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BASIC STATISTICS

[1] Random Variable (RV)

• RV are usually denoted by capital: X, Y, Z

• A specific possible value of X is denoted by low case: x. 

EX:

X = # faced up when you toss a die; x = 1, 2, ... , 6.

Note that there is a rule (probability) generating X.

Definition of RV:

RV is a variable which can take different values with some probability.

[2] Single RV

1. Probability and Cumulative density functions (pdf, cdf):

(1) Discrete RV

X: a RV with x = a , a , .... , a  (n could be �.)1 2 n

Definition: Pdf: f(x) = Pr(X=x).

Cdf: F(x) = Pr(X � x).

Conditions for pdf: 1) f(x) � 0 for any x.

2) � f(x) = 1.x

3) F(x) � 1.

EX: X = # faced up (a die) with pdf: f(x) = 1/6, where x = 1, ... , 6.

(2) Continuous RV

X: a RV with pdf, f(x), and cdf, F(x) where



f(x)

x

f(x) = 1

1/2 1

Pr(a � X � b) � �
b

a
f(v)dv .
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Conditions for pdf: 1) f(x) � 0, for any x.

2) � f(v) dv = 1, where � denotes the range of x.
�

3) F(x) � 1.

Computation of Pr(a � X � b):

Note: In cases where X is continuous, Pr(a � X) = Pr(a < X).

EX: (Uniform distribution: �)

�: 0 � x � 1; f(x) = 1.

Pr(1/2 < x < 1)  = �  f(v) dv = [v]  = 1 - 1/2 = 1/2.1 1
½ ½

Pr(1/2 < X < 1) = shaded area in the graph below.

2. Expectations:

• General Definition of Expectation:

• g(X) is a function of a RV, X.

• E[g(x)] =  � g(x)f(x) (or �  g(x)f(x) dx).x �

EX: g(x) = x, (x-µ ) , ln(x), etc.x
2

Population Mean: µ  = E(x) = � xf(x) [or � xf(x)dx].x x �

Population variance: �  = var(x) = E[(x-µ ) ] = � (x - µ ) f(x) [or �  (x - µ ) f(x)dx]2 2 2 2
x x x x � x
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Standard Deviation (Error): �  = .x

Question: What do µ  and �  mean?x x
2

[An answer]

• X = # faced up when you toss a die (f(x) = 1/6, x = 1, 2, ... , 6).

• Toss the die repeatedly billions and billions (b) times:  x , x , ... , x  [a population].(1) (2) (b)

• Mean of these =  = µ  , almost surely (a.s.).x

• Mean dispersion of these =  = � , a.s.x
2

• Similarly, (1/b) g[x ] = E[g(x)], a.s.(j)

Median:

Median of X = m  such Pr(X � m ) � 1/2 and Pr(X � m ) � 1/2.x x x

� Order x , ... , x : x  � x  � ... � x .(1) (b) [1] [2] [b]

� m  = the middle point of this order, a.s.x

Fact: If f(x) is symmetric around µ , µ  = m .x x x

Some useful theorems:

X: RV; a, b, c: constants.

• E(ax+b) = aE(x) + b.

• var(x) = E(x ) - µ  .2 2
x

• var(ax+b) = a var(x).2

Definition:

Let µ  = E[(x-µ ) ]; and µ  = E[(x-µ ) ].3 x 4 x
3 4

Skewness coefficient (SC) = µ /� ; Kurtosis coefficient (KC) = µ /�  - 3.3 x 4 x
3 4

Note:

• SC measures the asymmetry of the distribution of x around µ .x

• If f(x) is symmetrically distributed around µ , SC = 0.x

• If SC > 0, the “long tail” is in the (x � µ ) direction.x



x̂

(x� x̂)2

x̂

x̂

x̂

x̂

f(x) �
e ���x

x!
, x � 0,1 , ... .
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• KC measures the thickness of the tails of a distribution:

If X is normally distributed, KC = 0.

Exercise for E(x), var(x) and E[g(x)]:

• X = 1, 0 with f(x) = 1/2.

E(x) = � xf(x) = 0 × (1/2) + 1 × (1/2) = 1/2; var(x) = (0-1/2)  × (1/2) + (1-1/2)  × (1/2) = 1/4 .x
2 2

• g(x) = (1/2)x  + (1/2)x + 2.2

E[g(x)] = [1/2+1/2+2] × (1/2) + [0+0+2] × (1/2) = 5/2.

• Compute SC and KC.  Do this by yourself.

A Digression for Fun

• X = # faced up when you toss a die (f(x) = 1/6, x = 1, 2, ... , 6).

• Consider a repeated game:

• You are a statistician hired by a Mafia.

• Should forecast the outcome from the die:   = your forecast of x.

• Lose money whenever your forecast is wrong: s =  [loss function].

• Should Repeat this game billions and billions times.

• Wish to choose  which minimizes your average loss:

min E(s) = E[(x - ) ] .2

 � Best choice of  = µ !!!x

 • Average loss from choosing µ   = E[(x - µ ) ] = var(x).x x
2

• What if s = �x - �? � Best choice = m .x

End of digression

3. Examples of pdf's:

(1) Poisson Distribution:

• EX: # of times to visit doctors; # of job offers; # of patents.

• Pdf:

• E(x) = var(x) = �.



t �
z

y /k
� t(k) .

f(x) �
1

2��x

exp�
(x�µx )2

2�2
x

, �� < x < � .

�(z)� 1

2�
exp(� z 2

2
) , �� < z < � .
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(2) Normal distribution

• X � N(µ ,� ), where E(x) = µ  and var(x) = � .x x x x
2 2

• Pdf:

• f(x) is symmetric around x = µ .x

Standard Normal Distribution: z � N(0,1).

