BASIC STATISTICS

[1] Random Variable (RV)

- RV are usually denoted by capital: X, Y, Z
- A specific possible value of X is denoted by low case: x.

EX:
$X=\#$ faced up when you toss a die; $x=1,2, \ldots, 6$.
Note that there is a rule (probability) generating X.

Definition of RV:
RV is a variable which can take different values with some probability.

[2] Single RV

1. Probability and Cumulative density functions (pdf, cdf):
(1) Discrete RV
$X:$ a RV with $x=a_{1}, a_{2}, \ldots ., a_{n}(n$ could be ∞.)

Definition: $\quad \operatorname{Pdf}: \mathrm{f}(\mathrm{x})=\operatorname{Pr}(\mathrm{X}=\mathrm{x})$. Cdf: $\mathrm{F}(\mathrm{x})=\operatorname{Pr}(\mathrm{X} \leq \mathrm{x})$.

Conditions for pdf: 1) $f(x) \geq 0$ for any x.
2) $\Sigma_{x} f(x)=1$.
3) $F(x) \leq 1$.

EX: $\quad X=\#$ faced up (a die) with pdf: $f(x)=1 / 6$, where $x=1, \ldots, 6$.
(2) Continuous RV

X : a RV with pdf, $\mathrm{f}(\mathrm{x})$, and $\mathrm{cdf}, \mathrm{F}(\mathrm{x})$ where

$$
F(x)=\operatorname{Pr}(X \leq x)=\int_{-\infty}^{x} f(v) d v .
$$

Conditions for pdf: 1) $f(x) \geq 0$, for any x.
2) $\int_{\Omega} f(v) d v=1$, where Ω denotes the range of x.
3) $\mathrm{F}(\mathrm{x}) \leq 1$.

Computation of $\operatorname{Pr}(\mathrm{a} \leq \mathrm{X} \leq \mathrm{b}): \quad \operatorname{Pr}(a \leq X \leq b)=\int_{a}^{b} f(v) d v$.

Note: In cases where X is continuous, $\operatorname{Pr}(\mathrm{a} \leq \mathrm{X})=\operatorname{Pr}(\mathrm{a}<\mathrm{X})$.

EX: (Uniform distribution: Ω)
$\Omega: 0 \leq \mathrm{x} \leq 1 ; \mathrm{f}(\mathrm{x})=1$.
$\operatorname{Pr}(1 / 2<\mathrm{x}<1)=\int_{1 / 2}^{1} \mathrm{f}(\mathrm{v}) \mathrm{dv}=[\mathrm{v}]_{1 / 2}^{1}=1-1 / 2=1 / 2$.
$\operatorname{Pr}(1 / 2<\mathrm{X}<1)=$ shaded area in the graph below.

2. Expectations:

- General Definition of Expectation:
- $g(X)$ is a function of a RV, X.
- $\mathrm{E}[\mathrm{g}(\mathrm{x})]=\Sigma_{\mathrm{x}} \mathrm{g}(\mathrm{x}) \mathrm{f}(\mathrm{x})\left(\right.$ or $\left.\int_{\Omega} \mathrm{g}(\mathrm{x}) \mathrm{f}(\mathrm{x}) \mathrm{dx}\right)$.

EX: $\quad \mathrm{g}(\mathrm{x})=\mathrm{x},\left(\mathrm{x}-\mu_{\mathrm{x}}\right)^{2}, \ln (\mathrm{x})$, etc.

Population Mean:

$$
\mu_{\mathrm{x}}=\mathrm{E}(\mathrm{x})=\Sigma_{\mathrm{x}} \mathrm{xf}(\mathrm{x})\left[\operatorname{or} \int_{\Omega} \mathrm{xf}(\mathrm{x}) \mathrm{dx}\right] .
$$

Population variance:

Standard Deviation (Error): $\quad \sigma_{\mathrm{x}}=\sqrt{\sigma_{x}^{2}}$.

Question: What do μ_{x} and σ_{x}^{2} mean?
[An answer]

- $\mathrm{X}=\#$ faced up when you toss a die $(\mathrm{f}(\mathrm{x})=1 / 6, \mathrm{x}=1,2, \ldots, 6)$.
- Toss the die repeatedly billions and billions (b) times: $\mathrm{x}^{(1)}, \mathrm{x}^{(2)}, \ldots, \mathrm{x}^{(\mathrm{b})}$ [a population].
- Mean of these $=(1 / b) \Sigma_{\mathrm{j}=1}^{\mathrm{b}} \mathrm{X}^{(\mathrm{j})}=\mu_{\mathrm{x}}$, almost surely (a.s.).
- Mean dispersion of these $=(1 / b) \Sigma_{\mathrm{j}=1}^{\mathrm{b}}\left(\mathrm{x}^{(\mathrm{j})}-\mu_{\mathrm{x}}\right)^{2}=\sigma_{\mathrm{x}}{ }^{2}$, a.s.
- Similarly, (1/b) $\sum_{\mathrm{j}=1}^{\mathrm{b}} \mathrm{g}\left[\mathrm{x}^{(\mathrm{j})}\right]=\mathrm{E}[\mathrm{g}(\mathrm{x})]$, a.s.

Median:

Median of $X=m_{x}$ such $\operatorname{Pr}\left(X \leq m_{x}\right) \geq 1 / 2$ and $\operatorname{Pr}\left(X \geq m_{x}\right) \geq 1 / 2$.
\rightarrow Order $\mathrm{x}^{(1)}, \ldots, \mathrm{x}^{(\mathrm{b})}: \mathrm{X}^{[1]} \leq \mathrm{X}^{[2]} \leq \ldots \leq \mathrm{X}^{[\mathrm{b}]}$.
$\rightarrow \mathrm{m}_{\mathrm{x}}=$ the middle point of this order, a.s.

Fact: If $f(x)$ is symmetric around $\mu_{x}, \mu_{x}=m_{x}$.

Some useful theorems:
X: RV; $\mathrm{a}, \mathrm{b}, \mathrm{c}$: constants.

- $\mathrm{E}(\mathrm{ax}+\mathrm{b})=\mathrm{aE}(\mathrm{x})+\mathrm{b}$.
- $\operatorname{var}(x)=E\left(x^{2}\right)-\mu_{x}^{2}$.
- $\operatorname{var}(\mathrm{ax}+\mathrm{b})=\mathrm{a}^{2} \operatorname{var}(\mathrm{x})$.

Definition:

Let $\mu_{3}=\mathrm{E}\left[\left(\mathrm{x}-\mu_{\mathrm{x}}\right)^{3}\right]$; and $\mu_{4}=\mathrm{E}\left[\left(\mathrm{x}-\mu_{\mathrm{x}}\right)^{4}\right]$.
Skewness coefficient $(\mathrm{SC})=\mu_{3} / \sigma_{\mathrm{x}}{ }^{3} ; \quad$ Kurtosis coefficient $(\mathrm{KC})=\mu_{4} / \sigma_{\mathrm{x}}{ }^{4}-3$.

Note:

- SC measures the asymmetry of the distribution of x around μ_{x}.
- If $f(x)$ is symmetrically distributed around $\mu_{x}, S C=0$.
- If $\mathrm{SC}>0$, the "long tail" is in the $\left(\mathrm{x} \geq \mu_{\mathrm{x}}\right)$ direction.
- KC measures the thickness of the tails of a distribution:

If X is normally distributed, $\mathrm{KC}=0$.

Exercise for $\mathrm{E}(\mathrm{x}), \operatorname{var}(\mathrm{x})$ and $\mathrm{E}[\mathrm{g}(\mathrm{x})]$:

- $\mathrm{X}=1,0$ with $\mathrm{f}(\mathrm{x})=1 / 2$.

$$
\mathrm{E}(\mathrm{x})=\Sigma_{\mathrm{x}} \mathrm{xf}(\mathrm{x})=0 \times(1 / 2)+1 \times(1 / 2)=1 / 2 ; \operatorname{var}(\mathrm{x})=(0-1 / 2)^{2} \times(1 / 2)+(1-1 / 2)^{2} \times(1 / 2)=1 / 4 .
$$

- $\mathrm{g}(\mathrm{x})=(1 / 2) \mathrm{x}^{2}+(1 / 2) \mathrm{x}+2$.

$$
\mathrm{E}[\mathrm{~g}(\mathrm{x})]=[1 / 2+1 / 2+2] \times(1 / 2)+[0+0+2] \times(1 / 2)=5 / 2
$$

- Compute SC and KC. Do this by yourself.

A Digression for Fun

- $X=\#$ faced up when you toss a die $(f(x)=1 / 6, x=1,2, \ldots, 6)$.
- Consider a repeated game:
- You are a statistician hired by a Mafia.
- Should forecast the outcome from the die: $\hat{\mathrm{x}}=$ your forecast of x .
- Lose money whenever your forecast is wrong: $\mathrm{s}=(\mathrm{x}-\hat{\mathrm{x}})^{2}$ [loss function].
- Should Repeat this game billions and billions times.
- Wish to choose $\hat{\mathrm{x}}$ which minimizes your average loss:
$\min \mathrm{E}(\mathrm{s})=\mathrm{E}\left[(\mathrm{x}-\hat{\mathrm{x}})^{2}\right]$.
\rightarrow Best choice of $\hat{x}=\mu_{x}!!!$
- Average loss from choosing $\mu_{\mathrm{x}}=\mathrm{E}\left[\left(\mathrm{x}-\mu_{\mathrm{x}}\right)^{2}\right]=\operatorname{var}(\mathrm{x})$.
- What if $\mathrm{s}=|\mathrm{x}-\hat{\mathrm{x}}|$? \rightarrow Best choice $=\mathrm{m}_{\mathrm{x}}$.

End of digression
3. Examples of pdf's:
(1) Poisson Distribution:

- EX: \# of times to visit doctors; \# of job offers; \# of patents.
- Pdf: $f(x)=\frac{e^{-\lambda} \lambda^{x}}{x!}, x=0,1, \ldots$.
- $\mathrm{E}(\mathrm{x})=\operatorname{var}(\mathrm{x})=\lambda$.
(2) Normal distribution
- $\mathrm{X} \sim \mathrm{N}\left(\mu_{\mathrm{x}}, \sigma_{\mathrm{x}}^{2}\right)$, where $\mathrm{E}(\mathrm{x})=\mu_{\mathrm{x}}$ and $\operatorname{var}(\mathrm{x})=\sigma_{\mathrm{x}}^{2}$.
- Pdf: $f(x)=\frac{1}{\sqrt{2 \pi} \sigma_{x}} \exp \left[-\frac{\left(x-\mu_{x}\right)^{2}}{2 \sigma_{x}^{2}}\right],-\infty<x<\infty$.
- $f(x)$ is symmetric around $x=\mu_{x}$.

Standard Normal Distribution: $\mathrm{z} \sim \mathrm{N}(0,1)$.

- Pdf: $\phi(z)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{z^{2}}{2}\right),-\infty<z<\infty$.
- Fact: $\mathrm{x} \sim \mathrm{N}\left(\mu_{\mathrm{x}}, \sigma_{\mathrm{x}}^{2}\right) \rightarrow\left(\mathrm{x}-\mu_{\mathrm{x}}\right) / \sigma_{\mathrm{x}} \sim \mathrm{N}(0,1)$.
(3) χ^{2} (chi-square) distribution
- $\mathrm{Z}_{1}, \ldots, \mathrm{Z}_{\mathrm{k}}$ are RV iid with $\mathrm{N}(0,1)$.

$$
\mathrm{y}=\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{z}_{\mathrm{i}}^{2} \sim \chi^{2}(\mathrm{k}), \mathrm{y}>0 \text {, with degrees of freedom }(\mathrm{df})=\mathrm{k} .
$$

- $\mathrm{E}(\mathrm{y})=\mathrm{k} ; \operatorname{var}(\mathrm{y})=2 \mathrm{k}$.
(4) Student t distribution
- Let $\mathrm{z} \sim \mathrm{N}(0,1)$ and $\mathrm{y} \sim \chi^{2}(\mathrm{k})$. Z and Y are sto. indep. Then,

$$
t=\frac{z}{\sqrt{y / k}} \sim t(k)
$$

- $\mathrm{E}(\mathrm{t})=0, \mathrm{k}>1 ; \operatorname{var}(\mathrm{t})=\mathrm{k} /(\mathrm{k}-2), \mathrm{k}>2$.
- As $\mathrm{k} \rightarrow \infty, \operatorname{var}(\mathrm{t}) \rightarrow 1$: In fact, $\mathrm{t} \rightarrow \mathrm{z}$.
- The pdf of t is similar to that of z , but t has thicker tails.
- $f(t)$ is symmetric around $t=0$.
(5) F distribution.
- Let $\mathrm{y}_{1} \sim \chi^{2}\left(\mathrm{k}_{1}\right)$ and $\mathrm{y}_{2} \sim \chi^{2}\left(\mathrm{k}_{2}\right)$ be sto. indep. Then,

$$
f=\frac{y_{1} / k_{1}}{y_{2} / k_{2}} \sim f\left(k_{1}, k_{2}\right) .
$$

- $\mathrm{f}\left(1, \mathrm{k}_{2}\right)=\mathrm{t}\left(\mathrm{k}_{2}\right)^{2}$.
- $\mathrm{f} \sim \mathrm{f}\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right) \Rightarrow \mathrm{k}_{1} \mathrm{f} \rightarrow \chi^{2}\left(\mathrm{k}_{1}\right)$ as $\mathrm{k}_{2} \rightarrow \infty$.

[3] Bivariate Distributions

Consider two RVs, X, Y with joint pdf: $f(x, y)=\operatorname{Pr}(X=x, Y=y)$.

Marginal (unconditional) pdf:
$f_{x}(x)=\Sigma_{y} f(x, y)=\operatorname{Pr}(X=x)$ regardless of $Y ; f_{y}(y)=\Sigma_{x} f(x, y)=\operatorname{Pr}(Y=y)$ regardless of X.

Conditional pdf:

$$
f(x \mid y)=\operatorname{Pr}(X=x, \text { given } Y=y)=f(x, y) / f(y) .
$$

Stochastic Independence:

- $\quad X$ and Y are sto. indep. iff $f(x, y)=f_{x}(x) f_{y}(y)$, for all x, y.
- Under this condition, $f(x \mid y)=f(x, y) / f_{y}(y)=\left[f_{x}(x) f_{y}(y)\right] / f_{y}(y)=f_{x}(x)$.

EX:

- Tossing two coins, A and B.
- $X=1$ if head from $A ;=0$ if tail from A.

$$
Y=1 \text { if head from } B ;=0 \text { if tail from } B .
$$

$$
f(x, y)=1 / 4 \text { for any } x, y=0,1 .(4 \text { possible cases })
$$

- Marginal pdf of x :

$$
\begin{aligned}
f_{x}(0) & =\operatorname{Pr}(X=0) \text { regardless of } y=f(0,1)+f(0,0)=1 / 4+1 / 4=1 / 2 . \\
f_{x}(1) & =\operatorname{Pr}(X=1) \text { regardless of } y=f(1,1)+f(1,0)=1 / 4+1 / 4=1 / 2 . \\
& \rightarrow f_{x}(x)=1 / 2, x=0,1 .
\end{aligned}
$$

Similarly, $\mathrm{f}_{\mathrm{y}}(\mathrm{y})=1 / 2, \mathrm{y}=0,1$.

- Conditional pdf:

$$
\begin{aligned}
f(x=1 \mid y=1) &)=f(1,1) / f_{y}(1)=(1 / 4) /(1 / 2)=1 / 2 ; f(x=0 \mid y=1)=f(0,1) / f_{y}(1)=1 / 2 . \\
& \rightarrow f(x \mid y=1)=1 / 2, x=0,1
\end{aligned}
$$

- Find $f(y \mid x=0)$ by yourself.
- Stochastic independence:

$$
\begin{aligned}
f_{x}(x) & =f_{y}(y)=1 / 2 ; f_{X}(x) f_{Y}(y)=1 / 4=f(x, y), \text { for any } x \text { and } y . \\
& \rightarrow x \text { and } y \text { are stochastically independent. }
\end{aligned}
$$

EX:
The joint probability distribution of x and y is given by the following table: (e.g., $f(4,9)=0$.)

$\mathbf{x} \mathbf{y}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{9}$
2	$1 / 8$	$1 / 24$	$1 / 12$
4	$1 / 4$	$1 / 4$	0
6	$1 / 8$	$1 / 24$	$1 / 12$

(1) Find the marginal pdf of y.
(2) Are x and y stochastically independent?
(3) Find the conditional pdf of y given that $\mathrm{x}=2$.

Expectation: $\quad \mathrm{E}[\mathrm{g}(\mathrm{x}, \mathrm{y})]=\Sigma_{\mathrm{x}} \Sigma_{\mathrm{y}} \mathrm{g}(\mathrm{x}, \mathrm{y}) \mathrm{f}(\mathrm{x}, \mathrm{y})\left[\right.$ or $\left.\iint_{\Omega} \mathrm{g}(\mathrm{x}, \mathrm{y}) \mathrm{f}(\mathrm{x}, \mathrm{y}) \mathrm{dxdy}\right]$.

Covariance: $\quad \sigma_{\mathrm{xy}}=\operatorname{cov}(\mathrm{x}, \mathrm{y})=\mathrm{E}\left[\left(\mathrm{x}-\mu_{\mathrm{x}}\right)\left(\mathrm{y}-\mu_{\mathrm{y}}\right)\right]$.

Note: $\quad \sigma_{x y}=\operatorname{cov}(\mathrm{x}, \mathrm{y})>0 \Rightarrow$ positively linearly related; $\sigma_{\mathrm{xy}}=\operatorname{cov}(\mathrm{x}, \mathrm{y})<0 \Rightarrow$ negatively linearly related; $\sigma_{x y}=\operatorname{cov}(x, y)=0 \Rightarrow$ no linear relation.

Correlation Coefficient:

The correlation coefficient between x and y is defined by:

$$
\rho_{x y}=\frac{\operatorname{cov}(x, y)}{\sqrt{\operatorname{var}(x) \operatorname{var}(y)}}=\frac{\operatorname{cov}(x, y)}{\sigma_{x} \sigma_{y}} .
$$

Note: $\quad \sigma_{x y}=\rho_{x y} \sigma_{x} \sigma_{y}$.

Theorem: $-1 \leq \rho_{\mathrm{xy}} \leq 1$.

Note: $\rho_{\mathrm{xy}} \rightarrow 1$: highly positively linearly related; $\rho_{\mathrm{xy}} \rightarrow-1$; highly negatively linearly related; $\rho_{\mathrm{xy}} \rightarrow 0$: no linear relation.

Theorem: If $\mathrm{X} \& \mathrm{Y}$ are stoch. indep., $\operatorname{cov}(\mathrm{x}, \mathrm{y})=0$. But not vice versa.

An exercise for computing $\mathrm{E}[\mathrm{g}(\mathrm{x}, \mathrm{y})]$:
$x, y=1,0$, with $f(x, y)=1 / 4$.
$\mathrm{E}(\mathrm{xy})=\Sigma_{\mathrm{x}} \Sigma_{\mathrm{y}} \mathrm{xyf}(\mathrm{x}, \mathrm{y})=0 \times 0 \times(1 / 4)+0 \times 1 \times(1 / 4)+1 \times 0 \times(1 / 4)+1 \times 1 \times(1 / 4)=1 / 4$.

Conditioning in a Bivariate Distribution:
$\mathrm{X}, \mathrm{Y}: \mathrm{RVs}$ with $\mathrm{f}(\mathrm{x}, \mathrm{y})$. $(\mathrm{Y}=$ consumption, $\mathrm{X}=$ income $)$
Population of billions and billions: $\left\{\left(\mathrm{x}^{(1)}, \mathrm{y}^{(1)}\right), \ldots .\left(\mathrm{x}^{(\mathrm{b})}, \mathrm{y}^{(\mathrm{b})}\right)\right\}$.
Average of $\mathrm{y}^{(\mathrm{j})}=\mathrm{E}(\mathrm{y})$.
For people earning a specific income x , what is the average of y ?

Conditional Mean and Variance:
$\mathrm{E}(\mathrm{y} \mid \mathrm{x})=\mathrm{E}(\mathrm{y} \mid \mathrm{X}=\mathrm{x})=\Sigma_{\mathrm{y}} \mathrm{yf}(\mathrm{y} \mid \mathrm{x})$.
$\operatorname{var}(\mathrm{y} \mid \mathrm{x})=\mathrm{E}\left[(\mathrm{y}-\mathrm{E}(\mathrm{y} \mid \mathrm{x}))^{2} \mid \mathrm{x}\right]=\Sigma_{\mathrm{y}}(\mathrm{y}-\mathrm{E}(\mathrm{y} \mid \mathrm{x}))^{2} \mathrm{f}(\mathrm{y} \mid \mathrm{x})$.

