Absolute Error      0.003230
Mean Abs. Percent Error 0.036666
Theil Inequality Coefficient 0.000300
      Bias Proportion        0.106970
      Variance Proportion 0.005447
      Covariance Proportion 0.887582

 

8.60

8.65

8.70

8.75

8.80

8.85

8.90

8.95

9.00

1996 1997 1998 1999 2000 2001

LDPI
LDPIFS

UPPERBS
LOW ERBS
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[Exercise for Dynamic Forecast] 

8.6

8.7

8.8

8.9

9.0

9.1

9.2

1996 1997 1998 1999 2000 2001

LDPIFD

Forecast: LDPIFD
Actual: LDPI
Forecast sample: 1996:01 2001:12
Included observations: 71

Root Mean Squared Error 0.057155
Mean Absolute Error      0.049899
Mean Abs. Percent Error 0.565546
Theil Inequality Coefficient 0.003247
      Bias Proportion        0.762216
      Variance Proportion 0.221227
      Covariance Proportion 0.016557

 

8.6

8.7

8.8

8.9

9.0

9.1

1996 1997 1998 1999 2000 2001

LDPI
LDPIFD

UPPERBD
LOW ERBD
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[10] Nonnormal ε and Stochastic Regressors 

 

(1) Motivation 

• If the regressors xt• are stochastic, all t and F tests are wrong (bad news).   

• The t and F tests require the OLS estimator β̂  to be unbiased. 

 • Recall how we have shown the unbiasedness of β̂  under (SIC.8): 

β̂  = 1( )o X X Xβ ε−′ ′+  

→ 
?

1 1ˆ( ) [( ) ] ( ) ( )E E X X X X X X Eβ β ε β− −′ ′ ′ ′= + = + ε . 

• Unbiasedness of β  does not require nonstochastic regressors.  It only 

requires: 

 ( 1 )| ,..., 0t TE x xε • • = , for all t. (*) 

  Or 1( | ) 0TE Xε ×= . 

 Under this assumption, 

( ) ( )( )
( )

1

1

( ) ( | ) ( ) |

( ) ( | ) ( ) .

X X

X X

E E E X E E X X X X

E X X X E X E

β β β ε

β ε β

−

−

′ ′= = +

′ ′= + = = β
 

 • But, for some cases, condition (*) does not hold.  For example, xt• = yt-1.  In 

this case, E(εt-1|yt-1) ≠ 0.  For this case, we can no longer say that β  is an 

unbiased estimator. 

• An example for models with lagged dependent variables as regressors: 

 yt = β1xt1 + β2xt2 + β3yt-1 + εt . → β2/(1-β3) = long-run effect of xt2. 
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• If the εt are not normally distributed, all t and F tests are wrong (bad news).  

 • Can we use them if T is large? 

 • Recall that the t and F statistics follow t and f distributions, respectively, 

only if β̂  is normally distributed.  But if the εt are not normally distributed, 

β̂  is no longer normal.  

 

Digression to Mathematical Statistics 

Large-Sample Theories 

1. Motivation: 

• T̂θ : An estimator from a sample of size T, {x1, ... , xT}. 

 I use subscript “T” to emphasize the fact that an estimator is a function of 

sample size T. 

• What would be the statistic properties of T̂θ  when T is infinitely large? 

• What do we wish? 

[We wish the distribution of T̂θ  would become more condensed around 

θo as T increases.] 
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2. Main Points: 

Rough Definition of Consistency 

• Suppose that the distribution of T̂θ  becomes more and more condensed 

around θo as T increases.  Then, we say that T̂θ  is a consistent estimator.  

And we use the following notation: 

plimT→∞ T̂θ  = θo (or T̂θ  →p θo). 

 • The law of large numbers (LLN) says that a sample mean Tx  ( x  from a 

sample size equal to T) is a consistent estimator of μo.  What does it mean? 

 

• Gauss Exercise:  

 • A population with N(1,9). 

  • 1000 different random samples of T = 10 to compute 10x . 

  • 1000 different random samples of T = 100 to compute 100x . 