• Pdf:

• Fact: x � N(µ , � ) � (x-µ )/�  � N(0,1).x x x x
2

(3) �  (chi-square) distribution2

• Z  , ... , Z  are RVs iid with N(0,1).1 k

y = � z  � � (k), y > 0, with degrees of freedom (df) = k.k 2 2
i=1 i

• E(y) = k; var(y) = 2k .

(4) Student t distribution

• Let z � N(0,1) and y � � (k). Z and Y are sto. indep. Then,2

• E(t) = 0, k > 1 ; var(t) = k/(k-2), k > 2.

• As k � �, var(t) �1: In fact, t � z.

• The pdf of t is similar to that of z, but t has thicker tails.

• f(t) is symmetric around t = 0.

(5) F distribution.

• Let y  � � (k ) and y � � (k ) be sto. indep.  Then,1 1 2 2
2 2



f �
y1 /k1

y2 /k2

� f(k1 ,k2) .
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• f(1,k ) = t(k ) .2 2
2

• f � f(k , k ) � k f � � (k ) as k  � �.1 2 1 1 2
2

[3] Bivariate Distributions

Consider two RVs, X, Y with joint pdf: f(x,y) = Pr(X=x,Y=y).

Marginal (unconditional) pdf:

f (x) = �  f(x,y) = Pr(X=x) regardless of Y; f (y) = �  f(x,y) = Pr(Y=y) regardless of X.x y y x

Conditional pdf:

f(x�y) = Pr(X = x, given Y = y) = f(x,y)/f (y).y

Stochastic Independence:

• X and Y are sto. indep. iff f(x,y) = f (x)f (y), for all x,y.x y

• Under this condition, f(x�y) = f(x,y)/f (y) = [f (x)f (y)]/f (y) = f (x).y x y y x

EX:

• Tossing two coins, A and B.

• X = 1 if head from A; = 0 if tail from A.

Y = 1 if head from B; = 0 if tail from B.

f(x,y) = 1/4 for any x,y = 0, 1.  (4 possible cases)

• Marginal pdf of x:

f (0) = Pr(X=0) regardless of y = f(0,1) + f(0,0) = 1/4 + 1/4 = 1/2.x

f (1) = Pr(X=1) regardless of y = f(1,1) + f(1,0) = 1/4 + 1/4 = 1/2.x

� f (x) = 1/2, x = 0, 1.x

Similarly, f (y) = 1/2, y = 0, 1. y

• Conditional pdf:
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f(x=1�y=1) = f(1,1)/f (1) = (1/4)/(1/2) = 1/2; f(x=0�y=1) = f(0,1)/f (1) = 1/2.y y

� f(x�y=1) = 1/2, x = 0, 1.

• Find f(y�x=0) by yourself. 

• Stochastic independence:

f (x) = f (y) = 1/2; f (x)f (y) = 1/4 = f(x,y), for any x and y.x y X Y

� x and y are stochastically independent.

EX:

The joint probability distribution of x and y is given by the following table:  (e.g., f(4,9) =  0.)

x\y 1 3 9

2 1/8 1/24 1/12

4 1/4 1/4 0

6 1/8 1/24 1/12

(1) Find the marginal pdf of y.

(2) Are x and y stochastically independent?

(3) Find the conditional pdf of y given that x = 2.

Expectation: E[g(x,y)] = � �  g(x,y)f(x,y) [or ��  g(x,y) f(x,y)dxdy].x y �

Covariance: �  = cov(x,y) = E[(x-µ )(y-µ )].xy x y

Note: �  = cov(x,y) > 0 � positively linearly related; �  = cov(x,y) < 0 � negatively linearly related;xy xy

�  = cov(x,y) = 0 � no linear relation.xy

Correlation Coefficient:

The correlation coefficient between x and y is defined by:



	xy �
cov(x ,y)

var(x)var(y)
�

cov(x ,y)
�x�y

.
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Note: �  = 	 � � .xy xy x y

Theorem: -1 � 	  � 1 .xy

Note: 	  � 1: highly positively linearly related; 	  �-1; highly negatively linearly related;xy xy

	  � 0: no linear relation.xy

Theorem: If X & Y are stoch. indep., cov(x,y) = 0. But not vice versa.

An exercise for computing E[g(x,y)]:

x, y = 1, 0, with f(x,y) = 1/4.

E(xy) = � �  xyf(x,y) =  0×0×(1/4) + 0×1×(1/4)+ 1×0×(1/4) + 1×1×(1/4) = 1/4.x y

Conditioning in a Bivariate Distribution:

X,Y: RVs with f(x,y). (Y = consumption, X = income)

Population of billions and billions: {(x ,y ), .... (x ,y )}.(1) (1) (b) (b)

Average of y  = E(y).(j)

For people earning a specific income x, what is the average of y?  

Conditional Mean and Variance:

E(y�x) = E(y�X=x) = � yf(y�x).y

var(y�x) = E[(y-E(y�x)) �x] = � (y-E(y�x)) f(y�x).2 2
y

Regression model:


 = y - E(y�x).

� y = y - E(y�x) + E(y�x) = E(y�x) + 
 (regression model).

� E(y�x) = explained part of y by x.

� 
 = unexplained part of y (called disturbance term).

� E(
�x) = 0 and var(
�x) = var(y�x).
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Note:

• E(y�x) may vary with x, i.e., E(y�x) is a function of x.

• Thus, we can define E [E(y�x)], where E (.) is the expectation over x = � •f (x) or � •f (x)dx.x x x x x x

Theorem: (Law of Iterative Expectations)

E(y) [unconditional mean] = E [E(y�x)] .x

Proof:

E(y) = � � yf(x,y) = � � yf(y�x)f (x) = � [� yf(y�x)]f (x).x y x y x x y x

Note: For discrete RV, X with x = x , ..., 1

E(y) = � E(y�x)f (x) = E(y�x=x )f (x ) + E(y�x=x )f (x=x ) + ... .x x 1 x 1 2 x 2

Implication:

If you know conditional mean of y and marginal distribution of x, you can also find unconditional

mean of y too.