Regression model:

$$
\begin{aligned}
\epsilon= & y-E(y \mid x) . \\
& \rightarrow y=y-E(y \mid x)+E(y \mid x)=E(y \mid x)+\epsilon \text { (regression model). } \\
& \rightarrow E(y \mid x)=\text { explained part of } y \text { by } x . \\
& \rightarrow \epsilon=\text { unexplained part of } y \text { (called disturbance term). } \\
& \rightarrow E(\epsilon \mid x)=0 \text { and } \operatorname{var}(\epsilon \mid x)=\operatorname{var}(y \mid x) .
\end{aligned}
$$

Note:

- $E(y \mid x)$ may vary with x, i.e., $E(y \mid x)$ is a function of x.
- Thus, we can define $E_{x}[E(y \mid x)]$, where $E_{x}($.$) is the expectation over x=\Sigma_{x} \cdot f_{x}(x)$ or $\int_{x} \bullet f_{x}(x) d x$.

Theorem: (Law of Iterative Expectations)
$\mathrm{E}(\mathrm{y})[$ unconditional mean $]=\mathrm{E}_{\mathrm{x}}[\mathrm{E}(\mathrm{y} \mid \mathrm{x})]$.

Proof:

$\mathrm{E}(\mathrm{y})=\Sigma_{\mathrm{x}} \Sigma_{\mathrm{y}} \mathrm{yf}(\mathrm{x}, \mathrm{y})=\Sigma_{\mathrm{x}} \Sigma_{\mathrm{y}} \mathrm{yf}(\mathrm{y} \mid \mathrm{x}) \mathrm{f}_{\mathrm{x}}(\mathrm{x})=\Sigma_{\mathrm{x}}\left[\Sigma_{\mathrm{y}} \mathrm{yf}(\mathrm{y} \mid \mathrm{x})\right] \mathrm{f}_{\mathrm{x}}(\mathrm{x})$.

Note: For discrete RV, X with $\mathrm{x}=\mathrm{x}_{1}, \ldots$,

$$
\mathrm{E}(\mathrm{y})=\Sigma_{\mathrm{x}} \mathrm{E}(\mathrm{y} \mid \mathrm{x}) \mathrm{f}_{\mathrm{x}}(\mathrm{x})=\mathrm{E}\left(\mathrm{y} \mid \mathrm{x}=\mathrm{x}_{1}\right) \mathrm{f}_{\mathrm{x}}\left(\mathrm{x}_{1}\right)+\mathrm{E}\left(\mathrm{y} \mid \mathrm{x}=\mathrm{x}_{2}\right) \mathrm{f}_{\mathrm{x}}\left(\mathrm{x}=\mathrm{x}_{2}\right)+\ldots .
$$

Implication:
If you know conditional mean of y and marginal distribution of x, you can also find unconditional mean of y too.

EX 1: Suppose $E(y \mid x)=0$, for all $x . \rightarrow E(y)=E_{x}[E(y \mid x)]=E_{x}(0)=0$.
$E X 2: E(y \mid x)=\beta_{1}+\beta_{2} x$ (linear regression line). $\rightarrow E(y)=E_{x}\left(\beta_{1}+\beta_{2} x\right)=\beta_{1}+\beta_{2} E(x)$.

Question: When can $\mathrm{E}(\mathrm{y} \mid \mathrm{x})$ be linear? Answered later.

Definition: We say that y is homoskedastic if $\operatorname{var}(\mathrm{y} \mid \mathrm{x})$ is constant.

EX: $\quad \mathrm{y}=\mathrm{E}(\mathrm{y} \mid \mathrm{x})+\epsilon$ with $\operatorname{var}(\epsilon \mid \mathrm{x})=\sigma^{2}$ (constant).
$\rightarrow \operatorname{var}(\mathrm{y} \mid \mathrm{x})=\sigma^{2}$
$\rightarrow \mathrm{y}$ is homoskedastic.

Graphical Interpretation of Conditional Means and Variances

- Consider the following population:

- $E\left(y \mid x=x_{1}\right)$ measures the average value of y for the group of $x=x_{1}$.
- $\operatorname{var}\left(y \mid x=x_{1}\right)$ measures the dispersion of y given $x=x_{1}$.
- If $\operatorname{var}\left(y \mid x=x_{1}\right)=\operatorname{var}\left(y \mid x=x_{2}\right)=\ldots$, we say that y is homoskedastic.
- Law of iterative expectation:

$$
\mathrm{E}(\mathrm{y})=\Sigma_{\mathrm{x}} \mathrm{E}(\mathrm{y} \mid \mathrm{x}) \mathrm{f}_{\mathrm{x}}(\mathrm{x})=\mathrm{E}\left(\mathrm{y} \mid \mathrm{x}=\mathrm{x}_{1}\right) \operatorname{Pr}\left(\mathrm{x}=\mathrm{x}_{1}\right)+\mathrm{E}\left(\mathrm{y} \mid \mathrm{x}=\mathrm{x}_{2}\right) \operatorname{Pr}\left(\mathrm{x}=\mathrm{x}_{2}\right)+\ldots .
$$

Question: It is worth finding $\mathrm{E}(\mathrm{y} \mid \mathrm{x})$?

Theorem: (Decomposition of Variance)

$$
\operatorname{var}(\mathrm{y})=\operatorname{var}_{\mathrm{x}}[\mathrm{E}(\mathrm{y} \mid \mathrm{x})]+\mathrm{E}_{\mathrm{x}}[\operatorname{var}(\mathrm{y} \mid \mathrm{x})] .
$$

Implication: $\operatorname{var}_{\mathrm{x}}[\mathrm{E}(\mathrm{y} \mid \mathrm{x})] \leq \operatorname{var}(\mathrm{y})$, since $\mathrm{E}_{\mathrm{x}}[\operatorname{var}(\mathrm{y} \mid \mathrm{x})] \geq 0$.

Coefficient of Determination:
$R^{2}=\operatorname{var}_{x}[E(y \mid x)] / \operatorname{var}(y)$.
\rightarrow measure of worthiness of knowing $\mathrm{E}(\mathrm{y} \mid \mathrm{x})$.
$\rightarrow 0 \leq \mathrm{R}^{2} \leq 1$.
Note:

- $\operatorname{var}(y)=$ total variation of y.
- $\operatorname{var}_{x}[E(y \mid x)] \rightarrow$ a part of variation in y due to variation in $E(y \mid x)$

$$
\text { = variation in y explained by } \mathrm{E}(\mathrm{y} \mid \mathrm{x}) \text {. }
$$

- $R^{2}=$ variation in y explained by $E(y \mid x) /$ total variation of y.
- Wish R^{2} close to 1.

Summarizing Exercise:

- A population with X (income $=\$ 10,000$) and Y (consumption=\$10,000).
- Joint Pdf:

$\mathbf{Y} \backslash \mathbf{X}$	$\mathbf{4}$	$\mathbf{8}$
1	$1 / 2$	0
2	$1 / 4$	$1 / 4$

- Graph for this popuation:

- Marginal Pdf:

$\mathbf{Y} \backslash \mathbf{X}$	$\mathbf{4}$	$\mathbf{8}$	$\mathbf{f}_{\mathbf{y}}(\mathbf{y})$
1	$1 / 2$	0	$1 / 2$
2	$1 / 4$	$1 / 4$	$1 / 2$
$\mathrm{f}_{\mathrm{x}}(\mathrm{x})$	$3 / 4$	$1 / 4$	

- Means of X and Y :
- $\mathrm{E}(\mathrm{x}) \equiv \mu_{\mathrm{x}}=\Sigma_{\mathrm{x}} \mathrm{x} \mathrm{f}_{\mathrm{x}}(\mathrm{x})=4 \times \mathrm{f}_{\mathrm{x}}(4)+8 \times \mathrm{f}_{\mathrm{x}}(8)=4 \times(3 / 4)+8 \times(1 / 4)=5$.
- $\mathrm{E}(\mathrm{y}) \equiv \mu_{\mathrm{x}}=\Sigma_{\mathrm{y}} \mathrm{y} \mathrm{f}_{\mathrm{y}}(\mathrm{y})=1.5$
- Variances of X and Y :
- $\operatorname{var}(\mathrm{x}) \equiv \sigma_{\mathrm{x}}^{2}=\Sigma_{\mathrm{x}}\left(\mathrm{x}-\mu_{\mathrm{x}}\right)^{2} \mathrm{f}_{\mathrm{x}}(\mathrm{x})=(4-5)^{2} \mathrm{f}_{\mathrm{x}}(4)+(8-5)^{2} \mathrm{f}_{\mathrm{x}}(8)=1 \times(3 / 4)+9 \times(1 / 4)=3$.
- $\operatorname{var}(\mathrm{y}) \equiv \sigma_{\mathrm{y}}{ }^{2}=1 / 4$.
- Covariance between X and Y :
- $\operatorname{cov}(\mathrm{x}, \mathrm{y}) \equiv \mathrm{E}\left[\left(\mathrm{x}-\mu_{\mathrm{x}}\right)\left(\mathrm{y}-\mu_{\mathrm{y}}\right)\right]=\mathrm{E}(\mathrm{xy})-\mu_{\mathrm{x}} \mu_{\mathrm{y}}=\Sigma_{\mathrm{x}} \Sigma_{\mathrm{y}} \mathrm{xyf}(\mathrm{x}, \mathrm{y})-\mu_{\mathrm{x}} \mu_{\mathrm{y}}$

$$
=4 \times 1 \times f(4,1)+4 \times 2 \times f(4,2)+8 \times 1 \times f(8,1)+8 \times 2 \times f(8,2)-5 \times 1.5=0.5 \text {. }
$$

- $\rho_{\mathrm{xy}} \equiv \frac{\operatorname{cov}(\mathrm{x}, \mathrm{y})}{\sigma_{\mathrm{x}} \sigma_{\mathrm{y}}}=\frac{0.5}{\sqrt{3} \sqrt{1 / 4}} \approx 0.58$.
- Conditional Probabilities

$\mathbf{Y} \backslash \mathbf{X}$	$\mathbf{4}$	$\mathbf{8}$	$\mathbf{f}_{\mathbf{y}}(\mathbf{y})$
1	$1 / 2$	0	$1 / 2$
2	$1 / 4$	$1 / 4$	$1 / 2$
$\mathrm{f}_{\mathrm{x}}(\mathrm{x})$	$3 / 4$	$1 / 4$	

- $\mathrm{f}(\mathrm{y} \mid \mathrm{x})$:

$\mathbf{Y} \backslash \mathbf{X}$	$\mathbf{4}$	$\mathbf{8}$
1	$2 / 3$	0
2	$1 / 3$	1

- Conditional mean:
- $\mathrm{E}(\mathrm{y} \mid \mathrm{x}=4)=\Sigma_{\mathrm{y}} \mathrm{yf}(\mathrm{y} \mid \mathrm{x}=4)=1 \times \mathrm{f}(\mathrm{y}=1 \mid \mathrm{x}=4)+2 \times \mathrm{f}(\mathrm{y}=2 \mid \mathrm{x}=4)=1 \times(2 / 3)+2 \times(1 / 3)=4 / 3$
- $E(y \mid x=8)=2$.

- Conditional variance of Y:
- $\operatorname{var}(y \mid x=4)=\Sigma_{y}[y-E(y \mid x=4)]^{2} f(y \mid x=4)=6 / 27$.
- $\quad \operatorname{var}(y \mid x=8)=0$.
- Law of iterative expectation:
- $\mathrm{E}_{\mathrm{x}}[\mathrm{E}(\mathrm{y} \mid \mathrm{x})]=\Sigma_{\mathrm{x}} \mathrm{E}(\mathrm{y} \mid \mathrm{x}) \mathrm{f}_{\mathrm{x}}(\mathrm{x})$

$$
\begin{aligned}
& =\mathrm{E}(\mathrm{y} \mid \mathrm{x}=4) \mathrm{f}_{\mathrm{x}}(4)+\mathrm{E}(\mathrm{y} \mid \mathrm{x}=8) \mathrm{f}_{\mathrm{x}}(8) \\
& =(4 / 3) \times(3 / 4)+2 \times(1 / 4)=1.5=\mathrm{E}(\mathrm{y})!!!
\end{aligned}
$$

[4] Bivariate Normal Distribution

Definition: (Bivariate Normal Distribution)

$$
\begin{gathered}
\binom{x}{y} \sim N\left(\left[\begin{array}{l}
\mu_{x} \\
\mu_{y}
\end{array}\right],\left[\begin{array}{cc}
\sigma_{x}^{2} & \rho \sigma_{x} \sigma_{y} \\
\rho \sigma_{x} \sigma_{y} & \sigma_{y}^{2}
\end{array}\right]\right) . \\
f(x, y)=\frac{1}{2 \pi \sigma_{x} \sigma_{y} \sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2\left(1-\rho^{2}\right)}\left\{\frac{\left(x-\mu_{x}\right)^{2}}{\sigma_{x}^{2}}-2 \rho \frac{x-\mu_{x}}{\sigma_{x}} \frac{y-\mu_{y}}{\sigma_{y}}+\frac{\left(y-\mu_{y}\right)^{2}}{\sigma_{y}^{2}}\right\}\right], x, y \in \mathbb{R} .
\end{gathered}
$$

Here, $\operatorname{cov}(\mathrm{x}, \mathrm{y})=\sigma_{\mathrm{xy}}=\rho \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}$.

Facts:

1) $f_{x}(x) \sim N\left(\mu_{x}, \sigma_{x}^{2}\right)$ and $f_{y}(y) \sim N\left(\mu_{y}, \sigma_{y}^{2}\right)$.
2) $\mathrm{E}(\mathrm{y} \mid \mathrm{x})=\beta_{1}+\beta_{2} \mathrm{x}$ and $\operatorname{var}(\mathrm{y} \mid \mathrm{x})=\sigma^{2}$ (constant) [See Greene.]
$\rightarrow \mathrm{E}(\mathrm{y} \mid \mathrm{x})$ is linear in x and y is homoskedastic.
3) If $\rho=0\left(\sigma_{x y}=0\right), x$ and y are stochastically independent.

[5] Multivariate Distributions

1. Mean vector and covariance matrix:

Definition: $\quad X_{1}, \ldots, X_{n}$: random variables.
Let $\mathrm{x}=\left[\mathrm{x}_{1}, \ldots ., \mathrm{x}_{\mathrm{n}}\right]^{\prime}$ ($\mathrm{n} \times 1$ vector). Then,

$$
E(x)=\left[\begin{array}{c}
E\left(x_{1}\right) \\
E\left(x_{2}\right) \\
\vdots \\
E\left(x_{n}\right)
\end{array}\right] ; \operatorname{Cov}(x)=\left[\begin{array}{ccccc}
\operatorname{var}\left(x_{1}\right) & \operatorname{cov}\left(x_{1}, x_{2}\right) & \operatorname{cov}\left(x_{1}, x_{3}\right) & \cdots & \operatorname{cov}\left(x_{1}, x_{n}\right) \\
\operatorname{cov}\left(x_{2}, x_{1}\right) & \operatorname{var}\left(x_{2}\right) & \operatorname{cov}\left(x_{2}, x_{3}\right) & \cdots & \operatorname{cov}\left(x_{2}, x_{n}\right) \\
\vdots & \vdots & \vdots & & \vdots \\
\operatorname{cov}\left(x_{n}, x_{1}\right) & \operatorname{cov}\left(x_{n}, x_{2}\right) & \operatorname{cov}\left(x_{n}, x_{3}\right) & \cdots & \operatorname{var}\left(x_{n}\right)
\end{array}\right] .
$$

$\rightarrow \operatorname{Cov}(\mathrm{x})$ is symmetric.

Note: In Greene, $\operatorname{Cov}(\mathbf{x})$ is denoted by $\operatorname{Var}(\mathbf{x})$.

Definition: (Expectation of random matrix)
Suppose that B_{ij} are RVs. Then,

$$
B=\left[\begin{array}{cccc}
B_{11} & B_{12} & \cdots & B_{1 n} \\
B_{21} & B_{22} & \cdots & B_{2 n} \\
\vdots & \vdots & & \vdots \\
B_{n 1} & B_{n 2} & \cdots & B_{n n}
\end{array}\right] \Rightarrow E(B)=\left[\begin{array}{cccc}
E\left(B_{11}\right) & E\left(B_{12}\right) & \cdots & E\left(B_{1 n}\right) \\
E\left(B_{21}\right) & E\left(B_{22}\right) & \cdots & E\left(B_{2 n}\right) \\
\vdots & \vdots & & \vdots \\
E\left(B_{n 1}\right) & E\left(B_{n 2}\right) & \cdots & E\left(B_{n n}\right)
\end{array}\right] .
$$

Theorem: $\operatorname{Cov}(\mathrm{x})=\mathrm{E}\left[\left(\mathrm{x}-\mu_{\mathrm{x}}\right)\left(\mathrm{x}-\mu_{\mathrm{x}}\right)^{\prime}\right]=\mathrm{E}\left(\mathrm{xx}^{\prime}\right)-\mu_{\mathrm{x}} \mu_{\mathrm{x}}{ }^{\prime}$.
Proof: See Greene.

EX: If x is scalar, $\operatorname{Cov}(x)=\mathrm{E}\left[(x-\mu)^{2}\right]=\operatorname{var}(x)$.
EX: $\quad x=\left[x_{1}, x_{2}\right]^{\prime} ; E(x)=\mu=\left[\mu_{1}, \mu_{2}\right]^{\prime}$
$\rightarrow \quad \mathrm{x}-\mu=\left[\mathrm{x}_{1}-\mu_{1}, \mathrm{x}_{2}-\mu_{2}\right]^{\prime}$
$\rightarrow \quad(x-\mu)(x-\mu)^{\prime}=\left[\begin{array}{l}x_{1}-\mu_{1} \\ x_{2}-\mu_{2}\end{array}\right]\left[x_{1}-\mu_{1}, x_{2}-\mu_{2}\right]=\left[\begin{array}{cc}\left(x_{1}-\mu_{1}\right)^{2} & \left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right) \\ \left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right) & \left(x_{2}-\mu_{2}\right)^{2}\end{array}\right]$
$\rightarrow E\left[(x-\mu)(x-\mu)^{\prime}\right]=\operatorname{Cov}(x)$.
2. Mean and Variance of a linear combination of RVs:

Definition:
Let $\mathrm{X}=\left[\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right]^{\prime}$ be a random vector and let $\mathrm{c}=\left[\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}\right]^{\prime}$ be a $\mathrm{n} \times 1$ vector of fixed constants.
Then,

$$
\mathrm{c}^{\prime} \mathrm{x}=\mathrm{x}^{\prime} \mathrm{c}=\mathrm{c}_{1} \mathrm{x}_{1}+\ldots+\mathrm{c}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}=\Sigma_{\mathrm{j}} \mathrm{c}_{\mathrm{j}} \mathrm{x}_{\mathrm{j}}(\text { scalar })
$$

Theorem:
(1) $E\left(c^{\prime} x\right)=c^{\prime} E(x)$
(2) $\operatorname{var}\left(c^{\prime} x\right)=c^{\prime} \operatorname{Cov}(x) c$.