  • 1000 different random samples of T =5000 to compute 5000x . 
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  • conmonte.prg 
/* 
** Monte Carlo Program to Demonstrate Efficiency of Sample Mean 
*/ 
 
@ Data generation from N(1,9) @ 
 
seed   = 1; 
tt1   = 10; @ # of observations @ 
tt2   = 100; @ # of observations @ 
tt3  = 1500; @ # of observations @ 
iter   = 1000; @ # of sets of different data @ 
 
storx10     = zeros(iter,1) ; 
storx100   = zeros(iter,1) ;  
storx5000 = zeros(iter,1); 
  
i = 1; do while i <= iter; 
 
@ compute sample mean for each sample @ 
 
x10     =  1 + 3*rndns(tt1,1,seed); 
x100   =  1 + 3*rndns(tt2,1,seed); 
x5000 =  1 + 3*rndns(tt3,1,seed); 
storx10[i,1]    = meanc(x10); 
storx100[i,1]  = meanc(x100); 
storx5000[i,1]  = meanc(x5000); 
 
i = i + 1; endo; 
 
@ Reporting Monte Carlo results @ 
 
library pgraph; 
graphset; 
 
v = seqa(-2, .05, 120); 
ytics(0,25,0.1,0);  
@ {a1,a2,a3}=histp(storx10,v); @ 
@ {b1,b2,b3}=histp(storx100,v); @ 

{b1,b2,b3}=histp(storx5000,v);



 

                      10x  

 
                  100x  

 
                 5000x  
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• Relation between unbiasedness and consistency: 

• Biased estimators could be consistent. 

Example: Suppose that Tθ  is unbiased and consistent. 

Define T̂θ  = Tθ  + 1/T. 

Clearly, E( T̂θ ) = θo + 1/T ≠ θo (biased). 

But, plimT→∞ T̂θ  = plimT→∞ Tθ  = θo (consistent). 

• A unbiased estimator T̂θ  is consistent if var( T̂θ ) → 0 as T → 4. 

Example: Suppose that {x1, ..., xT} is a random sample from 2( ,o oN )μ σ . 

E( Tx ) = μo. 

var( Tx ) = σo
2/T → 0 as T → ∞. 

Thus, Tx  is a consistent estimator of μo. 
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Law of Large Numbers (LLN) 

 

Case of scalar random variables 

• Komogorov's Strong LLN: 

Suppose that {x1, ... , xT} is a random sample from a population with 

finite µ and σ2.  Then, plimT→∞ Tx  = μo. 

• Generalized Weak LLN (GWLLN): 

• {x1, ... , xT} is a sample (not necessarily a random sample) 

• Define E(x1) = μ1,o, ... , E(xT) = μT,o. 

• The variances of the xt (t = 1, …, T) are finite and may be different over 

different t. 

 • Then, under suitable assumptions, plimT→∞ Tx  = limT→∞ ,
1

t o tT
μΣ . 

 

Case of Vector Random Variables

• GWLLN 

• xt: p×1 random vector. 

• {x1, ... , xT} is a sample. 

• Let E(x1) = μ1,o (p×1), ... , E(xT) = μT,o. 

• Assume that Cov(xj) are well-defined and finite. 

• Then, under suitable assumptions. plimT→∞ Tx  = limT→∞ ,
1

t o tT
μΣ . 
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Central Limit Theorems (CLT) –Asymptotic Normality 

 

Case of scalar random variables

• Motivation: 

 • Suppose that {x1, ... , xT} is a random sample from a population with 

finite μ and σ2. 

 • We know Tx  → μo as T → ∞.  But we can never have an infinitely large 

sample!!! 

 • For finite T, Tx  is still a random variable.  What statistical distribution 

could approximate the true distribution of Tx ? 

• Lindberg-Levy CLT: 

 • Suppose that {x1, ... , xT} is a random sample from a population with 

finite μ and σ2. 

   • Then, 2( ) (0,T o d oT x N )μ σ− →  and o

o

- T Tx μ
σ

 →d N(0,1). 