EX 1: Suppose E(y�x) = 0, for all x. � E(y) = E [E(y�x)] = E (0) = 0.x x

EX 2: E(y�x) = �  + � x (linear regression line). � E(y) = E (� +� x) = �  + � E(x).1 2 x 1 2 1 2

Question: When can E(y�x) be linear?  Answered later.

Definition: We say that y is homoskedastic if var(y�x) is constant.

EX: y = E(y�x) + 
 with var(
�x) = �  (constant).2

� var(y�x) = �2

� y is homoskedastic.

Graphical Interpretation of Conditional Means and Variances

• Consider the following population:
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• E(y�x=x ) measures the average value of y for the group of x = x .1 1

• var(y�x=x ) measures the dispersion of y given x = x .1 1

• If var(y�x=x ) = var(y�x=x ) = ..., we say that y is homoskedastic.1 2

• Law of iterative expectation:

E(y) = � E(y�x)f (x) = E(y�x=x )Pr(x=x ) + E(y�x=x )Pr(x=x ) + ... .x x 1 1 2 2

Question: It is worth finding E(y�x)?

Theorem: (Decomposition of Variance)

var(y) = var [E(y�x)] + E [var(y�x)].x x

Implication: var [E(y�x)] � var(y), since E [var(y�x)] � 0.x x

Coefficient of Determination:

R  = var [E(y�x)]/var(y).2
x

� measure of worthiness of knowing E(y�x).

� 0 � R  � 1.2

Note:

• var(y) = total variation of y.

• var [E(y�x)] � a part of variation in y due to variation in E(y�x)x

= variation in y explained by E(y�x).

• R  = variation in y explained by E(y�x)/total variation of y.2
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• Wish R  close to 1.2

Summarizing Exercise:

• A population with X (income=$10,000) and Y (consumption=$10,000).

• Joint Pdf:

Y\X 4 8

1 1/2 0

2 1/4 1/4

• Graph for this popuation:

• Marginal Pdf:

Y\X 4 8 f (y)y

1 1/2 0 1/2

2 1/4 1/4 1/2

f (x) 3/4 1/4x

• Means of X and Y:

• E(x) 	 µ  = � xf (x) = 4×f (4) + 8×f (8) = 4×(3/4) + 8×(1/4) = 5.x x x x x

• E(y) 	 µ  = � yf (y) = 1.5x y y

• Variances of X and Y:

• var(x) 	 �  = � (x-µ ) f (x) = (4-5) f (4) + (8-5) f (8) = 1×(3/4) + 9×(1/4) = 3.x x x x x x
2 2 2 2

• var(y) 	 �  = 1/4.y
2



cov(x,y)
�x�y

0.5

3 1/4
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• Covariance between X and Y:

• cov(x,y) 	 E[(x-µ )(y-µ )] = E(xy) - µ µ  = � � xyf(x,y) - µ µx y x y x y x y

= 4×1×f(4,1) + 4×2×f(4,2) + 8×1×f(8,1) + 8×2×f(8,2) - 5×1.5 = 0.5.

• 	   	  =  
 0.58.xy

• Conditional Probabilities

Y\X 4 8 f (y)y

1 1/2 0 1/2

2 1/4 1/4 1/2

f (x) 3/4 1/4x

• f(y�x):

Y\X 4 8

1 2/3 0

2 1/3 1

• Conditional mean:

• E(y�x=4) = � yf(y�x=4) = 1×f(y=1�x=4) + 2×f(y=2�x=4) = 1×(2/3) + 2×(1/3) = 4/3y

• E(y�x=8) = 2.

• Conditional variance of Y:

• var(y�x=4) = � [y-E(y�x=4)] f(y�x=4) = 6/27.y
2

• var(y�x=8) = 0.



x

y
� N

µx

µy

,
�2

x 	�x�y

	�x�y �2
y

.

f(x,y) �
1

2��x�y 1�	2
exp �

1

2(1�	2)

(x�µx)
2

�2
x

�2	
x�µx

�x

y�µy

�y

�
(y�µy)

2

�2
y

, x ,y��.

E(x) �

E(x1)

E(x2)

�

E(xn)

; Cov(x) �

var(x1) cov(x1 ,x2) cov(x1 ,x3) 
 cov(x1 ,xn)

cov(x2 ,x1) var(x2) cov(x2 ,x3) 
 cov(x2 ,xn)

� � � �

cov(xn ,x1) cov(xn ,x2) cov(xn ,x3) 
 var(xn)

.
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• Law of iterative expectation:

• E [E(y�x)] = � E(y�x)f (x)x x x

= E(y�x=4)f (4) + E(y�x=8)f (8)x x

= (4/3)×(3/4) + 2×(1/4) = 1.5 = E(y)!!!

[4] Bivariate Normal Distribution

Definition: (Bivariate Normal Distribution)

Here, cov(x,y) = �  = 	� � .xy x y

Facts:

1) f (x) � N(µ ,� ) and f (y) � N(µ ,� ).x x x y y y
2 2

 2) E(y�x) = �  + � x and var(y�x) = �  (constant) [See Greene.]1 2
2

� E(y�x) is linear in x and y is homoskedastic.

3) If 	 = 0 (�  = 0), x and y are stochastically independent.xy

[5] Multivariate Distributions

1. Mean vector and covariance matrix:

Definition: X , ... , X  : random variables.1 n

Let x = [x , .... , x ]� (n×1 vector).  Then,1 n

� Cov(x) is symmetric.



B �

B11 B12 
 B1n

B21 B22 
 B2n

� � �

Bn1 Bn2 
 Bnn

�E(B) �

E(B11) E(B12) 
 E(B1n)

E(B21) E(B22) 
 E(B2n)

� � �

E(Bn1) E(Bn2) 
 E(Bnn)

.