Proof:
(1) $\mathrm{E}\left(\mathrm{c}^{\prime} \mathrm{x}\right)=\mathrm{E}\left(\Sigma_{\mathrm{j}} \mathrm{c}_{\mathrm{j}} \mathrm{x}_{\mathrm{j}}\right)=\Sigma_{\mathrm{j}} \mathrm{E}\left(\mathrm{c}_{1} \mathrm{x}_{1}+\ldots+\mathrm{c}_{\mathrm{n}} \mathrm{X}_{\mathrm{n}}\right)=\mathrm{c}_{1} \mathrm{E}\left(\mathrm{x}_{1}\right)+\ldots+\mathrm{c}_{\mathrm{n}} \mathrm{E}\left(\mathrm{x}_{\mathrm{n}}\right)=\Sigma_{\mathrm{j}} \mathrm{c}_{\mathrm{j}} \mathrm{E}\left(\mathrm{x}_{\mathrm{j}}\right)=\mathrm{c}^{\prime} \mathrm{E}(\mathrm{x})$.
(2) $\operatorname{var}\left(\mathrm{c}^{\prime} \mathrm{x}\right)=\mathrm{E}\left[\left(\mathrm{c}^{\prime} \mathrm{x}-\mathrm{E}\left(\mathrm{c}^{\prime} \mathrm{x}\right)\right)^{2}\right]=\mathrm{E}\left[\left\{\mathrm{c}^{\prime} \mathrm{x}-\mathrm{c}^{\prime} \mathrm{E}(\mathrm{x})\right\}^{2}\right]=\mathrm{E}\left[\left\{\mathrm{c}^{\prime}(\mathrm{x}-\mathrm{E}(\mathrm{x}))\right\}^{2}\right]$

$$
=\mathrm{E}\left[\left\{\mathrm{c}^{\prime}(\mathrm{x}-\mathrm{E}(\mathrm{x}))\right\}\left\{\mathrm{c}^{\prime}(\mathrm{x}-\mathrm{E}(\mathrm{x}))\right\}\right]=\mathrm{E}\left[\left\{\mathrm{c}^{\prime}(\mathrm{x}-\mathrm{E}(\mathrm{x}))\right\}\left\{(\mathrm{x}-\mathrm{E}(\mathrm{x}))^{\prime} \mathrm{c}\right\}\right]
$$

$$
=\mathrm{E}\left[\mathrm{c}^{\prime}(\mathrm{x}-\mathrm{E}(\mathrm{x}))(\mathrm{x}-\mathrm{E}(\mathrm{x}))^{\prime} \mathrm{c}\right]=\mathrm{c}^{\prime} \mathrm{E}\left[(\mathrm{x}-\mathrm{E}(\mathrm{x}))(\mathrm{x}-\mathrm{E}(\mathrm{x}))^{\prime}\right] \mathrm{c}=\mathrm{c}^{\prime} \operatorname{Cov}(\mathrm{x}) \mathrm{c}
$$

Remark:
(2) implies that $\operatorname{Cov}(x)$ is always positive semidefinite.
$\rightarrow \mathrm{c}^{\prime} \operatorname{Cov}(\mathrm{x}) \mathrm{c} \geq 0$ for any nonzero vector c .

Proof:

For any nonzero vector $\mathrm{c}, \mathrm{c}^{\prime} \operatorname{Cov}(\mathrm{x}) \mathrm{c}=\operatorname{var}\left(\mathrm{c}^{\prime} \mathrm{x}\right) \geq 0$.

Remark:

- $\operatorname{Cov}(x)$ is symmetric and positive semidefinite.
- Usually, $\operatorname{Cov}(\mathrm{x})$ is positive definite, that is, $\mathrm{c}^{\prime} \operatorname{Cov}(\mathrm{x}) \mathrm{c}>0$, for any nonzero vector c .

Digression to Definite Matrices

Definition:
Let $\mathrm{B}=\left[\mathrm{b}_{\mathrm{ij}}\right]_{\mathrm{nxn}}$ be a symmetric matrix, and $\mathrm{c}=\left[\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}\right]^{\prime}$. Then, the scalar, $\mathrm{c}^{\prime} \mathrm{Bc}$, is called a quadratic form of B.

Definition:

If $\mathrm{c}^{\prime} \mathrm{Bc}>(<) 0$ for any nonzero vector c , B is called positive (negative) definite.
If $\mathrm{c}^{\prime} \mathrm{Bc} \geq(\leq) 0$ for any nonzero c, B is called positive (negative) semidefinite.

Theorem:
Let B be a symmetric and square matrix given by:

$$
B=\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{12} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & & \vdots \\
b_{1 n} & b_{2 n} & \cdots & b_{n n}
\end{array}\right] .
$$

Define the principal minors by:

$$
\left|B_{1}\right|=b_{11} ;\left|B_{2}\right|=\left|\begin{array}{ll}
b_{11} & b_{12} \\
b_{12} & b_{22}
\end{array}\right| ;\left|B_{3}\right|=\left|\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{12} & b_{22} & b_{23} \\
b_{13} & b_{23} & b_{33}
\end{array}\right| ; \cdots .
$$

B is positive definite iff $\left|\mathrm{B}_{1}\right|,\left|\mathrm{B}_{2}\right|, \ldots,\left|\mathrm{B}_{\mathrm{n}}\right|$ are all positive. B is negative definite iff $\left|\mathrm{B}_{1}\right|<0,\left|\mathrm{~B}_{2}\right|$ $>0,\left|B_{3}\right|<0, \ldots$.

EX:
Show that B is positive definite:

$$
B=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

End of Digression

Theorem:
Let X be a $\mathrm{n} \times 1$ random vector and let A be a $\mathrm{m} \times \mathrm{n}$ matrix of constants (Ax is a $\mathrm{m} \times 1$ random vector). Then,

$$
\mathrm{E}(\mathrm{Ax})=\mathrm{AE}(\mathrm{x}) ; \operatorname{Cov}(\mathrm{Ax})=\mathrm{ACov}(\mathrm{x}) \mathrm{A}^{\prime}
$$

[6] Multivariate Normal distribution

Definition:
$x=\left[x_{1}, \ldots, x_{n}\right]^{\prime}$ is a normal vector, i.e., each of the x_{j} 's is normal.
Let $\mathrm{E}(\mathrm{x})=\mu=\left[\mu_{1}, \ldots, \mu_{\mathrm{n}}\right]^{\prime}$ and $\operatorname{Cov}(\mathrm{x})=\Sigma=\left[\sigma_{\mathrm{ij}}\right]_{\mathrm{nxn}}$. Then,

$$
\mathrm{x} \sim \mathrm{~N}(\mu, \Sigma) .
$$

Pdf of x :
$\mathrm{f}(\mathrm{x}) \quad=\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=(2 \pi)^{-\mathrm{n} / 2}|\Sigma|^{-1 / 2} \exp \left[-(1 / 2)(\mathrm{x}-\mu)^{\prime} \Sigma^{-1}(\mathrm{x}-\mu)\right]$, where $|\Sigma|=\operatorname{det}(\Sigma)$.

EX:

Let X be a single RV with $\mathrm{N}\left(\mu_{\mathrm{x}}, \sigma_{\mathrm{x}}^{2}\right)$. Then,
$\mathrm{f}(\mathrm{x}) \quad=(2 \pi)^{-1 / 2}\left(\sigma_{\mathrm{x}}^{2}\right)^{-1 / 2} \exp \left[-(1 / 2)\left(\mathrm{x}-\mu_{\mathrm{x}}\right)\left(\sigma_{\mathrm{x}}^{2}\right)^{-1}\left(\mathrm{x}-\mu_{\mathrm{x}}\right)\right]=\frac{1}{\sqrt{2 \pi} \sigma_{x}} \exp \left[-\frac{\left(x-\mu_{x}\right)^{2}}{2 \sigma_{x}^{2}}\right]$.

EX:
Assume that all the x_{i} are iid with $\mathrm{N}\left(\mu_{\mathrm{x}}, \sigma_{\mathrm{x}}^{2}\right)$. Then,
(1) $\mu=\mathrm{E}(\mathrm{x})=\left[\mu_{\mathrm{x}}, \ldots, \mu_{\mathrm{x}}\right]^{\prime}$;
(2) $\Sigma=\operatorname{Cov}(\mathrm{x})=\operatorname{diag}\left(\sigma_{\mathrm{x}}^{2}, \ldots, \sigma_{\mathrm{x}}^{2}\right)=\sigma_{\mathrm{x}}^{2} \mathrm{I}_{\mathrm{n}}$.

Using (1) and (2), we can show that $f(x)=f\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} f\left(x_{i}\right)$, where,

$$
f\left(x_{i}\right)==\frac{1}{\sqrt{2 \pi} \sigma_{x}} \exp \left[-\frac{\left(x_{i}-\mu_{x}\right)^{2}}{2 \sigma_{x}^{2}}\right] .
$$

1. Conditional normal distribution
$\left[y, x_{2}, \ldots, x_{k}\right]^{\prime}$ is a normal vector. Then,

$$
\begin{aligned}
& E\left(y \mid x_{2}, \ldots, x_{k}\right)=\beta_{1}+\beta_{2} x_{2}+\ldots+\beta_{k} x_{k}=x^{* \prime} \beta \\
& \quad\left[x^{* \prime}=\left(1, x_{2}, \ldots, x_{k}\right) \text { and } \beta=\left(\beta_{1}, \ldots, \beta_{k}\right)^{\prime}\right] \\
& \operatorname{var}\left(y \mid x^{*}\right)=\sigma^{2} .
\end{aligned}
$$

\rightarrow The regression of y on $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}$ is linear \& homoskedatic.
Proof: See Greene.
2. Distributions of linear functions of a normal vector
$\mathrm{X}_{\mathrm{nx} 1} \sim \mathrm{~N}(\mu, \Sigma)$.
$y=A x+b$, where $A_{m \times n}$ and $b_{m \times 1}$ are fixed.
$\rightarrow \mathrm{y} \sim \mathrm{N}\left(\mathrm{A} \mu+\mathrm{b}, \mathrm{A} \Sigma \mathrm{A}^{\prime}\right)$.

[7] Sample and Estimator

(1) A population (of billions and billions)

$$
x^{(1)}, \ldots, x^{(b)}
$$

- A unknown characteristic of the population is denoted by $\theta \in \mathbb{R}$.
(θ is called a unknown parameter of interest.)
(θ could be the population mean or population variance.)
- Wish to estimate θ.
- $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$: a sample of size T from the population.
- $\hat{\theta}$: an estimator of θ, which is a function of the sample.
(e.g, $\left.\hat{\theta}=\overline{\mathrm{X}}=(1 / \mathrm{T}) \Sigma_{\mathrm{t}=1}^{\mathrm{T}} \mathrm{X}_{\mathrm{t}}.\right)$
- A sample is random, in the sense that there are many possible samples of size T .

Set of all possible samples Estimates
(Set of all possible samples)
SAM 1: $\left\{\mathrm{x}_{1}{ }^{[1]}, \ldots, \mathrm{x}_{\mathrm{t}}^{[1]}, \ldots, \mathrm{x}_{\mathrm{T}}{ }^{[1]}\right\} \rightarrow \hat{\theta}^{[1]}$
SAM 2: $\left\{x_{1}{ }^{[2]}, \ldots, x_{t}^{[2]}, \ldots, x_{T}{ }^{[2]}\right\} \quad \rightarrow \quad \hat{\theta}^{[2]}$

SAM b': $\left\{\mathrm{x}_{1}{ }^{\left[\mathrm{b}^{\prime}\right]}, \ldots, \mathrm{x}_{\mathrm{t}}^{\left[\mathrm{b}^{\prime}\right]}, \ldots, \mathrm{x}_{\mathrm{T}}{ }^{\left[\mathrm{b}^{\prime}\right]}\right\} \quad \rightarrow \quad \hat{\theta}^{\left[b^{\prime}\right]}$
Since $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$ is random, so is $\hat{\theta} . \rightarrow$ We can define $\mathrm{E}(\hat{\theta})$ and $\operatorname{var}(\hat{\theta})$.
(2) Meaning of "a random sample (RS) from a distribution $f(x)$ "
\rightarrow Means that $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}$ are iid.
\rightarrow EX: $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$ a RS from $\mathrm{N}\left(\mu, \sigma^{2}\right)$.
$\rightarrow \mathrm{X}_{\mathrm{t}} \sim \mathrm{N}\left(\mu, \sigma^{2}\right)$ for any $\mathrm{t}=1, \ldots, \mathrm{~T}$.
$\rightarrow \mathrm{E}\left(\mathrm{x}_{\mathrm{t}}\right)=\mu$ and $\operatorname{var}\left(\mathrm{x}_{\mathrm{t}}\right)=\sigma^{2}$, for any $\mathrm{t}=1, \ldots, \mathrm{~T}$.

Note:

A sample need not be iid.
\rightarrow Let x_{t} be the height of the t^{\prime} th person (cross-section data)
\rightarrow Likely to be independent of others' height.
\rightarrow Likely to be identically distributed.
\rightarrow Let x_{t} be US GNP at time t (time-series data)
$\rightarrow \mathrm{x}_{\mathrm{t}}$ and $\mathrm{x}_{\mathrm{t}-1}$ are likely to be correlated.
$\rightarrow \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}$ are not iid.
(3) Criteria for a "good" estimator

1) Minimum Variance Unbiased Estimator

Definition: $\mathrm{E}(\hat{\theta})=\theta \rightarrow \hat{\theta}$ is called a unbiased estimator of θ.

Implication: $\quad \hat{\theta}^{[1]}, \ldots, \hat{\theta}^{\left[b^{\prime}\right]} \rightarrow\left(1 / b^{\prime}\right) \Sigma_{\mathrm{j}=1}^{\mathrm{b}^{\prime}} \hat{\theta}^{[\mathrm{jj}]}=\theta$, a.s.

EX:
$\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$: RS from a dist. with μ and σ^{2}.
$\overline{\mathrm{x}}=(1 / \mathrm{T}) \Sigma_{\mathrm{t}=1}^{\mathrm{T}} \mathrm{x}_{\mathrm{t}} ; \mathrm{s}_{\mathrm{x}}^{2}=[1 /(\mathrm{T}-1)] \Sigma_{\mathrm{t}=1}^{\mathrm{T}}\left(\mathrm{x}_{\mathrm{t}}-\overline{\mathrm{x}}\right)^{2}$.
$\rightarrow \mathrm{E}(\overline{\mathrm{x}})=\mu$ and $\mathrm{E}\left(\mathrm{s}_{\mathrm{x}}{ }^{2}\right)=\sigma^{2}$.
\rightarrow So, $\overline{\mathrm{x}}$ and $\mathrm{S}_{\mathrm{x}}{ }^{2}$ are unbiased estimators of μ and σ^{2}, respectively.

Definition:

Let $\hat{\theta}$ and $\tilde{\theta}$ be unbiased estimators of θ.
$\operatorname{var}(\tilde{\theta})>\operatorname{var}(\hat{\theta}) \Rightarrow \hat{\theta}$ is more efficient than $\tilde{\theta}$.

Implication:
$\hat{\theta}: \hat{\theta}^{[1]}, \ldots, \hat{\theta}^{\left[b^{\prime}\right]} ;$
$\tilde{\theta}: \tilde{\theta}^{[1]}, \ldots, \tilde{\theta}^{\left[b^{\prime}\right]}$.
$\operatorname{var}(\tilde{\theta})>\operatorname{var}(\hat{\theta}) \rightarrow$ Dispersion of $\tilde{\theta}^{[1]}, \ldots, \tilde{\theta}^{\left[b^{\prime}\right]}>$ Dispersion of $\hat{\theta}^{[1]}, \ldots, \hat{\theta}^{\left[b^{\prime}\right]}$
$\rightarrow \hat{\theta}$ is less sensitive to the chosen sample.

EX: $\quad\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}:$ RS from a dist. with μ and σ^{2}.
$\tilde{\mathrm{x}}=\mathrm{x}_{1}$.
$\rightarrow \mathrm{E}(\tilde{\mathrm{x}})=\mathrm{E}\left(\mathrm{x}_{1}\right)=\mu$ (unbiased).
$\rightarrow \operatorname{var}(\tilde{\mathrm{x}})=\operatorname{var}\left(\mathrm{x}_{1}\right)=\sigma^{2}$.
\rightarrow But, $\operatorname{var}(\overline{\mathrm{x}})=\sigma^{2} / \mathrm{T}$.
$\rightarrow \overline{\mathrm{X}}$ is more efficient than $\tilde{\mathrm{x}}$.

Definition:

$\hat{\theta}$: a unbiased estimator.
$\hat{\theta}$ is MVUE iff $\operatorname{var}(\tilde{\theta}) \geq \operatorname{var}(\hat{\theta})$ for any unbiased estimator $\tilde{\theta}$.
\rightarrow Say that $\hat{\theta}$ is efficient.
2) Minimum Mean Square Error (MMSE) Estimator

Definition:
$\operatorname{MSE}(\hat{\theta})=\operatorname{E}\left[(\hat{\theta}-\theta)^{2}\right]$.

Note: If $\mathrm{E}(\hat{\theta})=\theta$, $\operatorname{var}(\hat{\theta})=\mathrm{E}\left[(\hat{\theta}-\mathrm{E}(\hat{\theta}))^{2}\right]=\mathrm{E}\left[(\hat{\theta}-\theta)^{2}\right]=\operatorname{MSE}(\hat{\theta})$.

Theorem:
$\operatorname{Let} \operatorname{Bias}(\hat{\theta})=\mathrm{E}(\hat{\theta}-\theta)$. Then, $\operatorname{MSE}(\hat{\theta})=\operatorname{var}(\hat{\theta})+\operatorname{Bias}(\hat{\theta})^{2}$.

Definition:

The MMSE estimator minimizes $\operatorname{MSE}(\hat{\theta})$.

Note:

1) MMSE estimator could be biased.
2) MMSE is usually a function of θ.
\rightarrow To get MMSE, need to know θ.
\rightarrow If you know θ, why do you estimate?
\rightarrow If we wish to test for some hypotheses regarding θ, MVUE is more meaningful.
(3) How to find MVUE

Notational Change:

- From now on, we denote the true value of θ as θ_{0}.
- Then, view θ as a variable.

Definition: (Likelihood function)

- joint pdf of $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}=\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}, \theta_{\mathrm{o}}\right)$.
- $\mathrm{L}_{\mathrm{T}}(\theta)=\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}, \theta\right)$ (likelihood function).

Remark:

- $\mathrm{L}_{\mathrm{T}}(\theta)$ is a joint pdf of $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}$ replacing θ_{o} by θ.
- View $L_{T}(\theta)$ as a function of θ given x_{1}, \ldots, x_{T}.

Definition: (log-likelihood function)

$$
l_{\mathrm{T}}(\theta)=\ln \left[\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}, \theta\right)\right] .
$$

EX:
$\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}: \mathrm{RS}$ from a dist. with $\mathrm{f}\left(\mathrm{x}, \theta_{\mathrm{o}}\right)$.
$\rightarrow \quad x_{t} \sim f\left(x_{t}, \theta_{o}\right)$.
$\rightarrow \mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}, \theta_{\mathrm{o}}\right)=\Pi_{\mathrm{t}=1}^{\mathrm{T}} \mathrm{f}\left(\mathrm{x}_{\mathrm{t}}, \theta_{\mathrm{o}}\right)$.
$\rightarrow \mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}, \theta\right)=\Pi_{\mathrm{t}=1}^{\mathrm{T}} \mathrm{f}\left(\mathrm{x}_{\mathrm{t}}, \theta\right)$.
$\rightarrow \ln \left[\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}, \theta\right)\right]=\Sigma_{\mathrm{t}=1}^{\mathrm{T}} \ln \left[\mathrm{f}\left(\mathrm{x}_{\mathrm{t}}, \theta\right)\right]$.
$\rightarrow l_{\mathrm{T}}(\theta)=\Sigma_{\mathrm{t}=1}^{\mathrm{T}} \ln \left[\mathrm{f}\left(\mathrm{x}_{\mathrm{t}}, \theta\right)\right]$.

Definition: (Maximum Likelihood Estimator)
$\operatorname{MLE} \hat{\theta}$ maximizes $l_{\mathrm{T}}(\theta)$ given data points $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}$.

Theorem:
If $\hat{\theta}$ is MLE and $\mathrm{E}(\hat{\theta})=\theta_{0}, \hat{\theta}$ is an efficient estimator.

Theorem:
Let $\hat{\theta}$ be MLE. Suppose $\mathrm{E}(\hat{\theta}) \neq \theta_{0}$. Suppose $\exists \mathrm{g}(\hat{\theta}) \ni \mathrm{E}[\mathrm{g}(\hat{\theta})]=\theta_{\mathrm{o}}$. Then, $\mathrm{g}(\hat{\theta})$ is efficient.

EX:
$\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$: RS from a Poisson dist., $\mathrm{f}(\mathrm{x}, \theta)=\mathrm{e}^{-\theta} \theta^{\mathrm{x}} / \mathrm{x}$! [Suppressing subscript " o " from θ].
[Note $\mathrm{E}(\mathrm{x})=\operatorname{var}(\mathrm{x})=\theta_{0}$.]
$\rightarrow l_{\mathrm{T}}(\theta)=\Sigma_{\mathrm{t}} \ln \left[\mathrm{f}\left(\mathrm{x}_{\mathrm{t}}, \theta\right)\right]=\Sigma_{\mathrm{t}}\left[-\theta+\mathrm{x}_{\mathrm{t}} \ln (\theta)-\ln \left(\mathrm{x}_{\mathrm{t}}!\right)\right]$
\rightarrow FOC (first order condition): $\partial l_{T}(\theta) / \partial \theta=\Sigma_{t}\left[-1+x_{\mathrm{t}} / \theta\right]=0$
$\rightarrow-\mathrm{T}+(1 / \theta) \Sigma_{\mathrm{t}} \mathrm{x}_{\mathrm{t}}=0 \rightarrow-\mathrm{T} \theta+\Sigma_{\mathrm{t}} \mathrm{x}_{\mathrm{t}}=0 \rightarrow \hat{\theta}=(1 / \mathrm{T}) \Sigma_{\mathrm{t}} \mathrm{x}_{\mathrm{t}}=\overline{\mathrm{x}}$.
$\rightarrow \mathrm{E}(\hat{\theta})=\mathrm{E}(\overline{\mathrm{x}})=\theta$.
$\rightarrow \hat{\theta}$ Efficient.