• Implication of CLT: 

• 2( ) (0,T o oT x N )μ σ− ≈ , if T is large. 

• ( ) [ ( ) ]T o T oE T x T E xμ μ⎡ ⎤− = − ≈⎣ ⎦ 0 →  E( ( )T oE x μ≈ . 

 • 2
0var ( ) var( ) var( )T o T o TT x T x T xμ μ σ⎡ ⎤− = • − = • ≈⎣ ⎦   

   →  2
0var( ) /Tx Tσ≈ . 

• 2( , /T o o )x N μ σ≈ T , if T is large. 
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Case of random vectors

• GCLT 

• {y1, ... , yT}: a sequence of p×1 random vectors. 

• For any t, E(yt) = 0p×1 and Cov(yt) is well defined and finite. 

• Under some suitable conditions (acceptable for Econometrics I, II), 

1
1 10 , lim ( )t t d p T t ty N Cov y

TT × →∞
⎛ ⎞Σ → Σ⎜ ⎟
⎝ ⎠

 

• Note: 

• Cov(yt) [var(yt) if yt is a scalar] could differ across different t. 

 • The yt could be correlated as long as limn→∞cov(yt,yt+n) = 0 (ergodic). 

 • If 1 2( | , ,...) 0t t tE y y y− − =  (Martingale Difference Sequence), the yt’s 

are linearly uncorrelated.  Then, 

1
1 10 , lim ( )t t d p T t ty N Cov y

TT × →∞
⎛ ⎞Σ → Σ⎜ ⎟
⎝ ⎠

. 

 

End of Digression 
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(2) Weak Ideal Conditions (WIC) 

 Consider the following linear regression model: 
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t1 1 2 2 ...t t t t t tk ky x x x xβ ε β β β•′= + = + + + + ε

t

. 

 

(WIC.1) The conditional mean of yt (dependent variable) given x1•, x2•, ... , xt•, 

ε1, ... , and εt-1  is linear in xt•: 

 1 1 1( | ,..., , ,..., )t t t t t t oy E y x x xε ε ε β• • − • ε′= + = + .  

 

Comment: 

  • Implies  1 2 1 2 1( | , ,..., , , ,..., ) 0t t tE x x xε ε ε ε• • • − = . 

  • No autocorrelation in the εt: cov( , ) 0t sε ε =  for all  .t s≠

  • Regressors are weakly exogenous and need not be strictly exogenous. 

  • 1( ) 0s t kE x ε• = × 0 for all t ≥ s, but could be that ( )s tE x ε ≠i  for some s > t. 

 

(WIC.2)  oβ  is unique. 

 

(WIC.3)  The series {xt•} are covariance-stationary and ergodic.  

 

Comment: 

 • (WIC.2)-(WIC.3) implies that 

    is finite and pd.  1 1lim limT T t tp T X X p T x x− −
→∞ →∞ • •′ = Σ t oQ′ ≡

tx• 1lim ( )o T tQ T E x−
→∞ • •′= Σ  [By GWLLN]. 

• Rules out perfect multicollinearity among regressors. 



(WIC.4) The data need not be a random sample. 
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o(WIC.5) 2
1 2 1 1var( | , ,..., , ,..., )t t tx x xε ε ε σ• • • − =  for all t.  

   (No-Heteroskedasticity Assumption). 

 

(WIC.6) The error terms εt are normally distributed conditionally on x1•, … , xt•, 

ε1, … , εt-1. 

  

(WIC.7)  xt1 = 1, for all t = 1, ... , T. 

 

 Comment: 

  SIC → WIC. 

 



(3) Statistical Properties of the OLS estimator under WIC: 

Theorem (Consistency/Asymptotic Normality Theorem): 

Under (WIC.1)-(WIC.5), 
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o
ˆlimTp β β→∞ =  (consistent). 
2limTp s 2

oσ→∞ =  (consistent). 

( )2 1
1

ˆ( ) 0 ,o d k o oT Nβ β σ Q −
×− → . 