(x�µ)(x�µ)� �
x1�µ1

x2�µ2

[x1�µ1 ,x2�µ2] �

(x1�µ1)
2 (x1�µ1)(x2�µ2)

(x1�µ1)(x2�µ2) (x2�µ2)
2
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Note: In Greene, Cov(x) is denoted by Var(x).

Definition: (Expectation of random matrix)

Suppose that B  are RVs. Then, ij

Theorem: Cov(x) = E[(x-µ )(x-µ )�] = E(xx�) - µ µ �.x x x x

Proof: See Greene.

EX: If x is scalar, Cov(x) = E[(x-µ) ] = var(x).2

EX: x = [x ,x ]�; E(x) = µ = [µ , µ ]�1 2 1 2

� x - µ = [x -µ , x -µ ]�1 1 2 2

�

� E[(x-µ)(x-µ)�] = Cov(x).

2. Mean and Variance of a linear combination of RVs:

Definition:

Let X = [X , ... , X ]� be a random vector and let c = [c , ... , c ]� be a n×1 vector of fixed constants. 1 n 1 n

Then,

c�x = x�c = c x  + ... + c x  = �  c x  (scalar).1 1 n n j j j

Theorem:

(1) E(c�x) = c�E(x)

(2) var(c�x) = c�Cov(x)c.

Proof:  



B �

b11 b12 
 b1n

b12 b22 
 b2n

� � �

b1n b2n 
 bnn

.
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(1) E(c�x) = E(� c x ) = �E(c x  + ... + c x ) = c E(x ) + ... + c E(x ) = � c E(x ) = c�E(x). j j j j 1 1 n n 1 1 n n j j j

(2) var(c�x) = E[(c�x - E(c�x)) ] = E[{c�x - c�E(x)} ] = E[{c�(x-E(x))} ]2 2 2

= E[{c�(x-E(x))}{c�(x-E(x))}] = E[{c�(x-E(x))}{(x-E(x))�c}]

= E[c�(x-E(x))(x-E(x))�c] = c�E[(x-E(x))(x-E(x))�]c = c�Cov(x)c. 

Remark:

(2) implies that Cov(x) is always positive semidefinite.

� c�Cov(x)c � 0 for any nonzero vector c.

Proof:

For any nonzero vector c, c�Cov(x)c = var(c�x) � 0.

Remark:

• Cov(x) is symmetric and positive semidefinite.

• Usually, Cov(x) is positive definite, that is, c�Cov(x)c > 0, for any nonzero vector c.

Digression to Definite Matrices

Definition:

Let B = [b ]  be a symmetric matrix, and c = [c , ... , c ]�.  Then, the scalar, c�Bc, is called aij n x n 1 n

quadratic form of B.

Definition:

If c�Bc > (<) 0 for any nonzero vector c, B is called positive (negative) definite.

If c�Bc �(�) 0 for any nonzero c, B is called positive (negative) semidefinite.

Theorem:

Let B be a symmetric and square matrix given by:



�B1� � b11 ; �B2� � �����
�����

b11 b12

b12 b22

; �B3� �

�����������

�����������

b11 b12 b13

b12 b22 b23

b13 b23 b33

; 
.

B �
2 1

1 2
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Define the principal minors by:

B is positive definite iff �B �, �B �, ... , �B � are all positive. B is negative definite iff �B � < 0, �B �1 2 n 1 2

> 0, �B � < 0, ... .3

EX:

Show that B is positive definite:

End of Digression

Theorem:

Let X be a n×1 random vector and let A be a m×n matrix of constants (Ax is a m×1 random

vector).  Then,

E(Ax) = AE(x); Cov(Ax) = ACov(x)A�.

[6] Multivariate Normal distribution

Definition:

x = [x , ... , x ]� is a normal vector, i.e., each of the x 's is normal. 1 n j

Let E(x) = µ = [µ , ... , µ ]� and Cov(x) = � = [� ] .  Then,1 n ij n×n

x � N(µ, �). 

Pdf of x:

f(x) = f(x , ... , x ) = (2�) ��� exp[-(1/2)(x-µ)�� (x-µ)] ,1 n
-n/2 -1/2 -1

where ��� = det(�).

EX:



f(xi) � �
1

2��x

exp�
(xi�µx)

2

2�2
x

.

1

2��x

exp�
(x�µx)

2

2�2
x

.
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Let X be a single RV with N(µ ,� ).  Then,x x
2

f(x) = (2�) (� ) exp[-(1/2)(x-µ )(� ) (x-µ )] = -1/2 2 -1/2 2 -1
x x x x

EX:

Assume that all the x  are iid with N(µ ,� ).  Then,i x x
2

(1)  µ = E(x) = [µ , ... , µ ]� ; x x

(2) � = Cov(x) = diag(� , ... , � ) = � I  .2 2 2
x x x n

Using (1) and (2), we can show that f(x) = f(x , ... , x ) = � f(x ) , where,1 n i=1 i
n

1. Conditional normal distribution

[y, x , ... , x ]� is a normal vector.  Then,2 k

E(y�x ,...,x ) = �  + � x  + ... + � x  = x ��2 k 1 2 2 k k
*

[x � = (1, x , ... , x ) and � = (� , ... , � )�] *
2 k 1 k

var(y�x ) = �  .* 2

� The regression of y on x , ... , x  is linear & homoskedatic.1 k

Proof:  See Greene.

2. Distributions of linear functions of a normal vector

x  � N(µ,�).nx1

  y = Ax + b, where A  and b  are fixed.m×n m×1

� y � N(Aµ+b,A�A�).

[7] Sample and Estimator

(1) A population (of billions and billions)




̂


̂ � x̄ � (1/T)�T
t�1xt


̂[1]


̂[2]


̂[b �]


̂ 
̂ 
̂
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• A unknown characteristic of the population is denoted by 
 � �.

(
 is called a unknown parameter of interest.)

(
 could be the population mean or population variance.)

• Wish to estimate 
.

• {x , ... , x }: a sample of size T from the population.1 T

• : an estimator of 
, which is a function of the sample.