[8] Extention to the Estimation of Multiple Parameters

Definition:
$\theta_{\mathrm{o}}=\left[\theta_{\mathrm{o}, 1}, \theta_{\mathrm{o}, 2}, \ldots, \theta_{\mathrm{o}, \mathrm{p}}\right]^{\prime}$: the unknown parameter vector.
$\hat{\theta}=\left[\hat{\theta}_{1}, \hat{\theta}_{2}, \ldots, \hat{\theta}_{\mathrm{p}}\right]^{\prime}$, where $\hat{\theta}_{\mathrm{j}}$ is a function of $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$.

Definition: (Unbiasedness)

$\hat{\theta}$ is unbiased if $E(\hat{\theta})=\theta_{0}$:

$$
\mathrm{E}(\hat{\theta})=\left[\begin{array}{c}
\mathrm{E}\left(\hat{\theta}_{1}\right) \\
\mathrm{E}\left(\hat{\theta}_{2}\right) \\
\vdots \\
\mathrm{E}\left(\hat{\theta}_{\mathrm{p}}\right)
\end{array}\right]=\left[\begin{array}{c}
\theta_{\mathrm{o}, 1} \\
\theta_{\mathrm{o}, 2} \\
\vdots \\
\theta_{\mathrm{o}, \mathrm{p}}
\end{array}\right]=\theta_{\mathrm{o}} .
$$

Definition: (Relative Efficiency)
$\tilde{\theta}, \hat{\theta}$: unbiased estimators.
$\mathrm{c}=\left[\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{p}}\right]^{\prime}$ be any nonzero vector.
$\hat{\theta}$ is said to be efficient relative to $\tilde{\theta}$ iff $\operatorname{var}\left(\mathrm{c}^{\prime} \tilde{\theta}\right) \geq \operatorname{var}\left(\mathrm{c}^{\prime} \hat{\theta}\right)$.
$\leftrightarrow c^{\prime} \operatorname{Cov}(\tilde{\theta}) \mathrm{c}-\mathrm{c}^{\prime} \operatorname{Cov}(\hat{\theta}) \mathrm{c} \geq 0$
$\leftrightarrow c^{\prime}[\operatorname{Cov}(\tilde{\theta})-\operatorname{Cov}(\hat{\theta})] c \geq 0$
$\leftrightarrow[\operatorname{Cov}(\tilde{\theta})-\operatorname{Cov}(\hat{\theta})]$ is positive semidefinite.

Note:

- Let $\theta=\left(\theta_{1}, \theta_{2}\right)^{\prime}$ and $\mathrm{c}=\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right)^{\prime}$.
- Suppose you wish to estimate $c^{\prime} \theta=c_{1} \theta_{1}+c_{2} \theta_{2}$.
- Suppose you have $\hat{\theta}=\left(\hat{\theta}_{1}, \hat{\theta}_{2}\right)^{\prime}$ and $\tilde{\theta}=\left(\tilde{\theta}_{1}, \tilde{\theta}_{2}\right)^{\prime}$.
- If, for any $c, \operatorname{var}\left(c^{\prime} \tilde{\theta}\right)=\operatorname{var}\left(c_{1} \tilde{\theta}_{1}+c_{2} \tilde{\theta}_{2}\right)>\operatorname{var}\left(c_{1} \hat{\theta}_{1}+c_{2} \hat{\theta}_{2}\right)=\operatorname{var}\left(c^{\prime} \hat{\theta}\right)$, we can say that $\hat{\theta}$ is a better estimator.

EX: Let $\theta=\left(\theta_{1}, \theta_{2}\right)^{\prime}$. Suppose:

$$
\begin{aligned}
& \operatorname{Cov}(\hat{\theta})=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] ; \operatorname{Cov}(\tilde{\theta})=\left[\begin{array}{cc}
1.5 & 1 \\
1 & 1.5
\end{array}\right] \\
& \rightarrow \operatorname{var}\left(\hat{\theta}_{1}\right)=1<1.5=\operatorname{var}\left(\tilde{\theta}_{1}\right) ; \operatorname{var}\left(\hat{\theta}_{2}\right)=1<1.5=\operatorname{var}\left(\tilde{\theta}_{2}\right) .
\end{aligned}
$$

But,

$$
\operatorname{Cov}(\tilde{\theta})-\operatorname{Cov}(\hat{\theta})=\left[\begin{array}{cc}
0.5 & 1 \\
1 & 0.5
\end{array}\right] \equiv \mathrm{A}
$$

$$
\left|\mathrm{A}_{1}\right|=0.5 ;\left|\mathrm{A}_{2}\right|=(0.5)^{2}-1=-0.75<0 .
$$

$\rightarrow \mathrm{A}$ is not positive definite.
\rightarrow Thus, $\hat{\theta}$ is not necessarily more efficient than $\tilde{\theta}$.
\rightarrow For example, you wish to estimate $\theta_{o, 1}-\theta_{o, 2}=c^{\prime} \theta_{0}\left(c^{\prime}=(1,-1)\right)$.
$\rightarrow \quad \operatorname{var}\left(c^{\prime} \hat{\theta}\right)=c^{\prime} \operatorname{Cov}(\hat{\theta}) c=2$
$\rightarrow \quad \operatorname{var}\left(c^{\prime} \tilde{\theta}\right)=c^{\prime} \operatorname{Cov}(\tilde{\theta}) \mathrm{c}=1$
\rightarrow Thus, $c^{\prime} \tilde{\theta}$ is a better estimator of $c^{\prime} \theta$.
\rightarrow Depending on c , a better estimator is determined.
\rightarrow Can't claim that one estimator is always superior.

Question:

How about the following rule?

$$
\operatorname{var}\left(\hat{\theta}_{\mathrm{j}}\right) \leq \operatorname{var}\left(\tilde{\theta}_{\mathrm{j}}\right), \text { for any } \mathrm{j}=1, \ldots, \mathrm{p} .
$$

In fact, this rule is weaker than our relative efficiency rule.

Theorem:
If $\hat{\theta}$ is more efficient than $\tilde{\theta}, \operatorname{var}\left(\hat{\theta}_{\mathrm{j}}\right) \leq \operatorname{var}\left(\tilde{\theta}_{\mathrm{j}}\right)$, for any $\mathrm{j}=1, \ldots, \mathrm{p}$.
But, the reverse is not true.

Proof:
Let $c^{\prime}=(1,0, \ldots, 0)$. Then, $\operatorname{var}\left(\hat{\theta}_{1}\right)=\operatorname{var}\left(c^{\prime} \hat{\theta}\right) \leq \operatorname{var}\left(c^{\prime} \tilde{\theta}\right)=\operatorname{var}\left(\tilde{\theta}_{1}\right)$.

Definition: (MVUE)

$\hat{\theta}$: a unbiased estimator.
$\mathrm{c}=\left[\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{p}}\right]^{\prime}$ be any nonzero vector.
$\hat{\theta}$ is said to be efficient iff $\operatorname{var}\left(c^{\prime} \tilde{\theta}\right) \geq \operatorname{var}\left(c^{\prime} \hat{\theta}\right)$ for any unbiased $\tilde{\theta}$.

Note:

$$
\begin{aligned}
\operatorname{var}\left(c^{\prime} \tilde{\theta}\right) \geq \operatorname{var}\left(c^{\prime} \hat{\theta}\right) & \rightarrow c^{\prime} \operatorname{Cov}(\tilde{\theta}) c-c^{\prime} \operatorname{Cov}(\hat{\theta}) c \geq 0 \\
& \rightarrow c^{\prime}[\operatorname{Cov}(\tilde{\theta})-\operatorname{Cov}(\hat{\theta})] c \geq 0 \\
& \rightarrow[\operatorname{Cov}(\tilde{\theta})-\operatorname{Cov}(\hat{\theta})] \text { is positive semidefinite. }
\end{aligned}
$$

Definition: (MSE)

$$
\operatorname{MSE}(\hat{\theta})=\operatorname{E}\left[\left(\hat{\theta}-\theta_{o}\right)\left(\hat{\theta}-\theta_{o}\right)^{\prime}\right](\mathrm{p} \times \mathrm{p})
$$

Note: If $E(\hat{\theta})=\theta_{0}, \operatorname{Cov}(\hat{\theta})=\operatorname{MSE}(\hat{\theta})$.

Theorem:

$$
\operatorname{MSE}(\hat{\theta})=\operatorname{Cov}(\hat{\theta})+\left[\theta_{0}-\mathrm{E}(\hat{\theta})\right]\left[\theta_{0}-\mathrm{E}(\hat{\theta})\right]^{\prime},
$$

where $\left[\theta_{0}-E(\hat{\theta})\right]$ is called the bias of $\hat{\theta}$.

Definition: (Likelihood function)

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{T}}(\theta)=\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}, \theta\right)=\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}, \theta_{1}, \ldots, \theta_{\mathrm{p}}\right) . \\
& l_{\mathrm{T}}(\theta)=\ln \left[\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}, \theta\right)\right]=\ln \left[\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}, \theta_{1}, \ldots, \theta_{\mathrm{p}}\right)\right] .
\end{aligned}
$$

Note: If $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$ is a RS,

$$
l_{\mathrm{T}}(\theta)=\Sigma_{\mathrm{t}=1}^{\mathrm{T}} \ln \left[\mathrm{f}\left(\mathrm{x}_{\mathrm{t}}, \theta\right)\right]=\Sigma_{\mathrm{t}=1}^{\mathrm{T}} \ln \left[\mathrm{f}\left(\mathrm{x}_{\mathrm{t}}, \theta_{1}, \ldots, \theta_{\mathrm{p}}\right)\right] .
$$

Definition: (MLE)

$\operatorname{MLE} \hat{\theta} \max . l_{\mathrm{T}}(\theta)$ given data points $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}$:

$$
\frac{\partial l_{T}(\hat{\theta})}{\partial \theta}=\left[\begin{array}{c}
\partial l_{T}(\hat{\theta}) / \partial \theta_{1} \\
\partial l_{T}(\hat{\theta}) / \partial \theta_{2} \\
\vdots \\
\partial l_{T} / \partial \theta_{p}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]=0_{p \times 1} .
$$

Theorem:
Let $\hat{\theta}$ be MLE. If $\mathrm{E}(\hat{\theta})=\theta_{o}$, it is efficient.

Theorem:
Let $\hat{\theta}$ be MLE. Suppose $\mathrm{E}(\hat{\theta}) \neq \theta_{0}$. Suppose $\exists \mathrm{g}(\hat{\theta})_{\mathrm{p} \times 1} \ni \mathrm{E}[\mathrm{g}(\hat{\theta})]=\theta_{0}$. Then, $\mathrm{g}(\hat{\theta})$ is efficient.

EX:
Let x_{t} be iid with $N\left(\mu, \sigma^{2}\right)$ [suppressing subscript " o " from μ and σ^{2}]. Let $\theta=(\mu, v)^{\prime}$ where $v=\sigma^{2}$. Note that:

$$
\begin{aligned}
& f\left(x_{t}, \theta\right)=\frac{1}{\sqrt{2 \pi v}} \exp \left[-\frac{\left(x_{t}-\mu\right)^{2}}{2 v}\right]=(2 \pi)^{-1 / 2}(v)^{-1 / 2} \exp \left[-\frac{\left(x_{t}-\mu\right)^{2}}{2 v}\right] . \\
& \ln \left[f\left(x_{t}, \theta\right)\right]=(-1 / 2) \ln (2 \pi)-(1 / 2) \ln (v)-\frac{\left(x_{t}-\mu\right)^{2}}{2 v} . \\
& l_{T}(\theta)=-\frac{T}{2} \ln (2 \pi)-\frac{T}{2} \ln v-\frac{\Sigma_{t=1}^{T}\left(x_{t}-\mu\right)^{2}}{2 v} .
\end{aligned}
$$

For MLE, solve:
(1) : $\frac{\partial l_{T}}{\partial \mu}=-\frac{1}{2 v} \Sigma_{t=1}^{T} 2\left(x_{t}-\mu\right)(-1)=\frac{\Sigma_{t=1}^{T}\left(x_{t}-\mu\right)}{v}=0$,
(2) : $\frac{\partial l_{T}}{\partial v}=-\frac{T}{2 v}+\frac{\Sigma_{t=1}^{T}\left(x_{t}-\mu\right)^{2}}{2 v^{2}}=0$.

From (1):

$$
\text { (3) : } \Sigma_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}}-\mu\right)=0 \rightarrow \Sigma_{\mathrm{t}} \mathrm{x}_{\mathrm{t}}-\mathrm{T} \mu=0
$$

$$
\rightarrow \hat{\mu}_{\mathrm{ML}}=(1 / \mathrm{T}) \Sigma_{\mathrm{t}} \mathrm{x}_{\mathrm{t}}=\overline{\mathrm{x}} .
$$

Substituting (3) into (2):

$$
-\mathrm{Tv}+\Sigma_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}}-\hat{\mu}_{\mathrm{ML}}\right)^{2}=0 \rightarrow \hat{v}_{\mathrm{ML}}=(1 / \mathrm{T}) \Sigma_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}}-\hat{\mu}_{\mathrm{ML}}\right)^{2}=(1 / \mathrm{T}) \Sigma_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}}-\overline{\mathrm{x}}\right)^{2} .
$$

Thus,

$$
\hat{\theta}_{M L}=\binom{\hat{\mu}_{M L}}{\hat{v}_{M L}}=\binom{\bar{x}}{\frac{1}{T} \Sigma_{t=1}^{T}\left(x_{t}-\bar{x}\right)^{2}} .
$$

Note:

- $\mathrm{E}\left(\hat{\mu}_{\mathrm{ML}}\right)=\mathrm{E}(\overline{\mathrm{x}})=\mu_{\mathrm{o}} \rightarrow$ unbiased \rightarrow efficient.
- $E\left(\hat{\mathrm{v}}_{\mathrm{ML}}\right)=\left\{\left({ }_{\mathrm{T}}-1\right) / \mathrm{T}\right\} \sigma_{\mathrm{o}}{ }^{2}$ (by the fact that $\mathrm{E}\left[\left(1 /(\mathrm{T}-1) \Sigma_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}}-\overline{\mathrm{x}}\right)^{2}\right]=\sigma_{\mathrm{o}}{ }^{2}\right)$
\rightarrow biased.
- Let $g\left(\hat{\mathrm{v}}_{\mathrm{ML}}\right)=[\mathrm{T} /(\mathrm{T}-1)] \hat{\mathrm{v}}_{\mathrm{ML}}$.

$$
\begin{aligned}
& \rightarrow \mathrm{E}\left[\mathrm{~g}\left(\hat{\mathrm{v}}_{\mathrm{ML}}\right)\right]=\sigma_{\mathrm{o}}^{2} . \\
& \rightarrow \mathrm{g}\left(\hat{\mathrm{v}}_{\mathrm{ML}}\right)=[1 /(\mathrm{T}-1)] \Sigma_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}}-\overline{\mathrm{x}}\right)^{2}=\mathrm{s}_{\mathrm{x}}^{2} \text { is efficient. }
\end{aligned}
$$

[9] Large-Sample Theories

(1) Motivation:

- $\hat{\theta}_{\mathrm{T}}$: an estimator from a sample of size $\mathrm{T},\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$
- What would happen to $\hat{\theta}_{\mathrm{T}}$ if $\mathrm{T} \rightarrow \infty$?
- What do we wish?
[We wish $\hat{\theta}_{\mathrm{T}}$ becomes closer to θ_{o} as T increases.]
(2) Main Points:
- Rough Definition of Consistency:

Suppose that distribution of $\hat{\theta}_{\mathrm{T}}$ becomes condensed around θ_{o} more and more as T increase. Then, we say that $\hat{\theta}_{\mathrm{T}}$ is a consistent estimator. And we use the following notation:

$$
\operatorname{plim}_{\mathrm{T}-\infty} \hat{\theta}_{\mathrm{T}}=\theta_{\mathrm{o}}\left(\text { or } \hat{\theta}_{\mathrm{T}} \overrightarrow{\mathrm{p}}_{\mathrm{p}} \theta_{\mathrm{o}}\right) .
$$

- Relation between unbiasedness and consistency:
- Biased estimators could be consistent.

EX: Suppose that $\tilde{\theta}$ is unbiased and consistent.

Define $\hat{\theta}=\tilde{\theta}+1 / T$.
Clearly, $\mathrm{E}(\hat{\theta})=\theta_{\mathrm{o}}+1 / \mathrm{T} \neq \theta_{\mathrm{o}}$ (biased)
But, $\operatorname{plim}_{\mathrm{T} \rightarrow \infty} \hat{\theta}=\operatorname{plim}_{\mathrm{T}-\infty} \tilde{\theta}=\theta$ (consistent)

- A unbiased estimator $\hat{\theta}$ is consistent if $\operatorname{var}(\hat{\theta}) \rightarrow 0$ as $T \rightarrow \infty$.

EX: Suppose that $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$ is a RS from $\mathrm{N}\left(\mu_{0}, \sigma_{0}{ }^{2}\right)$.
$E(\bar{x})=\mu_{0}$.
$\operatorname{var}(\overline{\mathrm{x}})=\sigma_{\mathrm{o}}{ }^{2} / \mathrm{T} \rightarrow 0$ as $\mathrm{T} \rightarrow \infty$.
Thus, $\overline{\mathrm{x}}$ is a consistent estimator of μ_{0}.

- Law of Large Numbers (LLN)
A. Case of Scalar Random variables:
- Komogorov's Strong LLN:

Suppose that $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$ is a RS from a population with μ_{o} and $\sigma_{\mathrm{o}}{ }^{2}$.
Then, $\operatorname{plim} \overline{\mathrm{x}}=\mu_{\mathrm{o}}$.