 

Implication: 

( )2 1ˆ , ( )o o oN TQβ β σ −≈  → 2 1ˆ ( , ( )oN s X Xβ β )−′≈ , 

if T is reasonably large. 

 

Implication: 

 1) t test for Ho: Rβo - r = 0 (R: 1×k, r: scalar) is valid if T is large. 

Use z-table to find critical value. 

2) For Ho: Rβo - r = 0 (R: m×k, r: m×1),  

use WT = mF which is asymptotically χ2(m) distributed. [Why?] 

• WT  =  
1

( ) ( ) ( )R r RCov R R rβ β
−

⎡ ⎤′ ′− −⎣ ⎦ β

)= 12 1ˆ ˆ( ) ( ) (R r Rs X X R R rβ β
−−′ ′ ′⎡ ⎤− −⎣ ⎦  = mF. 

 

Theorem (Efficiency Theorem): 

 Under (WIC.1)-(WIC.6), the OLS estimators are efficient asymptotically. 

 



(4) Testing Nonlinear restrictions: 

General form of hypotheses: 

• Let w(θ) = [w1(θ),w2(θ), ... , wm(θ)]′, where wj(θ) = wj(θ1, θ2, ... , θp) = a 

function of θ1, ... , θp. 

 • Ho: The true θ (θo) satisfies the m restrictions, w(θ) = 0m×1 (m ≤ p). 

 

Examples: 

1) θ: a scalar 

Ho: θo = 2 → Ho: θo - 2 = 0  → Ho: w(θ) = 0, where w(θ) = θ - 2. 

2) θ = (θ1, θ2, θ3)′. 

Ho: θ1,o
2 = θ2,o + 2 and θ3,o = θ1,o + θ2,o. 

→ Ho: θ1,o
2-θ2,o-2 = 0 and θ3,o-θ1,o-θ2,o = 0. 

→ Ho: . 
2

1 1 2

2 3 1 2

( ) 02
( )

( ) 0
w

w
w

θ θ θ
θ

θ θ θ θ
⎛ ⎞− −⎛ ⎞ ⎛ ⎞

= = =⎜ ⎟⎜ ⎟ ⎜ ⎟− − ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

3) linear restrictions 

θ = [θ1, θ2, θ3]′. 

Ho: θ1,o = θ2,o + 2 and θ3,o = θ1,o + θ2,o

→ Ho: 
1, 2,1

3, 1, 2,2

2( ) 0
( )

( ) 0
o oo

o
o o oo

w
w

w
θ θθ

θ
θ θ θθ

− −⎛ ⎞⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟⎜ ⎟ ⎜ ⎟− − ⎝ ⎠⎝ ⎠ ⎝ ⎠

. 

  → Ho: . 
1,

2,

3,

1 1 0 2
( )

1 1 1 0

o

o o

o

w R
θ

θ θ
θ

⎛ ⎞
−⎛ ⎞ ⎛ ⎞⎜ ⎟= −⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎜ ⎟

⎝ ⎠

o rθ= −
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Remark: 

If all restrictions are linear in θ, Ho takes the following form: 

Ho: Rθo - r = 0m×1, 

where R and r are known m×p and m×1 matrices, respectively. 

 

Definition: 

1 1 1

1 2

2 2 2

1 2

1 2

( ) ( ) ( )...

( ) ( ) ( )...( )( )
: : :
( ) ( ) ( )...

p

p

m m m

p m p

w w w

w w w
wW

w w w

θ θ θ
θ θ θ

θ θ θ
θ θ θ θθ

θ

θ θ θ
θ θ θ

×

∂ ∂ ∂⎛ ⎞
⎜ ⎟∂ ∂ ∂
⎜ ⎟
⎜ ⎟∂ ∂ ∂

∂ ⎜ ⎟∂ ∂ ∂≡ = ⎜ ⎟′∂
⎜ ⎟
⎜ ⎟

∂ ∂ ∂⎜ ⎟
⎜ ⎟∂ ∂ ∂⎝ ⎠

. 

 

Example: (Nonlinear restrictions) 

Let θ = [θ1,θ2,θ3]′. 