(e.g, .)

• A sample is random, in the sense that there are many possible samples of size T.

   Set of all possible samples     Estimates 

(Set of all possible samples)

SAM 1: {x , ... , x , ... , x } �1 t T
[1] [1] [1]

SAM 2: {x , ... , x , ... , x } �1 t T
[2] [2] [2]

: :

SAM b�: {x , ... , x , ... , x } �1 t T
[b�] [b�] [b�]

Since {x , ... , x } is random, so is . � We can define E( ) and var( ).1 T

(2) Meaning of “a random sample (RS) from a distribution f(x)”

� Means that x , ... , x  are iid.1 T

� EX: {x , ... , x } a RS from N(µ,� ).1 T
2

� x  � N(µ,� ) for any t = 1, ... , T.t
2

� E(x ) = µ and var(x ) = � , for any t = 1, ... , T.t t
2

Note:




̂ 
̂


̂[1] 
̂[b �] �b �

j�1
̂
[j]

x̄ � (1/T)�T
t�1xt �T

t�1(xt� x̄)2

x̄

x̄


̂ 
̃


̃ 
̂ 
̂ 
̃


̂ 
̂[1] 
̂[b �]


̃ 
̃[1] 
̃[b �]


̃ 
̂ 
̃[1] 
̃[b �] 
̂[1] 
̂[b �]


̂
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A sample need not be iid.

� Let x  be the height of the t’th person (cross-section data)t

� Likely to be independent of others’ height.

� Likely to be identically distributed.

� Let x  be US GNP at time t (time-series data)t

  � x  and x  are likely to be correlated.t t-1

� x , ... , x  are not iid.1 T

(3) Criteria for a “good” estimator

1) Minimum Variance Unbiased Estimator

Definition: E( ) = 
 �  is called a unbiased estimator of 
.

Implication: , ... ,  � (1/b�)  = 
, a.s.

EX:

{x , ... , x }: RS from a dist. with µ and � .1 T
2

; s  = [1/(T-1)] .x
2

� E( ) = µ and E(s ) = � .x
2 2

� So,  and s  are unbiased estimators of µ and � , respectively.x
2 2

Definition:

Let  and  be unbiased estimators of 
.

var( ) > var( )  �  is more efficient than .

Implication:

: , ... , ;

: , ... , .

var( ) > var( ) � Dispersion of , ... ,  > Dispersion of , ... ,  

�  is less sensitive to the chosen sample.

EX: {x , ... , x }: RS from a dist. with µ and � .1 T
2



x̃

x̃

x̃

x̄

x̄ x̃


̂


̂ 
̃ 
̂ 
̃


̂


̂ 
̂


̂ 
̂ 
̂ 
̂ 
̂ 
̂


̂ 
̂ 
̂ 
̂ 
̂


̂
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 = x .1

� E( ) = E(x ) = µ (unbiased).1

� var( ) = var(x ) = � .1
2

� But, var( ) = � /T .2

�  is more efficient than .

Definition:

: a unbiased estimator.

 is MVUE iff var( ) � var( ) for any unbiased estimator . 

� Say that  is efficient.

2) Minimum Mean Square Error (MMSE) Estimator

Definition:

MSE( ) = E[( -
) ].2

Note: If E( ) = 
, var( ) = E[( -E( )) ] = E[( -
) ] =  MSE( ).2 2

Theorem:

Let Bias( ) = E( -
).  Then, MSE( ) = var( ) + Bias( ) .2

Definition:

The MMSE estimator minimizes MSE( ).

Note:

1) MMSE estimator could be biased.

2) MMSE is usually a function of 
.

� To get MMSE, need to know 
.

� If you know 
, why do you estimate?

� If we wish to test for some hypotheses regarding 
, MVUE is more meaningful.

(3) How to find MVUE



�T
t�1f(xt ,
o)

�T
t�1f(xt ,
)

�T
t�1ln[f(xt ,
)]

�T
t�1ln[f(xt ,
)]


̂


̂ 
̂ 
̂


̂ 
̂ 
̂ 
̂ 
̂
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Notational Change:

• From now on, we denote the true value of 
 as 
 .o

• Then, view 
 as a variable.

Definition: (Likelihood function)

• joint pdf of x , ... , x  = f(x , ... , x ,
 ).1 T 1 T o

• L (
) = f(x , ... , x ,
) (likelihood function).T 1 T

Remark:

• L (
) is a joint pdf of x , ... , x  replacing 
  by 
.T 1 T o

• View L (
) as a function of 
 given x , ... , x .T 1 T

Definition: (log-likelihood function)

l (
) = ln[f(x , ... , x , 
)].T 1 T

EX:

{x , ... , x }: RS from a dist. with f(x,
 ).1 T o

� x  � f(x ,
 ).t t o

� f(x , ... , x ,
 ) = .1 T o

� f(x , ... , x ,
) = .1 T

� ln[f(x , ... , x ,
)] = .1 T

� l (
) =  .T

Definition: (Maximum Likelihood Estimator)

MLE  maximizes l (
) given data points x , ... , x .T 1 T

Theorem:

If  is MLE and E( ) = 
 ,  is an efficient estimator.o

Theorem:

Let  be MLE.  Suppose E( ) � 
 .  Suppose � g( ) � E[g( )] = 
 . Then, g( ) is efficient.o o



E(
̂) �

E(
̂1)

E(
̂2)

�

E(
̂p)

�


o,1


o,2

�


o,p

� 
o .