- Generalized Weak LLN (GWLLN):
- $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$ is a sample (not necessarily RS)
- Define $E\left(x_{1}\right)=\mu_{o, 1}, \ldots, E\left(x_{T}\right)=\mu_{o, T}$.
- Define $\operatorname{var}\left(\mathrm{x}_{1}\right)=\sigma_{\mathrm{o}, 1}{ }^{2}, \ldots, \operatorname{var}\left(\mathrm{X}_{\mathrm{T}}\right)=\sigma_{\mathrm{o}, \mathrm{T}}{ }^{2}$. Assume that $\sigma_{o, 1}{ }^{2}, \ldots, \sigma_{o, T}{ }^{2}<\infty$.
- Then, under suitable assumptions, $\operatorname{plim} \overline{\mathrm{x}}=\lim \frac{1}{\mathrm{~T}} \Sigma_{\mathrm{t}} \mu_{\mathrm{o}, \mathrm{t}}$.
B. Case of Vector Random Variables:
- GWLLN
- $\mathrm{x}_{\mathrm{t}}: \mathrm{p} \times 1$ random vector.
- $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$ is a sample.
- Let $\mathrm{E}\left(\mathrm{x}_{1}\right)=\mu_{\mathrm{o}, 1}(\mathrm{p} \times 1), \ldots, \mathrm{E}\left(\mathrm{x}_{\mathrm{T}}\right)=\mu_{\mathrm{o}, \mathrm{T}}$.
- Assume that $\operatorname{Cov}\left(\mathrm{x}_{\mathrm{j}}\right)$ are well-defined and finite.
- Then, under suitable assumptions.

$$
\operatorname{plim} \overline{\mathrm{x}}=\lim \frac{1}{\mathrm{~T}} \Sigma_{\mathrm{t}} \mu_{\mathrm{o}, \mathrm{t}} .
$$

- Central Limit Theorems (CLT)
A. Case of Scalar Random Variables:
- Motivation:
- Suppose that $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$ is a RS from a population with μ_{o} and $\sigma_{\mathrm{o}}{ }^{2}$.
- We know $\overline{\mathrm{x}} \rightarrow \mu_{\mathrm{o}}$ as $\mathrm{T} \rightarrow \infty$. But we can never have an infinitely large sample!!!
- For finite T, $\overline{\mathrm{x}}$ is still a random variable. What statistical distribution could approximate the true distribution of \bar{x} ?
- Lindberg-Levy CLT:
- Suppose that $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$ is a RS from a population with μ_{o} and $\sigma_{\mathrm{o}}{ }^{2}$.
- Then, $\sqrt{T}\left(\bar{x}-\mu_{o}\right) \rightarrow{ }_{d} N\left(0, \sigma_{o}{ }^{2}\right)$, or equivalently, $\sqrt{T} \frac{\bar{x}-\mu_{o}}{\sigma_{o}} \rightarrow{ }_{d} N(0,1)$.
- Implication of CLT:
- $\sqrt{\mathrm{T}}\left(\overline{\mathrm{x}}-\mu_{\mathrm{o}}\right) \approx \mathrm{N}\left(0, \sigma_{\mathrm{o}}{ }^{2}\right)$, if T is large.
- $\mathrm{E}\left[\sqrt{\mathrm{T}}\left(\overline{\mathrm{x}}-\mu_{\mathrm{o}}\right)\right]=\sqrt{\mathrm{T}}\left[\mathrm{E}(\overline{\mathrm{x}})-\mu_{\mathrm{o}}\right] \approx 0 \rightarrow \mathrm{E}(\overline{\mathrm{x}}) \approx \mu_{0}$.
- $\operatorname{var}\left[\sqrt{\mathrm{T}}\left(\overline{\mathrm{x}}-\mu_{\mathrm{o}}\right)\right]=\operatorname{Tvar}\left(\overline{\mathrm{x}}-\mu_{\mathrm{o}}\right)=\operatorname{Tvar}(\overline{\mathrm{x}}) \approx \sigma_{\mathrm{o}}{ }^{2} \rightarrow \operatorname{var}(\overline{\mathrm{x}}) \approx \sigma_{\mathrm{o}}{ }^{2} / \mathrm{T}$.
- $\overline{\mathrm{x}} \approx \mathrm{N}\left(\mu_{\mathrm{o}}, \sigma_{\mathrm{o}}^{2} / \mathrm{T}\right)$, if T is large.
B. Case of Random vectors:
- GCLT
- $\left\{\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{T}}\right\}$: a sequence of $\mathrm{p} \times 1$ random vectors.
- For any $t, E\left(y_{t}\right)=0$ and $\operatorname{Cov}\left(y_{t}\right)$ is well defined and finite.
- Under some suitable conditions (acceptabe for Econometrics I, II),

$$
\frac{1}{\sqrt{\mathrm{~T}}} \Sigma_{\mathrm{t}=1}^{\mathrm{T}} \mathrm{y}_{\mathrm{t}} \quad \rightarrow_{\mathrm{d}} \quad \mathrm{~N}\left(0, \lim _{\mathrm{T} \rightarrow \infty} \frac{1}{\mathrm{~T}} \operatorname{Cov}\left(\Sigma_{\mathrm{t}=1}^{\mathrm{T}} \mathrm{y}_{\mathrm{t}}\right)\right) .
$$

- Note:
- $\operatorname{Cov}\left(y_{t}\right)\left[\operatorname{var}\left(y_{t}\right)\right.$ if y_{t} is a scalar] could differ across different t.
- The y_{t} could be correlated as long as $\lim _{n \rightarrow \infty} \operatorname{cov}\left(y_{t}, y_{t+n}\right)=0$ (if the y_{t} are stationary.
- If $E\left(y_{t} \mid y_{t-1}, y_{t-2}, \ldots, y_{1}\right)=0$ (Martingale Difference Sequence), the y_{t} 's are linearly uncorrelated. Then,

$$
\frac{1}{\sqrt{\mathrm{~T}}} \Sigma_{\mathrm{t}=1}^{\mathrm{T}} \mathrm{y}_{\mathrm{t}} \quad \rightarrow_{\mathrm{d}} \quad \mathrm{~N}\left(0, \lim _{\mathrm{T} \rightarrow \infty} \frac{1}{\mathrm{~T}} \Sigma_{\mathrm{t}=1}^{\mathrm{T}} \operatorname{Cov}\left(\mathrm{y}_{\mathrm{t}}\right)\right)
$$

[Technical Details]

(3) Convergency in probability

Definition:

When b and c are scalars, $|\mathrm{b}-\mathrm{c}|=$ absolute value of $(\mathrm{b}-\mathrm{c})$.
When $\mathrm{b}=\left[\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{p}}\right]^{\prime}$ and $\mathrm{c}=\left[\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{p}}\right]^{\prime}$ be $\mathrm{p} \times 1$ vectors,

$$
|b-c|(\text { norm })=\sqrt{\left(b_{1}-c_{1}\right)^{2}+\left(b_{2}-c_{2}\right)^{2}+\ldots+\left(b_{p}-c_{p}\right)^{2}} .
$$

Definition: (Convergency in probability, Weak Convergency)
$\hat{\theta}_{\mathrm{T}}$ converges in probability to c iff
$\lim _{T-\infty} \operatorname{Pr}\left[\left|\hat{\theta}_{T}-\mathrm{c}\right|<\epsilon\right]=1$, for any small $\epsilon>0$.
Or equivalently,
$\lim _{\mathrm{T} \rightarrow \infty} \operatorname{Pr}\left[\left|\hat{\theta}_{\mathrm{T}}-\mathrm{c}\right|>\epsilon\right]=0$, for any small $\epsilon>0$.
If so, we say $\operatorname{plim}_{\mathrm{T}-\infty} \hat{\theta}_{T}=\mathrm{c}$ or $\hat{\theta}_{\mathrm{T}} \rightarrow_{\mathrm{p}} \mathrm{c}$.

EX 1: $\quad \hat{\theta}_{\mathrm{T}}=0$ with $\mathrm{pr}=1-(1 / \mathrm{T}) ;=1$ with $\mathrm{pr}=1 / \mathrm{T}$.
Choose $0<\epsilon<1$:

$$
\begin{aligned}
& \operatorname{Pr}\left(\left|\hat{\theta}_{\mathrm{T}}-0\right|>\epsilon\right)=\operatorname{Pr}\left(\left|\hat{\theta}_{\mathrm{T}}\right|>\epsilon\right)=\operatorname{Pr}\left(\hat{\theta}_{\mathrm{T}}>\epsilon\right)=1 / \mathrm{T} \\
& \Rightarrow \lim _{\mathrm{T}-\infty} \operatorname{Pr}\left(\left|\hat{\theta}_{\mathrm{T}}-0\right|>\epsilon\right)=0 \\
& \Rightarrow \hat{\theta}_{\mathrm{T}} \overrightarrow{\mathrm{p}} 0 .
\end{aligned}
$$

EX 2: $\quad \hat{\theta}_{\mathrm{T}}=0$ with $\mathrm{pr}=1-(1 / \mathrm{T}) ;=\mathrm{T}$ with $\mathrm{pr}=1 / \mathrm{T}$.
Choose $0<\epsilon<1$:

$$
\begin{aligned}
& \operatorname{Pr}\left(\left|\hat{\theta}_{\mathrm{T}}-0\right|>\epsilon\right)=\operatorname{Pr}\left(\left|\hat{\theta}_{\mathrm{T}}\right|>\epsilon\right)=\operatorname{Pr}\left(\hat{\theta}_{\mathrm{T}}>\epsilon\right)=1 / \mathrm{T} \\
& \Rightarrow \lim _{\mathrm{T}-\infty} \operatorname{Pr}\left(\left|\hat{\theta}_{\mathrm{T}}-0\right|>\epsilon\right)=0 \\
& \Rightarrow \hat{\theta}_{\mathrm{T}} \rightarrow_{\mathrm{p}} 0 .
\end{aligned}
$$

Digression to other stronger convergency:
Definition: (Convergence in mean square)
$\hat{\theta}_{\mathrm{T}}$ converges in mean square to c iff $\lim _{\mathrm{T} \rightarrow \infty} \mathrm{E}\left[\left|\hat{\theta}_{\mathrm{T}}-\mathrm{c}\right|^{2}\right]=0$. For this case, we say

$$
\hat{\theta}_{\mathrm{T}} \rightarrow \mathrm{c}, \mathrm{~m} . \mathrm{s} .
$$

Theorem: m.s. \Rightarrow p.
Proof:

Chebychev's inequality (see Greene) says:
For any $\epsilon>0, \operatorname{Pr}\left(\left|\hat{\theta}_{\mathrm{T}}-\mathrm{c}\right|>\epsilon\right) \leq \mathrm{E}\left(\left|\hat{\theta}_{\mathrm{T}}-\mathrm{c}\right|^{2}\right) / \epsilon^{2}$.
$\Rightarrow \lim _{\mathrm{T}-\infty} \operatorname{Pr}\left(\left|\hat{\theta}_{\mathrm{T}}-\mathrm{c}\right|>\epsilon\right)=\lim _{\mathrm{T}-\infty} \mathrm{E}\left(\left|\hat{\theta}_{\mathrm{T}}-\mathrm{c}\right|^{2}\right) / \epsilon^{2}=0$.

Fact: p. does not necessarily imply m.s.

EX 1: $\quad \hat{\theta}_{\mathrm{T}}=0$ with $\mathrm{pr}=1-(1 / \mathrm{T}) ;=1$ with $\mathrm{pr}=1 / \mathrm{T}: \quad \hat{\theta}_{\mathrm{T}} \rightarrow_{\mathrm{p}} 0$.

- Observe $\mathrm{E}\left[\left|\hat{\theta}_{\mathrm{T}}-0\right|^{2}\right]=\mathrm{E}\left[\hat{\theta}_{\mathrm{T}}{ }^{2}\right]=0^{2} \times[1-(1 / \mathrm{T})]+1^{2} \times(1 / \mathrm{T})=1 / \mathrm{T}$

$$
\begin{aligned}
& \Rightarrow \lim _{\mathrm{T}-\infty} \mathrm{E}\left[\left|\hat{\theta}_{\mathrm{T}}-0\right|^{2}\right]=0 . \\
& \Rightarrow \hat{\theta}_{\mathrm{T}} \rightarrow 0 \text { m.s.. }
\end{aligned}
$$

EX 2: $\quad \hat{\theta}_{\mathrm{T}}=0$ with $\mathrm{pr}=1-(1 / \mathrm{T}) ;=\mathrm{T}$ with $\mathrm{pr}=1 / \mathrm{T}$.

- $\hat{\theta}_{\mathrm{T}} \rightarrow_{\mathrm{p}} 0$.
- Observe $\mathrm{E}\left[\left|\hat{\theta}_{\mathrm{T}}-0\right|^{2}\right]=\mathrm{E}\left[\hat{\theta}_{\mathrm{T}}{ }^{2}\right]=0^{2} \times[1-(1 / \mathrm{T})]+\mathrm{T}^{2} \times(1 / \mathrm{T})=\mathrm{T}$
$\Rightarrow \lim _{\mathrm{T}-\infty} \mathrm{E}\left[\left|\hat{\theta}_{\mathrm{T}}-0\right|^{2}\right]=\infty$.
\Rightarrow not m.s.

Implication:

- In EX 1 above, $\hat{\theta}_{\mathrm{T}}$ is p and ms. But in EX 2 above, $\hat{\theta}_{\mathrm{T}}$ is p., but not m.s.
- To be p., $\operatorname{Pr}\left(\hat{\theta}_{\mathrm{T}}\right.$ deviates from c) should become increasingly small as $\mathrm{T} \rightarrow \infty$. But this is not enough for m.s.. To be m.s., for any possible value of $\hat{\theta}_{\mathrm{T}}$, the size of $\mid \hat{\theta}_{\mathrm{T}}$-c \mid should not grow too fast as $T \rightarrow \infty$. For example, if we assume $\operatorname{Pr}\left(\hat{\theta}_{\mathrm{T}}=\mathrm{T}^{1 / 4}\right)=1 / \mathrm{T}$ instead, we can show that $\hat{\theta}_{\mathrm{T}}$ $\rightarrow \mathrm{c}$, m.s.

Definition: (Almost sure convergency, Strong Convergency)

$\hat{\theta}_{\mathrm{T}}$ converges almost surely to c , iff $\operatorname{Pr}\left[\lim _{\mathrm{T} \rightarrow \infty} \hat{\theta}_{\mathrm{T}}=\mathrm{c}\right]=1$. For this case, we say: $\hat{\theta}_{\mathrm{T}} \rightarrow \mathrm{c}$, a.s..

Theorem: a.s. \Rightarrow p. (See Rao (1973).)

Fact: 1) p. does not implies a.s.
2) No clear relation between a.s. and m.s. with few exceptions.

Theorem:
Suppose $\lim _{\mathrm{T}-\infty} \mathrm{E}\left(\left|\hat{\theta}_{\mathrm{T}}-\mathrm{c}\right|^{2}\right)=0$ and $\Sigma_{\mathrm{T}=1}^{\infty} \mathrm{E}\left(\left|\hat{\theta}_{\mathrm{T}}-\mathrm{c}\right|^{2}\right)<\infty$. Then, $\hat{\theta}_{\mathrm{T}} \rightarrow \mathrm{c}$, a.s.. (See Rao (1973).)

EX 1: $\quad \hat{\theta}_{\mathrm{T}}=0$ with $\mathrm{pr}=1-(1 / \mathrm{T}) ;=1$ with $\mathrm{pr}=1 / \mathrm{T}$.

- $\hat{\theta}_{\mathrm{T}} \rightarrow_{\mathrm{p}} 0$ and $\hat{\theta}_{\mathrm{T}} \rightarrow 0$, m.s..
- But, can't determine whether $\hat{\theta}_{\mathrm{T}} \rightarrow 0$, a.s..
(Observe that $\Sigma_{\mathrm{T}=1}^{\infty} \mathrm{E}\left(\left|\hat{\theta}_{\mathrm{T}}-\mathrm{c}\right|^{2}\right)=\Sigma_{\mathrm{T}=1}^{\infty}(1 / \mathrm{T})=\infty$. .)
EX 2: $\quad \hat{\theta}_{\mathrm{T}}=0$ with $\mathrm{pr}=1-\left(1 / \mathrm{T}^{2}\right) ;=1$ with $\mathrm{pr}=1 / \mathrm{T}^{2}$.
- $\hat{\theta}_{\mathrm{T}} \rightarrow_{\mathrm{p}} 0$.
- Observe $\mathrm{E}\left[\left|\hat{\theta}_{\mathrm{T}}-0\right|^{2}\right]=\mathrm{E}\left[\hat{\theta}_{\mathrm{T}}{ }^{2}\right]=0^{2} \times\left[1-\left(1 / \mathrm{T}^{2}\right)\right]+1^{2} \times\left(1 / \mathrm{T}^{2}\right)=1 / \mathrm{T}^{2}$:
- $\lim _{\mathrm{T} \rightarrow \infty} \mathrm{E}\left[\left|\hat{\theta}_{\mathrm{T}}-0\right|^{2}\right]=0$.
$\Rightarrow \quad \Sigma_{\mathrm{T}=1}^{\infty} \mathrm{E}\left(\left|\hat{\theta}_{\mathrm{T}}-\mathrm{c}\right|^{2}\right)=\Sigma_{\mathrm{T}=1}^{\infty}\left(1 / \mathrm{T}^{2}\right)<\infty$
$\Rightarrow \hat{\theta}_{\mathrm{T}} \rightarrow 0$, a.s..

Implication:
EX 1: $\operatorname{Pr}\left(\hat{\theta}_{\mathrm{T}}=1\right)=1 / \mathrm{T}$.
EX 2: $\operatorname{Pr}\left(\hat{\theta}_{\mathrm{T}}=1\right)=1 / \mathrm{T}^{2}$.
\Rightarrow To be a.s., $\operatorname{Pr}\left(\hat{\theta}_{\mathrm{T}}\right.$ deviates from c) should decrease rapidly as $\mathrm{T} \rightarrow \infty$.
End of Digression

Definition:

$\hat{\theta}_{\mathrm{T}}$: an estimator of θ_{0}.
We say that $\hat{\theta}_{\mathrm{T}}$ is consistent, iff $\operatorname{plim}_{\mathrm{T} \rightarrow \infty} \hat{\theta}_{\mathrm{T}}=\theta_{\mathrm{o}}$.

Question:

An example for a consistent estimator?

Theorem: (Generalized Weak Law of Large Numbers, GWLLN)
$\left\{y_{1}, \ldots, y_{T}\right\}$: a sequence of $\mathrm{p} \times 1$ random vectors.
For any $t, E\left(y_{t}\right)$ and $\operatorname{Cov}\left(y_{t}\right)$ are well defined and finite.
$\overline{\mathrm{y}}_{\mathrm{T}}=(1 / \mathrm{T}) \Sigma_{\mathrm{t}=1}^{\mathrm{T}} \mathrm{y}_{\mathrm{t}}$ (mean of the sequence).

Under some suitable conditions (acceptable for Econometrics I, II),

$$
\overline{\mathrm{y}}_{\mathrm{T}}=(1 / \mathrm{T}) \Sigma_{\mathrm{t}=1}^{\mathrm{T}} \mathrm{y}_{\mathrm{t}} \rightarrow{ }_{\mathrm{p}} \lim _{\mathrm{T}-\infty}(1 / \mathrm{T}) \Sigma_{\mathrm{t}=1}^{\mathrm{T}} \mathrm{E}\left(\mathrm{y}_{\mathrm{t}}\right)
$$

Note:

1) Both $E\left(y_{t}\right)$ and $\operatorname{Cov}\left(y_{t}\right)\left[\operatorname{var}\left(y_{t}\right)\right.$ if y_{t} is a scalar] could differ across different t.
2) The y_{t} could be correlated as long as $\lim _{n-\infty} \operatorname{cov}\left(y_{t}, y_{t+n}\right)=0$.

EX: $\quad\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}: \mathrm{RS}$ from a population with $\mathrm{E}(\mathrm{x})=\mu_{\mathrm{o}}$ and $\operatorname{var}(\mathrm{x})=\sigma_{\mathrm{o}}{ }^{2}$.

- By Kolmogorov's SLLN, $\overline{\mathrm{x}}=(1 / \mathrm{T}) \Sigma_{\mathrm{t}} \mathrm{x}_{\mathrm{t}} \rightarrow \mu_{\mathrm{o}}$, a.s..
- $\overline{\mathrm{x}} \overrightarrow{\mathrm{p}}_{\mathrm{p}} \mu_{\mathrm{o}}$.
[Proof by GWLLN]

$$
\begin{aligned}
(1 / T) & \Sigma_{\mathrm{t}} \mathrm{E}\left(\mathrm{x}_{\mathrm{t}}\right)=(1 / \mathrm{T}) \Sigma_{\mathrm{t}} \mu_{\mathrm{o}}=(1 / \mathrm{T}) \mathrm{T} \mu_{\mathrm{o}}=\mu_{\mathrm{o}} \\
& \rightarrow \lim _{\mathrm{T}-\infty}(1 / \mathrm{T}) \Sigma_{\mathrm{t}} \mathrm{E}\left(\mathrm{x}_{\mathrm{t}}\right)=\lim _{\mathrm{t} \rightarrow \infty} \mu_{\mathrm{o}}=\mu_{\mathrm{o}} \\
& \rightarrow \operatorname{By~GWLLN},^{\mathrm{x}} \rightarrow_{\mathrm{p}} \mu_{\mathrm{o}} .
\end{aligned}
$$

Theorem: (Slutzky)

$$
\operatorname{plim}_{\mathrm{T}-\infty} \hat{\theta}_{\mathrm{T}}=\theta_{0} .
$$

$$
\mathrm{g}(\theta): \text { a vector of continuous functions of } \theta \text {. }
$$

$$
\Rightarrow \operatorname{plim}_{\mathrm{T}-\infty} \mathrm{g}\left(\hat{\theta}_{\mathrm{T}}\right)=\mathrm{g}\left(\theta_{\mathrm{o}}\right)
$$

EX: $\quad \theta$ is a scalar and $\hat{\theta}_{T} \vec{p}_{p} \theta_{0}$. $\operatorname{plim}_{\mathrm{T} \rightarrow \infty} \hat{\theta}_{\mathrm{T}}{ }^{2}=\theta_{\mathrm{o}}^{2} ; \operatorname{plim}_{\mathrm{T} \rightarrow \infty} 1 / \hat{\theta}_{\mathrm{T}}=1 / \theta$.
EX: $\quad\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}:$ Random sample from a population with μ_{o} and $\sigma_{\mathrm{o}}{ }^{2}$. $\operatorname{plim} \overline{\mathrm{x}} / \mathrm{s}_{\mathrm{x}}^{2}=[\operatorname{plim} \overline{\mathrm{x}}] /\left[\operatorname{plim~s}_{\mathrm{x}}{ }^{2}\right]=\mu_{\mathrm{o}} / \sigma_{\mathrm{o}}{ }^{2}$.
EX: $\quad \operatorname{plim}\left(\bar{x}+\bar{x}^{2}+\bar{x} s_{x}^{2}+s_{x}^{2}\right)=\mu_{o}+\mu_{o}{ }^{2}+\mu_{o} \sigma_{o}{ }^{2}+\sigma_{o}{ }^{2}$.