Ho: θ1,o
2 - θ2,o = 0 and θ1,o - θ2,o - θ3,o

2 = 0. 

  → 
2

1 2
2

1 2 3

( )w
θ θ

θ
θ θ θ

⎛ ⎞−
= ⎜ ⎟− −⎝ ⎠

; 1

3

2 1 0
( )

1 1 2
W

θ
θ

θ
−⎛ ⎞

= ⎜ ⎟− −⎝ ⎠
. 
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Example: (Linear restrictions) 

θ = [θ1,θ2,θ3]′ 

Ho: θ1,o = 0 and θ2,o + θ3,o = 1. 

  → 1

2 3

0 0
( )

1 0
w

θ
θ

θ θ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ ⎝ ⎠ ⎝ ⎠⎝ ⎠
 →

1

2

3

1 0 0 0 0
( )

0 1 1 1 0
w

θ
θ θ

θ

⎛ ⎞
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎜ ⎟

⎝ ⎠

=

r

, 

  which is of form ( )w Rθ θ= − . 

 

Theorem: 

 Under (WIC.1)-(WIC.5), 

 ( ) ( )2 1
1( ) ( ) 0 , ( ) ( )o d m o o oT w w N W Q Wβ β β σ β−

× ′− → .  

Proof: 

 Taylor’s expansion around βo: 

( ) ( ) ( )( )o ow w Wβ β β β= + − β , 

 where β  is between β  and oβ .  Since β  is consistent, so is β .  Thus, 

  
( )

( )2 1
1

( ) ( ) ( ) ( )

0 , ( ) ( )

o o o

d m o o o

T w w W T

N W Q W

β β β β β

β σ β−
×

− ≈ −

′→ .

.

 

 

Implication: 

 ( ) ( )2 1
1( ) ( ) 0 , ( ) ( ) ( )o mw w N W s X X Wβ β β β−

× ′ ′− ≈  
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Theorem: 

 Under (WIC.1)-(WIC.5) and Ho: w(βo) = 0, 
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.   
1

2( ) ( ) ( ) ( ) ( ) ( )TW w W Cov W w mβ β β β β χ
−

⎡ ⎤′ ′= ⇒⎣ ⎦

Proof: 

Under Ho: w(βo) = 0,  

 ( )1( ) 0 , ( ) ( ) ( ) .mw N W Cov Wβ β β× β ′≈  

 

For a normal random vector hm×1 ~ N(0m×1,Ωm×m), h′Ω-1h ~ χ2(m).  Thus, we 

obtain the desired result. 

 

Question:  What does “Wald test” mean? 

 A test based on the unrestricted estimator only. 

 



(5) When the WIC are violated: 

CASE 1: Simple dynamic model, yt = βyt-1 + εt. 

• SIC is violated.  But WIC hold, if the εt i.i.d. 2(0, )oN σ  and  -1 < βo < 1. 

• If βo = 1, WIC is also violated.  For this case, the OLS is consistent, but not 

normally distributed. 

• For simplicity, set y0  = 0.  

• yt = 1
t
s sε=Σ  → var(yt) = E(yt

2) = tσo
2. 

• plim (1/T)Σtxt•xt•′ = plim (1/T)Σtyt-1
2 = lim (1/T)ΣtE(yt-1

2) (by GWLLN) 

        = lim (1/T)Σt(t-1)σo
2 = lim (1/T)[T(T-1)/2]σo

2 

        = lim [(T-1)/2]σo
2 → ∞ (WIC.3 violated.) 

 

CASE 2:  Deterministic trend model, yt = βt + εt. 

• plim (1/T)Σtxt•xt•′ = plim (1/T)Σtt2 = 1 ( 1)(2 1)
6

T T T
T

+ +  → ∞. 

 • WIC.3 is violated.  But OLS estimator is consistent and asymptotically 

normal. 

 

CASE 3: Simultaneous Equations models. 

 • (a)  ct = β1,o + β2,oyt + εt ; (b) ct + it = yt  

• (a) → (b): yt = β1,o + β2,oyt + εt + it. 