̂ x̄


̂ x̄


̂


̂ � [
̂1, 
̂2, ... , 
̂p]
� 
̂j


̂ 
̂


̃ 
̂


̂ 
̃ 
̃ 
̂


̃ 
̂


̃ 
̂


̃ 
̂
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EX:

{x , ... , x }: RS from a Poisson dist., f(x,
) = e 
 /x! [Suppressing subscript “o” from 
].1 T
-� x

[Note E(x) = var(x) = 
 .]o

� l (
) = � ln[f(x ,
)] = � [-
+x ln(
)-ln(x !)]T t t t t t

� FOC (first order condition): �l (
)/�
 = � [-1+x /
] = 0T t t

� -T + (1/
)� x  = 0 � -T
 + � x  = 0 �  = (1/T)� x  = .t t t t t t

� E( ) = E( ) = 
.

�  Efficient. 

[8] Extention to the Estimation of Multiple Parameters

Definition:


  = [
 , 
 , ... , 
 ]�: the unknown parameter vector.o o,1 o,2 o,p

, where  is a function of {x , ... , x }.1 T

Definition: (Unbiasedness)

 is unbiased if E( ) = 
 :o

Definition: (Relative Efficiency)

, : unbiased estimators.

c = [c , ... , c ]� be any nonzero vector.1 p

 is said to be efficient relative to  iff var(c� ) � var(c� ).

� c�Cov( )c - c�Cov( )c � 0

�  c�[Cov( ) - Cov( )]c � 0

� [Cov( ) - Cov( )] is positive semidefinite.

Note:

• Let 
 = (
 ,
 )� and c = (c ,c )�. 1 2 1 2




̂ � (
̂1 , 
̂2)
� 
̃ � (
̃1 , 
̃2)

�


̃ 
̃1 
̃2 
̂1 
̂2 
̂ 
̂


̂
1 0

0 1

̃

1.5 1

1 1.5


̂1 
̃1 
̂2 
̃2


̃ 
̂
0.5 1

1 0.5


̂ 
̃


̂ 
̂


̃ 
̃


̃


̂j 
̃j


̂ 
̃ 
̂j 
̃j
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• Suppose you wish to estimate c�
 = c 
  + c 
 .1 1 2 2

• Suppose you have  and .

• If, for any c, var(c� ) = var(c +c ) > var(c +c ) = var(c� ), we can say that  is a1 2 1 2

better estimator. 

EX: Let 
 = (
 ,
 )�.  Suppose:1 2

Cov( ) = ; Cov( ) = 

� var( ) = 1 < 1.5 = var( ); var( ) = 1 < 1.5 = var( ).

But,

Cov( ) - Cov( ) =  	 A

�A � = 0.5 ; �A � = (0.5)  - 1 = -0.75 < 0.1 2
2

� A is not positive definite.

� Thus,  is not necessarily more efficient than .

� For example, you wish to estimate 
 -
  = c�
  (c� = (1,-1)).o,1 o,2 o

� var(c� ) = c�Cov( )c = 2

� var(c� ) = c�Cov( )c = 1

� Thus, c�  is a better estimator of c�
.

� Depending on c, a better estimator is determined.

� Can't claim that one estimator is always superior.

Question:

How about the following rule?

var( ) � var( ), for any j = 1, ... , p.

In fact, this rule is weaker than our relative efficiency rule.

Theorem:

If  is more efficient than , var( ) � var( ), for any j = 1, ... , p .

But, the reverse is not true.




̂1 
̂ 
̃ 
̃1


̂


̂ 
̃ 
̂ 
̃


̃ 
̂ 
̃ 
̂


̃ 
̂


̃ 
̂


̂ 
̂ 
̂


̂ 
̂ 
̂


̂ 
̂ 
̂ 
̂


̂ 
̂
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t�1 �T

t�1


̂
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Proof:

Let c� = (1,0,...,0).  Then, var( ) = var(c� )  � var(c� ) = var( ).

Definition: (MVUE)

: a unbiased estimator.

c = [c , ... , c ]� be any nonzero vector.1 p

 is said to be efficient iff var(c� ) � var(c� ) for any unbiased .

Note:

var(c� ) � var(c� ) �  c�Cov( )c - c�Cov( )c � 0

�  c�[Cov( ) - Cov( )]c � 0

� [Cov( ) - Cov( )] is positive semidefinite.

Definition: (MSE)

MSE( ) = E[( -
 )( -
 )�] (p × p ).o o

Note: If E( ) = 
 , Cov( ) = MSE( ).o

Theorem:

MSE( ) = Cov( ) + [
  - E( )][
  - E( )]� ,o o

where [
  - E( )] is called the bias of .o

Definition: (Likelihood function)

L (
) = f(x , ... , x ,
) = f(x , ... , x , 
 , ... , 
 ).T 1 T 1 T 1 p

l (
) = ln[f(x , ... , x ,
)] = ln[f(x , ... , x , 
 , ... , 
 )].T 1 T 1 T 1 p

Note: If {x , ... , x } is a RS,1 T

l (
) = ln[f(x ,
)] = ln[f(x , 
 , ... , 
 )].T t t 1 p

Definition: (MLE)

MLE  max. l (
) given data points x , ... , x :T 1 T



� lT(
̂)

�

�

�lT(
̂)/�
1

�lT(
̂)/�
2

�

�lT/�
p

�

0

0

�

0

� 0p×1 .


̂ 
̂


̂ 
̂ 
̂ 
̂ 
̂

f(xt ,
) �
1

2�v
exp �

(xt�µ)2

2v
� (2�)�1/2(v)�1/2 exp �

(xt�µ)2

2v
.

ln[f(xt ,
)] � (�1/2)ln(2�)� (1/2)ln(v)�
(xt�µ)2

2v
.

lT(
) � �
T
2

ln(2�) �
T
2

lnv �
�T

t�1(xt�µ)2

2v
.