Rules for Probability limits:

1) W_{T} is an square matrix of random variables and plimW_{T} is invertible. Then, $\operatorname{plim}\left[\mathrm{W}_{\mathrm{T}}\right]^{-1}=\left[\operatorname{plim} \mathrm{W}_{\mathrm{T}}\right]^{-1}$.
2) X_{T} and Y_{T} are conformable matrices of random variables Then,

$$
\operatorname{plim} X_{T} Y_{T}=\left[p \lim X_{T}\right]\left[p \lim Y_{T}\right]
$$

(4) Convergency in distribution

Definition: (Convergency in distribution)
$\mathrm{F}(\mathrm{z})$: cdf of a random vector z .
z_{T} : a random vector with $\operatorname{cdf} \mathrm{F}_{\mathrm{T}}\left(\mathrm{z}_{\mathrm{T}}\right)$.
\Rightarrow We say z_{T} converges in distribution to z , iff $\lim _{\mathrm{T}-\infty} \mathrm{F}_{\mathrm{T}}(\mathrm{z})=\mathrm{F}(\mathrm{z})$ for a.
$\Rightarrow \mathrm{Z}_{\mathrm{T}} \mathrm{a}_{\mathrm{d}} \mathrm{Z}$.

Fact: d. differs from p.

EX: Two dice A and B.
A is fair one: $f(z)=1 / 6, z=1,2, \ldots, 6$.
B is unfair:
z_{T} be a possible outcome from the T^{\prime} th trial with
$\mathrm{f}_{\mathrm{T}}\left(\mathrm{Z}_{\mathrm{T}}\right)=1 / 6+1 /(\mathrm{T}+100)$ for $\mathrm{z}_{\mathrm{T}}=1,2,3$, $\mathrm{f}_{\mathrm{T}}\left(\mathrm{z}_{\mathrm{T}}\right)=1 / 6-1 /(\mathrm{T}+100)$ for $\mathrm{z}_{\mathrm{T}}=4,5,6$.

As $\mathrm{T} \rightarrow \infty$, the unfairness of B decreases.

$$
\Rightarrow \mathrm{z}_{\mathrm{T}} \overrightarrow{\mathrm{~d}}_{\mathrm{d}} \mathrm{z}
$$

But a realized value of z_{T} may not equal that of x at T^{\prime} th trial, even if $\mathrm{T} \rightarrow \infty$.

Theorem: (Mann and Wald)
Suppose $g(z)$ is a continuous function. Then,

$$
\left(\mathrm{z}_{\mathrm{T}} \rightarrow_{\mathrm{d}} \mathrm{z}\right) \Rightarrow\left(\mathrm{g}\left(\mathrm{z}_{\mathrm{T}}\right) \rightarrow_{\mathrm{d}} \mathrm{~g}(\mathrm{z})\right) .
$$

Theorem:
A_{T} : a random matrix with plim $\mathrm{A}_{\mathrm{T}}=\mathrm{A}$.
z_{T} : a random vector $\rightarrow_{\mathrm{d}} \mathrm{z}$.

$$
\Rightarrow \mathrm{A}_{\mathrm{T}} \mathrm{z}_{\mathrm{T}} \rightarrow_{\mathrm{d}} \mathrm{Az}
$$

EX: (Central Limit Theorem, CLT)
$\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$: RS from a population with μ_{o} and $\sigma_{\mathrm{o}}{ }^{2}$.
\Rightarrow Lindberg-Levy CLT says

$$
\sqrt{\mathrm{T}}\left(\overline{\mathrm{x}}-\mu_{\mathrm{o}}\right) \quad \rightarrow_{\mathrm{d}} \quad \mathrm{~N}\left(0, \sigma_{\mathrm{o}}^{2}\right) .
$$

Theorem: (Generalized CLT, GCLT)
$\left\{y_{1}, \ldots, y_{T}\right\}$: a sequence of $p \times 1$ random vectors.
For any $\mathrm{t}, \mathrm{E}\left(\mathrm{y}_{\mathrm{t}}\right)=0$ and $\operatorname{Cov}\left(\mathrm{y}_{\mathrm{t}}\right)$ is well defined and finite.
Under some suitable conditions (acceptabe for Econometrics I, II),

$$
\frac{1}{\sqrt{\mathrm{~T}}} \Sigma_{\mathrm{t}=1}^{\mathrm{T}} \mathrm{y}_{\mathrm{t}} \quad \rightarrow_{\mathrm{d}} \quad \mathrm{~N}\left(0, \lim _{\mathrm{T} \rightarrow \infty} \frac{1}{\mathrm{~T}} \operatorname{Cov}\left(\Sigma_{\mathrm{t}=1}^{\mathrm{T}} \mathrm{y}_{\mathrm{t}}\right)\right) .
$$

Note:

1) $\operatorname{Cov}\left(y_{t}\right)\left[\operatorname{var}\left(y_{t}\right)\right.$ if y_{t} is a scalar] could differ across different t.
2) The y_{t} could be correlated as long as $\lim _{n-\infty} \operatorname{cov}\left(y_{t}, y_{t+n}\right)=0$.

EX: (Lindberg-Levy CLT)
$\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$: RS from a population with μ_{o} and $\sigma_{\mathrm{o}}{ }^{2}$.

$$
\Rightarrow \text { Let } y_{t}=x_{t}-\mu_{\mathrm{o}} .
$$

$$
\mathrm{E}\left(\mathrm{y}_{\mathrm{t}}\right)=\mathrm{E}\left(\mathrm{x}_{\mathrm{t}}\right)-\mu_{\mathrm{o}}=0 ;
$$

$$
\operatorname{var}\left(\mathrm{y}_{\mathrm{t}}\right)=\operatorname{var}\left(\mathrm{x}_{\mathrm{t}}\right)=\sigma_{\mathrm{o}}^{2} .
$$

$$
[1 / \sqrt{\mathrm{T}}] \Sigma_{\mathrm{t}} \mathrm{y}_{\mathrm{t}}=[1 / \sqrt{\mathrm{T}}]\left[\Sigma_{\mathrm{t}} \mathrm{x}_{\mathrm{t}}-\mathrm{T} \mu_{\mathrm{o}}\right]=\sqrt{\mathrm{T}}\left(\overline{\mathrm{x}}-\mu_{\mathrm{o}}\right)
$$

$$
(1 / \mathrm{T}) \operatorname{var}\left(\Sigma_{\mathrm{t}} \mathrm{y}_{\mathrm{t}}\right)=(1 / \mathrm{T}) \operatorname{var}\left(\Sigma_{\mathrm{t}} \mathrm{x}_{\mathrm{t}}-\mathrm{T} \mu\right)=(1 / \mathrm{T}) \operatorname{var}\left(\Sigma_{\mathrm{t}} \mathrm{x}_{\mathrm{t}}\right)
$$

$$
=(1 / \mathrm{T}) \Sigma_{\mathrm{t}} \operatorname{var}\left(\mathrm{x}_{\mathrm{t}}\right)=(1 / \mathrm{T}) \mathrm{T} \sigma_{\mathrm{o}}^{2}=\sigma_{\mathrm{o}}^{2}
$$

$$
\Rightarrow \lim (1 / \mathrm{T}) \operatorname{var}\left(\Sigma_{\mathrm{t}} \mathrm{y}_{\mathrm{t}}\right)=\sigma_{\mathrm{o}}^{2}
$$

$$
\Rightarrow \sqrt{\mathrm{T}}\left(\overline{\mathrm{x}}-\mu_{\mathrm{o}}\right) \rightarrow_{\mathrm{d}} \mathrm{~N}\left(0, \sigma_{\mathrm{o}}^{2}\right) .
$$

Corollary:
Assume the same things as GCLT.
Assume that the y_{t} 's are linearly uncorrelated.
Then,

$$
\frac{1}{\sqrt{\mathrm{~T}}} \Sigma_{\mathrm{t}=1}^{\mathrm{T}} \mathrm{y}_{\mathrm{t}} \quad \rightarrow_{\mathrm{d}} \quad \mathrm{~N}\left(0, \lim _{\mathrm{T}-\infty} \frac{1}{\mathrm{~T}} \Sigma_{\mathrm{t}=1}^{\mathrm{T}} \operatorname{Cov}\left(\mathrm{y}_{\mathrm{t}}\right)\right)
$$

Proof:
When y_{t} is a scalar, $\operatorname{var}\left(\Sigma_{t} y_{t}\right)=\Sigma_{t} \operatorname{var}\left(y_{t}\right)$.

Lemma:
Let $\mathrm{E}\left(\mathrm{y}_{\mathrm{t}} \mid \mathrm{y}_{\mathrm{t}-1}, \mathrm{y}_{\mathrm{t}-2}, \ldots, \mathrm{y}_{1}\right)=0$. [Martingale Difference Sequence]
Then, the y_{t} 's are linearly uncorrelated.
Proof: [Assume y_{t} is a scalar.]
Consider the case in which y_{t} is a scalar.
\Rightarrow By the law of iterative expectation, $\mathrm{E}\left(\mathrm{y}_{\mathrm{t}}\right)=0$.
\Rightarrow By the law of iterative expectation,

$$
\begin{aligned}
& E\left(y_{t+j} \mid y_{t}, y_{t-1}, \ldots, y_{1}\right)=E_{y_{t+1}, \ldots, y_{t+j-1}}\left[E\left(y_{t+j} \mid y_{t+j-1}, \ldots, y_{1}\right)\right]=E_{y_{t+1}, \ldots, y_{t+j-1}}(0)=0 . \\
\Rightarrow \operatorname{cov}\left(y_{t}, y_{t+j}\right) & =E\left[\left(y_{t}-E\left(y_{t}\right)\right)\left(y_{t+j}-E\left(y_{t+j}\right)\right)\right]=E\left(y_{t} y_{t+j}\right) \\
& =E_{y_{t}}\left[E\left(y_{t} y_{t+j} \mid y_{t}\right)\right]=E_{y_{t}}\left[y_{t} E\left(y_{t+j} \mid y_{t}\right)\right]=E_{y_{t}}(0)=0 .
\end{aligned}
$$

Theorem: (GCLT for martingale difference sequences)
$\left\{y_{1}, \ldots, y_{T}\right\}$: a sequence of $p \times 1$ random vectors.
$E\left(y_{t} \mid y_{t-1}, \ldots, y_{1}\right)=0$.
$\operatorname{Cov}\left(y_{t}\right)$ is well defined and finite.
Under some suitable conditions (acceptabe for Econometrics I, II),

$$
\frac{1}{\sqrt{\mathrm{~T}}} \Sigma_{\mathrm{t}=1}^{\mathrm{T}} \mathrm{y}_{\mathrm{t}} \quad \rightarrow_{\mathrm{d}} \quad \mathrm{~N}\left(0, \lim _{\mathrm{T} \rightarrow \infty} \frac{1}{\mathrm{~T}} \Sigma_{\mathrm{t}=1}^{\mathrm{T}} \operatorname{Cov}\left(\mathrm{y}_{\mathrm{t}}\right)\right)
$$

[10] Large-Sample Properties of MLE

A Short Digression to Matrix Algebra

Definition:

1) $g(\theta)=g\left(\theta_{1}, \ldots, \theta_{p}\right)$: a scalar function of θ.

$$
\mathrm{g}_{\mathrm{j}}=\partial \mathrm{g} / \partial \theta_{\mathrm{j}} .
$$

$$
\frac{\partial g(\theta)}{\partial \theta}=\left[\begin{array}{c}
g_{1} \\
g_{2} \\
\vdots \\
g_{p}
\end{array}\right] ; \frac{\partial g(\theta)}{\partial \theta^{\prime}}=\left[g_{1}, g_{2}, \ldots, g_{p}\right],
$$

2) $\mathrm{w}(\theta):$ a $\mathrm{m} \times 1$ vector:

$$
\Rightarrow \mathrm{w}_{\mathrm{ij}}=\partial \mathrm{w}_{\mathrm{i}}(\theta) / \partial \theta_{\mathrm{j}} .
$$

$$
\frac{\partial w(\theta)}{\partial \theta^{\prime}}=\left[\begin{array}{cccc}
w_{11} & w_{12} & \ldots & w_{1 p} \\
w_{21} & w_{22} & \ldots & w_{2 p} \\
\vdots & \vdots & & \vdots \\
w_{m 1} & w_{m 2} & \ldots & w_{m p}
\end{array}\right]_{m x p}
$$

3) $g(\theta)$: a scalar function of θ
\Rightarrow where $\mathrm{g}_{\mathrm{ij}}=\partial^{2} \mathrm{~g}(\theta) / \partial \theta_{\mathrm{i}} \partial \theta_{\mathrm{j}}$.

$$
\frac{\partial^{2} g(\theta)}{\partial \theta \partial \theta^{\prime}}=\left[\begin{array}{cccc}
g_{11} & g_{12} & \ldots & g_{1 p} \\
g_{21} & g_{22} & \ldots & g_{2 p} \\
\vdots & \vdots & & \vdots \\
g_{p 1} & g_{p 2} & \ldots & g_{p p}
\end{array}{ }_{p \times p}\right.
$$

\Rightarrow Called Hessian matrix of $g(\theta)$.

EX:
Let $\mathrm{g}(\theta)=\theta_{1}{ }^{2}+\theta_{2}{ }^{2}+\theta_{1} \theta_{2}$. Find $\partial \mathrm{g}(\theta) / \partial \theta$.
$\rightarrow\left(2 \theta_{1}+\theta_{2}, 2 \theta_{2}+\theta_{1}\right)^{\prime}$
EX:
Let $\mathrm{w}(\theta)=\left[\begin{array}{l}\theta_{1}^{2}+\theta_{2} \\ \theta_{1}+\theta_{2}^{2}\end{array}\right]$. Then, $\partial \mathrm{w}(\theta) / \partial \theta^{\prime}=\left[\begin{array}{cc}2 \theta_{1} & 1 \\ 1 & 2 \theta_{2}\end{array}\right]$.

EX:
Let $g(\theta)=\theta_{1}{ }^{2}+\theta_{2}{ }^{2}+\theta_{1} \theta_{2}$. Find the Hessian matrix of $g(\theta)$.

$$
\rightarrow\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

Some useful results:

1) $c^{\prime}: 1 \times p, \theta: p \times 1\left(c^{\prime} \theta\right.$ is a scalar $)$

$$
\Rightarrow \partial\left(c^{\prime} \theta\right) / \partial \theta=\mathrm{c} ; \partial\left(\mathrm{c}^{\prime} \theta\right) / \partial \theta^{\prime}=\mathrm{c}^{\prime} .
$$

2) $R: m \times p, \theta: p \times 1(R \theta$ is $m \times 1)$

$$
\Rightarrow \partial(\mathrm{R} \theta) / \partial \theta=\mathrm{R}
$$

3) A: $\mathrm{p} \times \mathrm{p}$ symmetric, $\theta: \mathrm{p} \times 1\left(\theta^{\prime} \mathrm{A} \theta\right)$

$$
\begin{aligned}
& \Rightarrow \partial\left(\theta^{\prime} \mathrm{A} \theta\right) / \partial \theta=2 \mathrm{~A} \theta . \\
& \Rightarrow \partial\left(\theta^{\prime} \mathrm{A} \theta\right) / \partial \theta^{\prime}=2 \theta^{\prime} \mathrm{A} \\
& \Rightarrow \partial\left(\theta^{\prime} \mathrm{A} \theta\right) / \partial \theta \partial \theta^{\prime}=2 \mathrm{~A} .
\end{aligned}
$$

End of Digression

Definition: (Hessian matrix of log-likelihood function)

$$
H_{T}(\theta)=\left[\frac{\partial^{2} l_{T}(\theta)}{\partial \theta \partial \theta^{\prime}}\right] ;(i, j) t h \text { ele. in } H_{T}=\left[\frac{\partial^{2} \ln L}{\partial \theta_{i} \partial \theta_{j}}\right],
$$

Definition: (Information matrix)

$$
\mathbf{I}_{\mathrm{T}}\left(\theta_{\mathrm{o}}\right)=\mathrm{E}\left[-\mathrm{H}_{\mathrm{T}}\left(\theta_{\mathrm{o}}\right)\right] .
$$

Note: To compute $\mathbf{I}_{\mathrm{T}}\left(\theta_{o}\right)$, compute $\mathrm{H}_{\mathrm{T}}(\theta)$ first, then, $\mathrm{H}_{\mathrm{T}}\left(\theta_{\mathrm{o}}\right)$, and then, $\mathrm{E}\left(-\mathrm{H}_{\mathrm{T}}\left(\theta_{\mathrm{o}}\right)\right)$.

Theorem:
Let $\hat{\theta}$ be MLE. Then, under suitable regularity conditions,
$\hat{\theta}$ is consistent, and

$$
\sqrt{\mathrm{T}}\left(\hat{\theta}-\theta_{\mathrm{o}}\right) \rightarrow_{\mathrm{d}} \mathrm{~N}\left(0, \lim \left[(1 / \mathrm{T}) \mathrm{I}_{\mathrm{T}}\left(\theta_{\mathrm{o}}\right)\right]^{-1}\right) .
$$

Further, $\hat{\theta}$ is asymptotically efficient.

Implication:

$$
\hat{\theta} \approx \mathrm{N}\left(\theta_{\mathrm{o}},\left[\mathrm{I}_{\mathrm{T}}\left(\theta_{\mathrm{o}}\right)\right]^{-1}\right) \Rightarrow \hat{\theta} \approx \mathrm{N}\left(\theta_{\mathrm{o}},\left[\mathrm{I}_{\mathrm{T}}(\hat{\theta})\right]^{-1}\right)
$$

EX:

$$
\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\} \text { iid with } \mathrm{N}\left(\mu_{o}, \sigma_{\mathrm{o}}^{2}\right) .
$$

$\theta=[\mu, v]^{\prime}$ and $v=\sigma^{2}$.

$$
l_{T}=-\frac{T}{2} \ln (2 \pi)-\frac{T}{2} \ln v-\frac{1}{2 v} \Sigma_{t}\left(x_{t}-\mu\right)^{2} .
$$

The first derivatives:

$$
\frac{\partial l_{T}}{\partial \mu}=\frac{\Sigma_{t}\left(x_{t}-\mu\right)}{v} ; \frac{\partial l_{T}}{\partial v}=-\frac{T}{2 v}+\frac{1}{2 v^{2}} \Sigma_{t}\left(x_{t}-\mu\right)^{2} .
$$

The second derivatives:

$$
\begin{aligned}
& \frac{\partial^{2} l_{T}(\theta)}{\partial \mu \partial \mu}=\frac{1}{v} \Sigma_{t}(-1)=-\frac{T}{v} \rightarrow \frac{\partial^{2} l_{T}\left(\theta_{o}\right)}{\partial \mu \partial \mu}=-\frac{T}{v_{o}} \rightarrow E\left[-\frac{\partial^{2} l_{T}\left(\theta_{o}\right)}{\partial \mu \partial \mu}\right]=\frac{T}{v_{o}} . \\
& \frac{\partial^{2} 1_{T}(\theta)}{\partial \mu \partial v}=-\frac{\sum_{t}\left(x_{t}-\mu\right)}{v^{2}} \rightarrow \frac{\partial^{2} l_{T}\left(\theta_{\mathrm{o}}\right)}{\partial \mu \partial v}=-\frac{\sum_{t}\left(x_{t}-\mu_{o}\right)}{v_{o}^{2}} . \\
& \rightarrow E\left[-\frac{\partial^{2} 1_{T}\left(\theta_{o}\right)}{\partial \mu \partial v}\right]=E\left[\frac{\sum_{t}\left(x_{t}-\mu_{o}\right)}{v_{o}^{2}}\right]=\frac{1}{v_{o}^{2}} E\left[\sum_{t}\left(x_{t}-\mu_{o}\right)\right]=\frac{1}{v_{o}^{2}} \sum_{t}\left[E\left(x_{t}\right)-\mu_{0}\right]=0 . \\
& \frac{\partial^{2} 1_{T}(\theta)}{\partial v \partial v}=\frac{T}{2 v^{2}}+\frac{0 \times 2 v^{2}-1 \times 4 v}{\left(2 v^{2}\right)^{2}} \sum_{t}\left(x_{t}-\mu\right)^{2}=\frac{T}{2 v^{2}}-\frac{1}{v^{3}} \sum_{t}\left(x_{t}-\mu\right)^{2} \\
& \rightarrow \frac{\partial^{2} 1_{\mathrm{T}}\left(\theta_{\mathrm{o}}\right)}{\partial \mathrm{v} \partial \mathrm{v}}=\frac{\mathrm{T}}{2 \mathrm{v}_{\mathrm{o}}^{2}}-\frac{1}{\mathrm{v}_{\mathrm{o}}^{3}} \sum_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}}-\mu_{\mathrm{o}}\right)^{2} . \\
& \rightarrow E\left[-\frac{\partial^{2} 1_{\mathrm{T}}\left(\theta_{\mathrm{o}}\right)}{\partial \mathrm{v} \partial \mathrm{v}}\right]=\mathrm{E}\left[-\frac{\mathrm{T}}{2 \mathrm{v}_{\mathrm{o}}^{2}}+\frac{1}{\mathrm{v}_{\mathrm{o}}^{3}} \Sigma_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}}-\mu_{\mathrm{o}}\right)^{2}\right] \\
& =-\frac{T}{2 v_{o}^{2}}+\frac{1}{v_{o}^{3}} \sum_{\mathrm{t}} \mathrm{E}\left[\left(\mathrm{x}_{\mathrm{t}}-\mu_{\mathrm{o}}\right)^{2}\right]=-\frac{\mathrm{T}}{2 \mathrm{v}_{\mathrm{o}}^{2}}+\frac{1}{\mathrm{v}_{\mathrm{o}}^{3}} \sum_{\mathrm{t}} \mathrm{v}_{\mathrm{o}}=-\frac{\mathrm{T}}{2 \mathrm{v}_{\mathrm{o}}^{2}}+\frac{\mathrm{T} \mathrm{v}_{\mathrm{o}}}{\mathrm{v}_{\mathrm{o}}^{3}}=\frac{\mathrm{T}}{2 \mathrm{v}_{\mathrm{o}}^{2}} .
\end{aligned}
$$