• yt = [β1,o/(1-β2,o)] + it[1/(1-β2,o)] + εt/(1-β2,o). 

• yt is correlated with εt in (a). 

• OLS is inconsistent. 
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CASE 4: Measurement errors: 

• yt = βoxt
* + εt (true model). 

• But we can observe xt = xt
* + vt (vt: measurement error). 

• If we use xt for xt
*, 

yt = xtβo + [εt-βovt] (model we estimate). 

• xt and (εt-βovt) correlated. 

• OLS is inconsistent. 

 

• yt
* = βoxt + εt (true model). 

• But we can observe yt = yt
* + vt. 

• If we use yt for yt
*, 

yt = xtβo + [εt+vt] (model we estimate) 

xt and (εt+vt) uncorrelated. 

• OLS is consistent. 

 



[Proofs of Consistency and Asymptotic Normality Theorems] 

(1) Show ˆlim op β β= . 

 ( )1 1ˆ ( )o o t t tX X X T x x T x1
t t tβ β ε β− − − ε• •′ ′ ′= + = + Σ Σi . 

  (by WIC.3) 1limT t t tp T x x−
→∞ • •′Σ = oQ

t 1lim lim ( )T t t t T t tp T x E xε ε−
→∞ • →∞ •Σ = Σ [by GWLLN]  

       = lim T-1Σt0 [by WIC.1] = 0. 

→ plim 1ˆlim ( ) 0T o op Q oβ β β−
→∞ = + = . 

 

(2) Show plim s2 = σo
2.  

plim s2 = plim SSE/T. 

SSE/T = ε′M(X)ε/T = 1/ ( )T X X X X /Tε ε ε ε−′ ′ ′ ′−  

= 1 2 1 1 1 1( )( ) ( )t tT T X T X X T Xε ε ε− − − − −′ ′ ′Σ −  

= 1 2 1 1 1 1( )( ) (t t t t t t t t t t tT T x T x x T x )ε ε ε− − − − −
• • •′ ′Σ − Σ Σ Σi . 

 
1 2 1 2 1 2lim lim ( ) limT t t T t t T t op T T E T 2

oε ε σ− − −
→∞ →∞ →∞Σ = Σ = Σ = σ

2
o

. 
1lim 0T t t tp T x ε−

→∞ •Σ = . 

→ 2 2 1lim 0 ( ) 0T o op s Qσ σ−
→∞ ′= − = . 
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(3) Show ( )2 1
1

ˆ( ) 0 ,d k o oT Nβ β σ −
×− → Q

t t

. 

( )1 1ˆ
o t t t tT x x T xβ β ε− −

• • •′= + Σ Σ  

→ ( )1 1ˆ( ) t t t t t tT x x T xβ β ε− −
• • •′− = Σ Σ  

→  1 1 1ˆ( ) [ ]t t t t t tT T x x
T

xβ β ε− −
• • •

⎛ ⎞′− = Σ Σ⎜ ⎟
⎝ ⎠

. 

→ By GCLT with martingale difference, 

1
t t tx

T
ε•Σ  →d N(0, lim T-1ΣtCov(xt•εt)) 

( )t tCov x ε•  = ( )2( )t t t t t t tE x x E x xε ε ε• • • •′ ′=   

    = 2[ ( | )]
tx t t t tE E x x xε
• • • •′  (by LIE) 

= 2[ ( | ) ]
tx t t t tE E x x xε
• • • •′ = 2 2( ) (

t
)x o t t o t tE x x E x xσ σ• • •′ ′= •

2
o o=

. 

1 2 1lim ( ) lim ( )T t t o T t t tT Cov x T E x x Qε σ σ− −
→∞ • • →∞ • •′= Σ . 

→  2
1

1 (0 , )t t t d k o ox N Q
T

ε σ• ×Σ → . 

   →  1 1 2 1 2
1 1

ˆ( ) (( ) 0 ,( ) ( ) ) (0 , ( ) )o d o k o o o o k o oT N Q Q Q Q Nβ β σ σ− − −
× ×− → = 1Q −  
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