(1) :
�lT

�µ
� �

1
2v

�T
t�12(xt�µ)(�1) �

�T
t�1(xt�µ)

v
� 0 ,

(2) :
� lT

�v
� �

T
2v

�
�T

t�1 (xt�µ)2

2v 2
� 0 .
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Theorem:

Let  be MLE.  If E( ) = 
 , it is efficient.o

Theorem:

Let  be MLE.  Suppose E( ) � 
 .  Suppose � g( )  � E[g( )] = 
 .  Then, g( ) is efficient.o p×1 o

EX:

Let x  be iid with N(µ,� ) [suppressing subscript “o” from µ and � ].  Let 
 = (µ, v)� where v =  � .t
2 2 2

Note that:

For MLE, solve:

From (1):

(3) : � (x  - µ) = 0 � � x  - Tµ = 0 t t t t




̂ML �

µ̂ML

v̂ML

�

x̄

1
T
�T

t�1(xt� x̄)2 .

µ̂ x̄

µ̂ v̂ µ̂ x̄

x̄

v̂ x̄

v̂ v̂ML

v̂ML

v̂ML x̄


̂T


̂T


̂T


̂T


̂T


̂T 
̂T


̃
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�  = (1/T)� x  = .ML t t

Substituting (3) into (2):

-Tv + � (x - )  = 0 �   = (1/T)� (x - )  = (1/T)� (x - ) .t t ML ML t t ML t t
2 2 2

Thus,

Note:

• E(µ̂ ) = E( ) = µ  � unbiased � efficient.ML o

• E( ) = {( -1)/T}�  (by the fact that E[(1/(T-1)� (x - ) ] = � )ML T o t t o
2 2 2

� biased.

• Let g( ) = [T/(T-1)] .ML

� E[g( )] = � .o
2

� g( ) = [1/(T-1)]� (x - )  = s  is efficient.t t x
2 2

[9] Large-Sample Theories

(1) Motivation:

• : an estimator from a sample of size T, {x , ... , x }1 T

• What would happen to  if T � �?

• What do we wish?

[We wish  becomes closer to 
  as T increases.]o

(2) Main Points:

• Rough Definition of Consistency:

Suppose that distribution of  becomes condensed around 
  more and more as T increase. o

Then, we say that  is a consistent estimator.  And we use the following notation:

plim  = 
  (or  �  
 ).T�� o p o

• Relation between unbiasedness and consistency:

• Biased estimators could be consistent.

EX: Suppose that  is unbiased and consistent.




̂ 
̃


̂


̂ 
̃


̂ 
̂
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x̄
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x̄ 1
T

x̄ 1
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Define  =  + 1/T.

Clearly, E( ) = 
  + 1/T � 
  (biased)o o

But, plim  = plim  = 
 (consistent)T�� T��

• A unbiased estimator  is consistent if var( ) � 0 as T � �.

EX: Suppose that {x , ..., x } is a RS from N(µ ,� ).1 T o o
2

E( ) = µ .o

var( ) = � /T � 0 as T � �.o
2

Thus,  is a consistent estimator of µ .o

• Law of Large Numbers (LLN)

A. Case of Scalar Random variables:

• Komogorov's Strong LLN:

Suppose that {x , ... , x } is a RS from a population with µ  and � .1 T o o
2

Then, plim  = µ .o

• Generalized Weak LLN (GWLLN):

• {x , ... , x } is a sample (not necessarily RS)1 T

• Define E(x ) = µ , ... , E(x ) = µ .1 o,1 T o,T

• Define var(x ) = � , ... , var(x ) = � .1 o,1 T o,T
2 2

Assume that � , ... , �  < �.o,1 o,T
2 2

• Then, under suitable assumptions, plim  = lim � µ  .t o,t

B. Case of Vector Random Variables:

• GWLLN

• x : p×1 random vector.t

• {x , ... , x } is a sample.1 T

• Let E(x ) = µ  (p×1), ... , E(x ) = µ .1 o,1 T o,T

• Assume that Cov(x ) are well-defined and finite.j

• Then, under suitable assumptions.

plim  = lim � µ .t o,t

• Central Limit Theorems (CLT)



x̄

x̄

x̄

T x̄ T
x̄�µo

�o

T(x̄�µo)

T(x̄�µo) T x̄ x̄

T(x̄�µo) x̄ x̄ x̄

x̄

1

T
�T

t�1yt �d N(0 , limT��
1
T

Cov(�T
t�1yt)) .

1

T
�T

t�1yt �d N(0 , limT��
1
T
�T

t�1Cov(yt)) .
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A. Case of Scalar Random Variables:

• Motivation:

• Suppose that {x , ... , x } is a RS from a population with µ  and � .1 T o o
2

• We know  � µ  as T � �.  But we can never have an infinitely large sample!!!o

• For finite T,  is still a random variable.  What statistical distribution could approximate

the true distribution of ?

• Lindberg-Levy CLT:

• Suppose that {x , ... , x } is a RS from a population with µ  and � .1 T o o
2

• Then, ( -µ ) �  N(0,� ), or equivalently, � N(0,1).o d o d
2

• Implication of CLT:

•  
 N(0,� ), if T is large.o
2

• E[ ] = [E( ) - µ ] 
 0 � E( ) 
 µ .o o

• var[ ] = Tvar( -µ ) = Tvar( ) 
 �   � var( ) 
 � /T.o o o
2 2

•  
 N(µ  ,� /T), if T is large.o o
2

B. Case of Random vectors:

• GCLT

• {y , ... , y }: a sequence of p×1 random vectors.1 T

• For any t, E(y ) = 0 and Cov(y ) is well defined and finite.t t

• Under some suitable conditions (acceptabe for Econometrics I, II),

• Note:

• Cov(y ) [var(y ) if y  is a scalar] could differ across different t.t t t

• The y  could be correlated as long as lim cov(y ,y ) = 0 (if the y  are stationary.t n�� t t+n t

• If E(y �y , y , ... , y ) = 0 (Martingale Difference Sequence), the y ’s are linearlyt t-1 t-2 1 t

uncorrelated.  Then,

[Technical Details]



�b�c� (norm) � (b1�c1)
2� (b2�c2)

2� ...� (bp�cp)
2 .
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(3) Convergency in probability

Definition:

When b and c are scalars, �b - c� = absolute value of (b-c).