Therefore,

$$
I_{T}\left(\theta_{o}\right)=\left[\begin{array}{cc}
\frac{T}{\sigma_{o}^{2}} & 0 \\
0 & \frac{T}{2 \sigma_{o}^{4}}
\end{array}\right] ;\left[I_{T}\left(\theta_{o}\right)\right]^{-1}=\left[\begin{array}{cc}
\frac{\sigma_{o}^{2}}{T} & 0 \\
0 & \frac{2 \sigma_{o}^{4}}{T}
\end{array}\right] .
$$

Hence,

$$
\hat{\theta}=\left[\begin{array}{l}
\hat{\mu}_{M L} \\
\hat{\sigma}_{M L}^{2}
\end{array}\right] \approx N\left(\left[\begin{array}{c}
\mu_{o} \\
\sigma_{o}^{2}
\end{array}\right],\left[\begin{array}{cc}
\frac{\hat{\sigma}_{M L}^{2}}{T} & 0 \\
0 & \frac{2\left(\hat{\sigma}_{M L}^{2}\right)^{2}}{T}
\end{array}\right]\right)
$$

[Sketchical Technical Notes For MLE]

Definition:
For any function $g(x, \theta)$ where x is a randon variable (or vector) with probability density $f\left(x, \theta_{0}\right)$,
$\mathrm{E}(\mathrm{g}(\mathrm{x}, \theta)) \equiv \int_{\Omega} \mathrm{g}(\mathrm{x}, \theta) \mathrm{f}\left(\mathrm{x}, \theta_{0}\right) \mathrm{dx}$ (true expected value of $\mathrm{g}(\mathrm{x}, \theta)$);

$$
E_{\theta}(g(x, \theta)) \equiv \int_{\Omega} g(x, \theta) f(x, \theta) d x \text { (expected value of } g(x, \theta) \text { assuming } f(x, \theta) \text {), }
$$

where Ω denote the range of x .
Assumption 1:
(i) Let x is a random (vector or scalar) variable with pdf of a form $\mathrm{f}(\mathrm{x}, \theta)$, where θ is a $\mathrm{p} \times 1$ vector of unknown parameters. Let θ_{o} be the true value of θ. Then, θ_{o} uniquely maximizes $\mathrm{E}[\operatorname{lnf}(\mathrm{x}, \theta)]$. That is, $\mathrm{E}\left[\operatorname{lnf}\left(\mathrm{x}, \theta_{\mathrm{o}}\right)\right]>\mathrm{E}[\operatorname{lnf}(\mathrm{x}, \theta)]$ for any $\theta \neq \theta_{\mathrm{o}}$.
(ii) $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$ is a random sample from a population satifying (i).

Assumption 2:
The range of x does not depend on θ.
Lemma 1:
Define $\mathrm{s}(\mathrm{x}, \theta)=\partial \operatorname{lnf}(\mathrm{x}, \theta) / \partial \theta$. Then, under Assumption 2, $\mathrm{E}_{\theta}(\mathrm{s}(\mathrm{x}, \theta))=0$, for all θ.
<Proof>
Since $f(x, \theta)$ is a probability density function, $1=\int_{\Omega} f(x, \theta) d x$ for any θ. Differentiate both side of this equation with respect to θ. Then, we have:

$$
\begin{aligned}
& 0=\frac{\partial \int_{\Omega} \mathrm{f}(\mathrm{x}, \theta) \mathrm{dx}}{\partial \theta}=\int_{\Omega} \frac{\partial \mathrm{f}(\mathrm{x}, \theta)}{\partial \theta} \mathrm{dx}=\int_{\Omega} \frac{\partial \operatorname{lnf}(\mathrm{x}, \theta)}{\partial \theta} \mathrm{f}(\mathrm{x}, \theta) \mathrm{dx}=\int_{\Omega} \mathrm{s}(\mathrm{x}, \theta) \mathrm{f}(\mathrm{x}, \theta) \mathrm{dx} \\
&=\mathrm{E}_{\theta}(\mathrm{s}(\mathrm{x}, \theta))
\end{aligned}
$$

where Assumption 2 warrants the first equality, and the second equality results from the fact that $\partial \operatorname{lnf}(\mathrm{x}, \theta) / \partial \theta=[\partial \mathrm{f}(\mathrm{x}, \theta) / \partial \theta)] / \mathrm{f}(\mathrm{x}, \theta)$.

Corollary 1:

Under Assumption 2, $\mathrm{E}\left(\mathrm{s}\left(\mathrm{x}, \theta_{\mathrm{o}}\right)\right)=0$.
Lemma 2:
Under Assumption 2,

$$
\mathrm{E}_{\theta}\left[\mathrm{s}(\mathrm{x}, \theta) \mathrm{s}(\mathrm{x}, \theta)^{\prime}\right]=\mathrm{E}_{\theta}\left[-\frac{\partial^{2} \ln f(\mathrm{x}, \theta)}{\partial \theta \partial \theta^{\prime}}\right],
$$

for all θ.
<Proof>
For simplicity, we only consider the cases where θ is a scalar. Lemma 1 implies:

$$
\int_{\Omega} \frac{\partial \operatorname{lnf}(\mathrm{x}, \theta)}{\partial \theta} \mathrm{f}(\mathrm{x}, \theta) \mathrm{dx}=0 .
$$

Differentiate both sides of this equation:

$$
\begin{aligned}
& \int_{\Omega}\left[\frac{\partial^{2} \operatorname{lnf}(x, \theta)}{\partial \theta \partial \theta} f(x, \theta)+\frac{\partial \operatorname{lnf}(x, \theta)}{\partial \theta} \frac{\partial f(x, \theta)}{\partial \theta}\right] d x=0 \\
\rightarrow & \int_{\Omega}\left[\frac{\partial^{2} \ln f(x, \theta)}{\partial \theta \partial \theta} f(x, \theta)+\frac{\partial \operatorname{lnf}(x, \theta)}{\partial \theta} \frac{\partial \operatorname{lnf}(x, \theta)}{\partial \theta} f(x, \theta)\right] d x=0 \\
\rightarrow & E_{\theta}\left[\frac{\partial^{2} \ln f(x, \theta)}{\partial \theta \partial \theta}+\frac{\partial \ln f(x, \theta)}{\partial \theta} \frac{\partial \ln f(x, \theta)}{\partial \theta}\right]=0, \text { for any } \theta
\end{aligned}
$$

Corollary 2:
Under Assumption 2,

$$
\mathrm{E}\left[\mathrm{~s}\left(\mathrm{x}, \theta_{\mathrm{o}}\right) \mathrm{s}\left(\mathrm{x}, \theta_{\mathrm{o}}\right)^{\prime}\right]=\mathrm{E}\left[-\left.\frac{\partial^{2} \ln (\mathrm{x}, \theta)}{\partial \theta \partial \theta^{\prime}}\right|_{\theta=\theta_{o}}\right]
$$

EX:

- $f(x, \theta)=\frac{1}{\sqrt{2 \pi \mathrm{v}}} \exp \left[-\frac{(\mathrm{x}-\mu)^{2}}{2 \mathrm{v}}\right] ; \theta=\left[\begin{array}{l}\mu \\ \mathrm{v}\end{array}\right] ; \theta_{\mathrm{o}}=\left[\begin{array}{l}\mu_{\mathrm{o}} \\ \mathrm{v}_{\mathrm{o}}\end{array}\right]$
- Assumption 1 holds?
- $\operatorname{lnf}(x, \theta)=(-1 / 2) \ln (2 \pi)-(1 / 2) \ln (v)-(x-\mu)^{2} /(2 v)=(-1 / 2) \ln (2 \pi)-(1 / 2) \ln (v)-\left[\left(x-\mu_{o}\right)-\left(\mu_{o}-\mu\right)\right]^{2} /(2 v)$

$$
\begin{aligned}
& \quad=(-1 / 2) \ln (2 \pi)-(1 / 2) \ln (\mathrm{v})-\left(\mathrm{x}-\mu_{\mathrm{o}}\right)^{2} /(2 \mathrm{v})-2\left(\mu_{\mathrm{o}}-\mu\right)\left(\mathrm{x}-\mu_{\mathrm{o}}\right) /(2 \mathrm{v})-\left(\mu-\mu_{\mathrm{o}}\right)^{2} /(2 \mathrm{v}) . \\
& \mathrm{E}[\operatorname{lnf}(\mathrm{x}, \theta)]=(-1 / 2) \ln (2 \pi)-(1 / 2) \ln (\mathrm{v})-\mathrm{v}_{\mathrm{o}} /(2 \mathrm{v})-\left(\mu-\mu_{\mathrm{o}}\right)^{2} /(2 \mathrm{v}) . \\
& \Rightarrow \text { Clearly, } \mathrm{E}[\operatorname{lnf}(\mathrm{x}, \theta)] \text { is maximized at } \mu=\mu_{\mathrm{o}} . \\
& \Rightarrow \text { Also, } \mathrm{E}[\operatorname{lnf}(\mathrm{x}, \theta)] \text { is maximized at } \mathrm{v}=\mathrm{v}_{\mathrm{o}} \text {, by FOC: } \partial \mathrm{E}[\operatorname{lnf}(\mathrm{x}, \theta)] / \partial \mathrm{v}=-(1 / 2 \mathrm{v})+\mathrm{v}_{\mathrm{o}} /\left(2 \mathrm{v}^{2}\right) \\
& \quad=0 \Rightarrow \mathrm{v}=\mathrm{v}_{\mathrm{o}} .
\end{aligned}
$$

- Assumption 2 holds?
- Yes, since $-\infty<x<\infty$.

Theorem 1:
Under Assumption 1, the MLE $\hat{\theta}$ is consistent under some suitable assumptions. [See Amemiya.] <An Intuition>

Observe that $T^{-1} l_{\mathrm{T}}(\theta)=\mathrm{T}^{-1} \Sigma_{\mathrm{t}} \operatorname{lnf}\left(\mathrm{x}_{\mathrm{t}}, \theta\right)$. Since $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$ ia a random sample, we can regard $\left\{\operatorname{lnf}\left(x_{1}, \theta\right), \ldots, \operatorname{lnf}\left(x_{\mathrm{T}}, \theta\right)\right\}$ as a random sample from a population of the random variable $\operatorname{lnf}(\mathrm{x}, \theta)$. Then, by LLN, $\mathrm{T}^{-1} l_{\mathrm{T}}(\theta) \rightarrow_{\mathrm{p}} \mathrm{E}[\operatorname{lnf}(\mathrm{x}, \theta)]$. But Assumption 1 implies that θ_{o} uniquely maximize $\mathrm{E}[\operatorname{lnf}(\mathrm{x}, \theta)]=\operatorname{plim} \mathrm{T}^{-1} l_{\mathrm{T}}\left(\theta_{\mathrm{o}}\right)$. That is, θ_{o} maximizes $\operatorname{plim} \mathrm{T}^{-1} l_{\mathrm{T}}(\theta)$. Note that MLE $\hat{\theta}$ maximizes $\mathrm{T}^{-1} l_{\mathrm{T}}(\theta)$. But, when sample size T is large, searching for the maximizer $\hat{\theta}$ is similar to searching for θ_{0}. This provides an intuition for the consistency of MLE.

Lemma 3:

Define $\mathrm{s}_{\mathrm{t}}(\theta)=\mathrm{s}\left(\mathrm{x}_{\mathrm{t}}, \theta\right)=\partial \operatorname{lnf}\left(\mathrm{x}_{\mathrm{t}}, \theta\right) / \partial \theta$. Under Assumptions 1-2 and other suitable assumptions,

$$
\left.\frac{1}{\sqrt{T}} \frac{\partial l_{T}(\theta)}{\partial \theta}\right|_{\theta=\theta_{o}} \quad \rightarrow_{\mathrm{d}} \mathrm{~N}\left(0, \lim \frac{1}{T} \operatorname{Cov}\left[\sum_{t} s_{t}\left(\theta_{o}\right)\right]\right) .
$$

<Proof>
Note that:

$$
\left.\frac{1}{\sqrt{T}} \frac{\partial l_{T}(\theta)}{\partial \theta}\right|_{\theta=\theta_{o}}=\left.\frac{1}{\sqrt{T}} \sum_{t} \frac{\partial \ln f\left(x_{t}, \theta\right)}{\partial \theta}\right|_{\theta=\theta_{o}}=\frac{1}{\sqrt{T}} \sum_{t} s_{t}\left(\theta_{o}\right) .
$$

By Lemma 1, $\mathrm{E}\left[\mathrm{s}_{\mathrm{t}}\left(\theta_{\mathrm{o}}\right)\right]=0$. Thus, by GWCLT, we obtain the desired result.
Lemma 4:
Under Assumptions 1-2 and other suitable assumptions,

$$
-\left.\frac{1}{T} \frac{\partial^{2} l_{T}(\theta)}{\partial \theta \partial \theta^{\prime}}\right|_{\theta=\theta_{o}} \quad \rightarrow_{\mathrm{p}} \lim \frac{1}{T} \mathrm{I}_{\mathrm{T}}\left(\theta_{\mathrm{o}}\right) .
$$

<proof>
Note that $-\left.\frac{1}{T} \frac{\partial^{2} l_{T}(\theta)}{\partial \theta \partial \theta^{\prime}}\right|_{\theta=\theta_{o}}=-\left.\frac{1}{T} \sum_{t} \frac{\partial^{2} \ln f\left(x_{t} \theta\right)}{\partial \theta \partial \theta^{\prime}}\right|_{\theta=\theta_{o}}$.

Then, by GWLLN,

$$
\begin{aligned}
-\left.\frac{1}{T} \frac{\partial^{2} l_{T}(\theta)}{\partial \theta \partial \theta^{\prime}}\right|_{\theta=\theta_{o}} & =-\left.\frac{1}{T} \sum_{t} \frac{\partial^{2} \ln f\left(x_{t}, \theta\right)}{\partial \theta \partial \theta^{\prime}}\right|_{\theta=\theta_{o}} \\
& \rightarrow_{\mathrm{p}} \lim \frac{1}{\mathrm{~T}} \mathrm{E}\left[-\left.\sum_{\mathrm{t}} \frac{\partial^{2} \operatorname{lnf}\left(\mathrm{x}_{\mathrm{t}}, \theta_{\mathrm{o}}\right)}{\partial \theta \partial \theta^{\prime}}\right|_{\theta=\theta_{o}}\right]=\lim \frac{1}{T} E\left[-\left.\frac{\partial^{2} l_{T}(\theta)}{\partial \theta \partial \theta^{\prime}}\right|_{\theta=\theta_{o}}\right]=\frac{1}{\mathrm{~T}} \mathrm{I}_{\mathrm{T}}\left(\theta_{\mathrm{o}}\right) .
\end{aligned}
$$

Lemma 5:
Under Assumptions 1-2, $\operatorname{Cov}\left[\sum_{t} s_{t}\left(\theta_{o}\right)\right]=\mathrm{I}_{\mathrm{T}}\left(\theta_{\mathrm{o}}\right)$.
<proof>
Since $\left\{\mathrm{s}_{1}\left(\theta_{0}\right), \ldots, \mathrm{s}_{\mathrm{T}}\left(\theta_{\mathrm{o}}\right)\right\}$ is a RS,

$$
\operatorname{Cov}\left[\Sigma_{\mathrm{t}} \mathrm{~s}_{\mathrm{t}}\left(\theta_{\mathrm{o}}\right)\right]=\Sigma_{\mathrm{t}} \operatorname{Cov}\left[\mathrm{~s}_{\mathrm{t}}\left(\theta_{\mathrm{o}}\right)\right]=\Sigma_{\mathrm{t}} \mathrm{E}\left[\mathrm{~s}_{\mathrm{t}}\left(\theta_{\mathrm{o}}\right) \mathrm{s}_{\mathrm{t}}\left(\theta_{\mathrm{o}}\right)^{\prime}\right] .
$$

where the last equality results from Lemma 1 . Note also that

$$
\mathrm{I}_{\mathrm{T}}\left(\theta_{\mathrm{o}}\right)=\Sigma_{\mathrm{t}} \mathrm{E}\left[-\left.\frac{\partial^{2} \operatorname{lnf}\left(\mathrm{x}_{\mathrm{t}}, \theta\right)}{\partial \theta \partial \theta^{\prime}}\right|_{\theta=\theta_{\mathrm{o}}}\right]
$$

Thus, it is enought to show that

$$
\mathrm{E}\left[\mathrm{~s}_{\mathrm{t}}\left(\theta_{\mathrm{o}}\right) \mathrm{s}_{\mathrm{t}}\left(\theta_{\mathrm{o}}\right)^{\prime}\right]=\mathrm{E}\left[-\left.\frac{\partial^{2} \ln \left(\mathrm{x}_{\mathrm{t}}, \theta\right)}{\partial \theta \partial \theta^{\prime}}\right|_{\theta=\theta_{\mathrm{o}}}\right] .
$$

But this equality holds by Lemma 2.

Corollary 3:

Under Assumptions 1-2 and other suitable assumptions,

$$
\frac{1}{\sqrt{T}} \frac{\partial l_{T}\left(\theta_{o}\right)}{\partial \theta} \quad \rightarrow_{\mathrm{d}} \mathrm{~N}\left(0, \lim \frac{1}{\mathrm{~T}} \mathrm{I}_{\mathrm{T}}\left(\theta_{\mathrm{o}}\right)\right)
$$

Theorem 2:
Let $\hat{\theta}$ be MLE. Under Assumptions 1-2 and other suitable assumptions,

$$
\sqrt{\mathrm{T}}\left(\hat{\theta}-\theta_{\mathrm{o}}\right) \quad \rightarrow_{\mathrm{d}} \quad \mathrm{~N}\left(0, \lim \left[\frac{1}{\mathrm{~T}} \mathrm{I}_{\mathrm{T}}\left(\theta_{\mathrm{o}}\right)\right]^{-1}\right)
$$

<Proof>
Consider the first order condition for MLE:

$$
\left.\frac{\partial \mathrm{l}_{\mathrm{T}}(\theta)}{\partial \theta}\right|_{\theta=\hat{\theta}}=0 .
$$

Use Taylor's expansion around θ_{0} :

$$
\left.\frac{\partial l_{T}(\theta)}{\partial \theta}\right|_{\theta=\theta_{o}}+\left.\frac{\partial^{2} l_{T}(\theta)}{\partial \theta \partial \theta^{\prime}}\right|_{\theta=\bar{\theta}}\left(\hat{\theta}-\theta_{o}\right)=0,
$$

where $\bar{\theta}$ is a vector between $\hat{\theta}$ and θ_{0}. Since $\hat{\theta}$ is consistent and $\bar{\theta}$ is between $\hat{\theta}$ and $\theta_{o}, \bar{\theta}$ is also consistent. That is,

$$
\left.\frac{1}{\sqrt{T}} \frac{\partial l_{T}(\theta)}{\partial \theta}\right|_{\theta=\theta_{o}}+\left.\frac{1}{T} \frac{\partial^{2} l_{T}(\theta)}{\partial \theta \partial \theta^{\prime}}\right|_{\theta=\theta_{o}} \sqrt{T}\left(\hat{\theta}-\theta_{o}\right)=\mathrm{o}_{\mathrm{p}}(1)
$$

where $\mathrm{o}_{\mathrm{p}}(1)$ means "a term asymptotically negligible". Thus, we have:

$$
\begin{aligned}
& \sqrt{\mathrm{T}}\left(\hat{\theta}-\theta_{\mathrm{o}}\right)=\left.\left[-\left.\frac{1}{T} \frac{\partial^{2} l_{T}(\theta)}{\partial \theta \partial \theta^{\prime}}\right|_{\theta=\theta_{o}}\right]^{-1} \frac{1}{\sqrt{T}} \frac{\partial l_{T}(\theta)}{\partial \theta}\right|_{\theta=\theta_{o}}+o_{p}(1) \\
& \rightarrow \sqrt{\mathrm{T}}\left(\hat{\theta}-\theta_{\mathrm{o}}\right)=\left[\lim \frac{1}{T} I_{T}\left(\theta_{o}\right)\right]^{-1} \frac{1}{\sqrt{T}} \frac{\partial l_{T}\left(\theta_{o}\right)}{\partial \theta}+o_{p}(1)(\text { By Lemma 4) } \\
& \rightarrow \sqrt{\mathrm{T}}\left(\hat{\theta}-\theta_{\mathrm{o}}\right) \\
& \rightarrow{ }_{\mathrm{d}} \mathrm{~N}\left(0,\left[\lim \frac{1}{\mathrm{~T}} \mathrm{I}_{\mathrm{T}}\left(\theta_{\mathrm{o}}\right)\right]^{-1} \lim \frac{1}{\mathrm{~T}} \mathrm{I}_{\mathrm{T}}\left(\theta_{\mathrm{o}}\right)\left[\lim \frac{1}{\mathrm{~T}} \mathrm{I}_{\mathrm{T}}\left(\theta_{\mathrm{o}}\right)\right]^{\prime}\right) \\
& \\
& =\mathrm{N}\left(0,\left[\lim \frac{1}{\mathrm{~T}} \mathrm{I}_{\mathrm{T}}\left(\theta_{\mathrm{o}}\right)\right]^{-1}\right) .(\text { By Corollary } 3)
\end{aligned}
$$

[11] Testing Hypotheses Based on MLE

Let $w(\theta)=\left[w_{1}(\theta), w_{2}(\theta), \ldots, w_{m}(\theta)\right]^{\prime}$, where $w_{j}(\theta)=w_{j}\left(\theta_{1}, \theta_{2}, \ldots, \theta_{p}\right)=$ a f^{n} of $\theta_{1}, \ldots, \theta_{p}$.

General form of hypotheses:
H_{o} : \quad The true $\theta\left(\theta_{o}\right)$ satisfy the m restrcitions, $w(\theta)=0_{m \times 1}(m \leq p)$.

Examples:

1) θ : a scalar
$\mathrm{H}_{0}: \theta=2 \rightarrow \mathrm{H}_{0}: \theta-2=0 \rightarrow \mathrm{H}_{0}: \mathrm{w}(\theta)=0$, where $\mathrm{w}(\theta)=\theta-2$.
2) $\theta=\left[\theta_{1}, \theta_{2}, \theta_{3}\right]^{\prime}$.

$$
\begin{aligned}
H_{0}: & \theta_{1}^{2}=\theta_{2}+2 \text { and } \theta_{3}=\theta_{1}+\theta_{2} \\
& \rightarrow H_{0}: \theta_{1}^{2}-\theta_{2}-2=0 \text { and } \theta_{3}-\theta_{1}-\theta_{2}=0 . \\
& \rightarrow \text { Let } w_{1}(\theta)=\theta_{1}^{2}-\theta_{2}-2 \text { and } w_{2}(\theta)=\theta_{3}-\theta_{1}-\theta_{2} . \\
& \rightarrow H_{o}: w(\theta)=\left[\begin{array}{l}
w_{1}(\theta) \\
w_{2}(\theta)
\end{array}\right]=\left[\begin{array}{l}
\theta_{1}^{2}-\theta_{2}-2 \\
\theta_{3}-\theta_{1}-\theta_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
\end{aligned}
$$

3) linear restrictions

$$
\begin{aligned}
\theta= & {\left[\theta_{1}, \theta_{2}, \theta_{3}\right]^{\prime} . } \\
\mathrm{H}_{0}: & \theta_{1}=\theta_{2}+2 \text { and } \theta_{3}=\theta_{1}+\theta_{2} \\
& \rightarrow \mathrm{H}_{0}: \theta_{1}-\theta_{2}-2=0 \text { and } \theta_{3}-\theta_{1}-\theta_{2}=0 \\
& \rightarrow H_{o}: w(\theta)=\left[\begin{array}{l}
w_{1}(\theta) \\
w_{2}(\theta)
\end{array}\right]=\left[\begin{array}{l}
\theta_{1}-\theta_{2}-2 \\
\theta_{3}-\theta_{1}-\theta_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] . \\
& \rightarrow \quad w(\theta)=\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
\theta_{1} \\
\theta_{2} \\
\theta_{3}
\end{array}\right]-\left[\begin{array}{l}
2 \\
0
\end{array}\right]=R \theta-r .
\end{aligned}
$$

Remark:
If all restrictions are linear in $\theta, \mathrm{H}_{\mathrm{o}}$ takes the following form:

$$
\mathrm{H}_{\mathrm{o}}: \mathrm{R} \theta-\mathrm{r}=0_{\mathrm{mx} 1},
$$

where R and r are known mxp and $m x 1$ matrices, respectively.

Definition:

$$
\mathrm{W}(\theta)=\frac{\partial w(\theta)}{\partial \theta^{\prime}}=\left[\begin{array}{cccc}
\frac{\partial w_{1}(\theta)}{\partial \theta_{1}} & \frac{\partial w_{1}(\theta)}{\partial \theta_{2}} & \cdots & \frac{\partial w_{1}(\theta)}{\partial \theta_{p}} \\
\frac{\partial w_{2}(\theta)}{\partial \theta_{1}} & \frac{\partial w_{2}(\theta)}{\partial \theta_{2}} & \cdots & \frac{\partial w_{2}(\theta)}{\partial \theta_{p}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial w_{m}(\theta)}{\partial \theta_{1}} & \frac{\partial w_{m}(\theta)}{\partial \theta_{2}} & \cdots & \frac{\partial w_{m}(\theta)}{\partial \theta_{p}}
\end{array}\right]_{n x p}
$$

Example:
Let $\theta=\left[\theta_{1}, \theta_{2}, \theta_{3}\right]^{\prime}$.
$H_{0}: \theta_{1}^{2}-\theta_{2}=0$ and $\theta_{1}-\theta_{2}-\theta_{3}^{2}=0$.

$$
\rightarrow w(\theta)=\left[\begin{array}{c}
\theta_{1}^{2}-\theta_{2} \\
\theta_{1}-\theta_{2}-\theta_{3}^{2}
\end{array}\right] \rightarrow \mathrm{W}(\theta)=\left[\begin{array}{ccc}
2 \theta_{1} & -1 & 0 \\
1 & -1 & -2 \theta_{3}
\end{array} \sum_{x 3}\right.
$$

Example:

$$
\begin{aligned}
\theta & =\left[\theta_{1}, \theta_{2}, \theta_{3}\right]^{\prime} . \\
\mathrm{H}_{0}: & \theta_{1}=0 \text { and } \theta_{2}+\theta_{3}=1 . \\
& \rightarrow \quad \mathrm{w}(\theta)=\left[\begin{array}{c}
\theta_{1} \\
\theta_{2}+\theta_{3}
\end{array}\right]-\left[\begin{array}{l}
0 \\
1
\end{array}\right]=0 \quad \rightarrow \quad \mathrm{w}(\theta)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\theta_{1} \\
\theta_{2} \\
\theta_{3}
\end{array}\right]-\left[\begin{array}{l}
0 \\
1
\end{array}\right]=0 \\
& \rightarrow \quad R=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right] ; r=\left[\begin{array}{l}
0 \\
1
\end{array}\right] . \\
& \rightarrow \mathrm{w}(\theta)=\mathrm{R} \theta-\mathrm{r} . \\
& \rightarrow \mathrm{W}(\theta)=\mathrm{R} .
\end{aligned}
$$

Definition: (Restricted MLE)
Let $\tilde{\theta}$ be the restricted ML estimator which maximizes

$$
l_{\mathrm{T}}(\theta) \text { s.t. } \mathrm{w}(\theta)=0 .
$$

Wald Test:

$$
\begin{aligned}
\mathrm{W}_{\mathrm{T}} & =\mathrm{w}(\hat{\theta})^{\prime}\left[\mathrm{W}(\hat{\theta}) \operatorname{Cov}(\hat{\theta}) \mathrm{W}(\hat{\theta})^{\prime}\right]^{-1} \mathrm{w}(\hat{\theta}) \\
& \Rightarrow \mathrm{W}_{\mathrm{T}}=\mathrm{w}(\hat{\theta})^{\prime}\left[\mathrm{W}(\hat{\theta})\left\{\mathrm{I}_{\mathrm{T}}(\hat{\theta})\right\}^{-1} \mathrm{~W}(\hat{\theta})^{\prime}\right]^{-1} \mathrm{w}(\hat{\theta})
\end{aligned}
$$

Note: Can be computed with any consistent estimator $\hat{\theta}$ and $\operatorname{Cov}(\hat{\theta})$.

Likelihood Ratio Test: (LR)

$$
\mathrm{LR}_{\mathrm{T}}=2\left[l_{\mathrm{T}}(\hat{\theta})-l_{\mathrm{T}}(\tilde{\theta})\right] .
$$

Lagrangean Multiplier (LM) test

Define: $\mathrm{s}_{\mathrm{T}}(\theta)=\partial l_{\mathrm{T}}(\theta) / \partial \theta$.

$$
\mathrm{LM}_{\mathrm{T}}=\mathrm{s}_{\mathrm{T}}(\tilde{\theta})^{\prime}\left[\mathrm{I}_{\mathrm{T}}(\tilde{\theta})\right]^{-1} \mathrm{~s}_{\mathrm{T}}(\tilde{\theta}) .
$$

Theorem:
Under $\mathrm{H}_{\mathrm{o}}: \mathrm{w}(\theta)=0$,

$$
\mathrm{W}_{\mathrm{T}}, \mathrm{LR}_{\mathrm{T}}, \mathrm{LM}_{\mathrm{T}} \rightarrow_{\mathrm{d}} \chi^{2}(\mathrm{~m}) .
$$

Implication:

- Given confidence level (1- α) or significance level (α), find a critical value such that
- Usually, $\alpha=0.05$ or $\alpha=0.01$.
- If $\mathrm{W}_{\mathrm{T}}>\mathrm{c}$, reject H_{0}. Otherwise, do not reject H_{o}.

Comments:

1) Wald needs only $\hat{\theta} ;$ LR needs both $\hat{\theta}$ and $\tilde{\theta}$; and LM needs $\tilde{\theta}$ only.
2) In general, $W_{T} \geq \mathrm{LR}_{\mathrm{T}} \geq \mathrm{LM}_{\mathrm{T}}$.
3) W_{T} is not invariant to how to write restrictions. That is, W_{T} for $H_{0}: \theta_{1}=\theta_{2}$ may not be equal to W_{T} for $H_{0}: \theta_{1} / \theta_{2}=1$.

Example:
(1) $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right\}$: RS from $\mathrm{N}\left(\mu_{\mathrm{o}}, \mathrm{v}_{\mathrm{o}}\right)$ with v_{o} known. So, $\theta=\mu$.
$H_{0}: \mu=0$.

- $w(\mu)=\mu$
- $l_{\mathrm{T}}(\mu)=-(\mathrm{T} / 2) \ln (2 \pi)-(\mathrm{T} / 2) \ln (\mathrm{v})-\{1 /(2 \mathrm{v})\} \Sigma_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}}-\mu\right)^{2}$
- $\mathrm{s}_{\mathrm{T}}(\mu)=(1 / \mathrm{v}) \Sigma_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}}-\mu\right)$
- $\mathbf{I}_{\mathrm{T}}\left(\mu_{\mathrm{o}}\right)=\mathrm{E}\left[-\partial^{2} l_{\mathrm{T}}(\mu) /\left.\partial \mu^{2}\right|_{\theta=\theta_{\mathrm{o}}}\right]=\mathrm{T} / \mathrm{v}_{\mathrm{o}}$

[Wald Test]

Unrestricted MLE:

- FOC: $\partial l_{\mathrm{T}}(\mu) / \partial \mu=(1 / \mathrm{v}) \Sigma_{\mathrm{t}}\left(\mathrm{X}_{\mathrm{t}}-\mu\right)=0$
- $\hat{\mu}=\overline{\mathrm{x}}$
$\mathrm{W}(\mu)=1 \Rightarrow \mathrm{~W}(\hat{\mu})=1$
$\mathbf{I}_{\mathrm{T}}(\hat{\mu})=\mathrm{T} / \mathrm{v}_{\mathrm{o}}$

[LR Test]

Restricted MLE: $\tilde{\mu}=0$

$$
\begin{aligned}
& l_{\mathrm{T}}(\hat{\mu})=-(\mathrm{T} / 2) \ln (2 \pi)-(\mathrm{T} / 2) \ln \left(\mathrm{v}_{\mathrm{o}}\right)-\left\{1 /\left(2 \mathrm{v}_{\mathrm{o}}\right)\right\} \Sigma_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}}-\overline{\mathrm{x}}\right)^{2} \\
& l_{\mathrm{T}}(\tilde{\mu})=-(\mathrm{T} / 2) \ln (2 \pi)-(\mathrm{T} / 2) \ln \left(\mathrm{v}_{\mathrm{o}}\right)-\left\{1 /\left(2 \mathrm{v}_{\mathrm{o}}\right)\right\} \Sigma_{\mathrm{t}} \mathrm{x}_{\mathrm{t}}^{2}
\end{aligned}
$$

[LM Test]

$$
\mathrm{s}_{\mathrm{T}}(\tilde{\mu})=\left(1 / \mathrm{v}_{\mathrm{o}}\right) \Sigma_{\mathrm{t}} \mathrm{x}_{\mathrm{t}}=\left(\mathrm{T} / \mathrm{v}_{\mathrm{o}}\right) \overline{\mathrm{x}} ; \quad \mathbf{I}_{\mathrm{T}}(\tilde{\mu})=\mathrm{T} / \mathrm{v}_{\mathrm{o}}
$$

With this information, can show:

$$
\mathrm{W}=\mathrm{LR}=\mathrm{LM}=\left(\mathrm{T} \overline{\mathrm{x}}^{2}\right) / \mathrm{v}_{0} .
$$

(2) Both μ and v unknown: $\theta=(\mu, v)^{\prime}$.

$$
\begin{aligned}
\mathrm{H}_{\mathrm{o}} & : \mu \\
& \Rightarrow \mathrm{w}(\theta)=\mu \\
& \Rightarrow \mathrm{W}(\theta)=\partial \mathrm{w}(\theta) / \partial \theta^{\prime}=[\partial \mu / \partial \mu, \partial \mu / \partial \mathrm{v}]=[1,0] \\
& \Rightarrow l_{\mathrm{T}}(\theta)=-(\mathrm{T} / 2) \ln (2 \pi)-(\mathrm{T} / 2) \ln (\mathrm{v})-\{1 /(2 \mathrm{v})\} \Sigma_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}}-\mu\right)^{2} \\
& \Rightarrow \mathrm{~s}_{\mathrm{T}}(\theta)=\left[(1 / \mathrm{v}) \Sigma_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}}-\mu\right),-\mathrm{T} /(2 \mathrm{v})+\left(1 /\left(2 \mathrm{v}^{2}\right)\right) \Sigma_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}}-\mu\right)^{2}\right]^{\prime} \\
& \Rightarrow \mathrm{I}_{\mathrm{T}}\left(\theta_{\mathrm{o}}\right)=\operatorname{diag}\left[\mathrm{T} / \mathrm{v}_{\mathrm{o}}, \mathrm{~T} /\left(2 \mathrm{v}_{\mathrm{o}}{ }^{2}\right)\right] . \\
& \Rightarrow \text { Unrest. MLE: } \hat{\mu}=\overline{\mathrm{x}} \text { and } \hat{\mathrm{v}}=(1 / \mathrm{T}) \Sigma_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}}-\overline{\mathrm{x}}\right)^{2} \\
& \Rightarrow \text { Restricted MLE: } \tilde{\mu}=0, \text { but need to compute } \tilde{\mathrm{v}}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow l_{\mathrm{T}}(\tilde{\mu}, \mathrm{v})=-(\mathrm{T} / 2) \ln (2 \pi)-(\mathrm{T} / 2) \ln (\mathrm{v})-\{1 /(2 \mathrm{v})\} \Sigma_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}}-\tilde{\mu}\right)^{2} \\
& \Rightarrow l_{\mathrm{T}}(0, \mathrm{v})=-(\mathrm{T} / 2) \ln (2 \pi)-(\mathrm{T} / 2) \ln (\mathrm{v})-\{1 /(2 \mathrm{v})\} \Sigma_{\mathrm{t}} \mathrm{x}_{\mathrm{t}}^{2} \\
& \Rightarrow \operatorname{FOC}: \partial l_{\mathrm{T}}(0, \mathrm{v}) / \partial \mathrm{v}=-\mathrm{T} /(2 \mathrm{v})+\left(1 /\left(2 \mathrm{v}^{2}\right)\right) / \Sigma_{\mathrm{t}} \mathrm{x}_{\mathrm{t}}^{2}=0 \\
& \Rightarrow \tilde{\mathrm{v}}=(1 / \mathrm{T}) \Sigma_{\mathrm{t}} \mathrm{x}_{\mathrm{t}}{ }^{2}
\end{aligned}
$$

[Wald Test]

$$
\begin{aligned}
& \mathrm{w}(\hat{\theta})=\hat{\mu}=\overline{\mathrm{x}} ; \mathrm{W}(\hat{\theta})=[1,0] ; \mathrm{I}_{\mathrm{T}}(\hat{\theta})=\operatorname{diag}\left(\mathrm{T} / \hat{\mathrm{v}}, \mathrm{~T} /\left(2 \hat{\mathrm{v}}^{2}\right)\right) . \\
& \Rightarrow \mathrm{W}_{\mathrm{T}}=\mathrm{w}(\hat{\theta})^{\prime}\left[\mathrm{W}(\hat{\theta})\left\{\mathrm{I}_{\mathrm{T}}(\hat{\theta})\right\}^{-1} \mathrm{~W}(\hat{\theta})\right]^{-1} \mathrm{w}(\hat{\theta})=\mathrm{T} \overline{\mathrm{x}}^{2} / \hat{\mathrm{V}} .
\end{aligned}
$$

[LR Test]

$$
\begin{aligned}
& l_{\mathrm{T}}(\hat{\theta})=-(\mathrm{T} / 2) \ln (2 \pi)-(\mathrm{T} / 2) \ln (\hat{\mathrm{v}})-\{1 /(2 \hat{\mathrm{v}})\} \Sigma_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}}-\overline{\mathrm{x}}\right)^{2} \\
& l_{\mathrm{T}}(\tilde{\theta})=-(\mathrm{T} / 2) \ln (2 \pi)-(\mathrm{T} / 2) \ln (\tilde{\mathrm{v}})-\{1 /(2 \tilde{\mathrm{v}})\} \Sigma_{\mathrm{t}} \mathrm{x}_{\mathrm{t}}^{2}
\end{aligned}
$$

[LM Test]

$$
\begin{aligned}
& \mathrm{s}_{\mathrm{T}}(\tilde{\theta})=\left[(1 / \tilde{\mathrm{v}}) \Sigma_{\mathrm{t}} \mathrm{x}_{\mathrm{t}},-\mathrm{T} /(2 \tilde{\mathrm{v}})+\left(1 / 2 \tilde{\mathrm{v}}^{2}\right) \Sigma_{\mathrm{t}} \mathrm{x}_{\mathrm{t}}^{2}\right]^{\prime}=[\mathrm{T} \overline{\mathrm{x}} / \tilde{\mathrm{v}},-\mathrm{T} /(2 \tilde{\mathrm{v}})+\mathrm{T} /(2 \tilde{\mathrm{v}})]^{\prime}=[\mathrm{T} \overline{\mathrm{x}} / \tilde{\mathrm{v}}, 0]^{\prime} \\
& \mathrm{I}_{\mathrm{T}}(\tilde{\theta})=\operatorname{diag}\left(\mathrm{T} / \tilde{\mathrm{v}}, \mathrm{~T} /\left(2 \tilde{\mathrm{v}}^{2}\right)\right) \\
& \Rightarrow \mathrm{LM}_{\mathrm{T}}=\mathrm{s}_{\mathrm{T}}(\tilde{\theta})^{\prime}\left[\mathrm{I}_{\mathrm{T}}(\tilde{\theta})\right]^{-1} \mathrm{~s}_{\mathrm{T}}(\tilde{\theta})=\mathrm{T} \overline{\mathrm{x}}^{2} / \tilde{\mathrm{v}} .
\end{aligned}
$$