When b = [b , ... , b ]� and c = [c , ... , c ]� be p × 1 vectors, 1 p 1 p

Definition: (Convergency in probability, Weak Convergency)

 converges in probability to c iff

lim  Pr[�  - c � < 
] = 1, for any small 
 > 0.T��

Or equivalently,

lim Pr[�  - c� > 
] = 0, for any small 
 > 0.T��

If so, we say plim  = c  or   �   c.T�� p

EX 1:  = 0 with pr = 1-(1/T); = 1 with pr = 1/T.

Choose 0 < 
 < 1:

Pr(�  - 0� > 
) = Pr(� � > 
) = Pr(  > 
) = 1/T

� lim Pr(�  - 0� > 
) = 0T��

�   �   0.p

EX 2:  = 0 with pr = 1-(1/T); = T with pr = 1/T.

Choose 0 < 
 < 1:

Pr(�  - 0� > 
) = Pr(� � > 
) = Pr(  > 
) = 1/T

� lim Pr(�  - 0� > 
) = 0T��

�   �   0.p

Digression to other stronger convergency:

Definition: (Convergence in mean square)

 converges in mean square to c iff lim E[� -c� ] = 0 .  For this case, we sayT��
2

  �  c, m.s..

Theorem: m.s. � p. 

Proof:
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Chebychev’s inequality (see Greene) says:

For any 
 > 0, Pr(� -c� > 
) � E(� -c� )/
 .2 2

� lim Pr(� -c� > 
) = lim E(� -c� )/
  = 0.T�� T��
2 2

Fact: p. does not necessarily imply m.s.

EX 1:  = 0 with pr = 1-(1/T); = 1 with pr = 1/T:   �   0.p

• Observe E[�  - 0� ] = E[ ] = 0  × [1-(1/T)] + 1  × (1/T) = 1/T2 2 2 2

� lim E[�  - 0� ] = 0.T��
2

�   �  0 m.s..

EX 2:  = 0 with pr = 1-(1/T); = T with pr = 1/T.

•   �   0.p

• Observe E[�  - 0� ] = E[ ] = 0  × [1-(1/T)] + T  × (1/T) = T2 2 2 2

� lim E[�  - 0� ] = �.T��
2

� not m.s.

Implication:

• In EX 1 above,  is p and ms.  But in EX 2 above,  is p., but not m.s.

• To be p., Pr(  deviates from c) should become increasingly small as T � �.  But this is not

enough for m.s..  To be m.s., for any possible value of , the size of � -c�should not grow

too fast as T � �. For example, if we assume Pr(  = T ) = 1/T instead, we can show that 1/4

� c, m.s.

Definition:  (Almost sure convergency, Strong Convergency)

  converges almost surely to c, iff Pr[lim  = c] = 1.  For this case, we say:T��

  �  c, a.s..

Theorem: a.s. � p.  (See Rao (1973).)

Fact: 1) p. does not implies a.s.

2) No clear relation between a.s. and m.s. with few exceptions.
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̂T


̂T 
̂T

ȳT � (1/T)�T
t�1yt
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Theorem:

Suppose lim E(� -c� ) = 0 and .  Then,   �  c, a.s.. (See Rao (1973).)T��
2

EX 1:  = 0 with pr = 1-(1/T); = 1 with pr = 1/T.

•   �  0 and  � 0, m.s..p

• But, can’t determine whether   �  0, a.s..

(Observe that .)

EX 2:  = 0 with pr = 1-(1/T ); = 1 with pr = 1/T .2 2

•   �  0.p

• Observe E[�  - 0� ] = E[ ] = 0  × [1-(1/T )] + 1  × (1/T ) = 1/T :2 2 2 2 2 2 2

• lim E[�  - 0� ] = 0.T��
2

� 

�   �  0, a.s..

Implication:

EX 1: Pr(  = 1) = 1/T.

EX 2: Pr(  = 1) = 1/T .2

� To be a.s., Pr(  deviates from c) should decrease rapidly as T � �.

End of Digression

Definition:

: an estimator of 
 .o

We say that  is consistent, iff plim  = 
 .T�� o

Question:

An example for a consistent estimator?

Theorem: (Generalized Weak Law of Large Numbers, GWLLN)

{y , ... , y }: a sequence of p×1 random vectors.1 T

For any t, E(y ) and Cov(y ) are well defined and finite.t t

 (mean of the sequence).



ȳT � (1/T)�T
t�1yt �T

t�1

x̄

x̄

x̄


̂T


̂T


̂T


̂T 
̂T

x̄/s 2
x x̄

x̄ x̄ 2 x̄s 2
x
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Under some suitable conditions (acceptable for Econometrics I, II),

  �   lim (1/T) E(y ).p T�� t

Note:

1) Both E(y ) and Cov(y ) [var(y ) if y  is a scalar] could differ across different t.t t t t

2) The y  could be correlated as long as lim cov(y ,y ) = 0.t n�� t t+n

EX: {x , ... , x }: RS from a population with E(x) = µ  and var(x) = � .1 T o o
2

• By Kolmogorov’s SLLN,  = (1/T)� x   �  µ , a.s..t t o

•   �   µ . p o

[Proof by GWLLN]

(1/T)�E(x ) = (1/T)� µ  = (1/T)Tµ  = µt t t o o o

� lim (1/T)�E(x ) = lim µ  = µT�� t t t�� o o

� By GWLLN,  �  µ .p o

Theorem: (Slutzky)

plim  = 
 .T�� o

g(
): a vector of continuous functions of 
.

� plim g( ) = g(
 )T�� o

EX: 
 is a scalar and  �  
 .p o

plim  = 
 ; plim 1/  = 1/
.T�� o T��
2 2

EX: {x , ... , x }: Random sample from a population with µ  and � .1 T o o
2

plim  = [plim ]/[plim s ] = µ /� .x o o
2 2

EX: plim (  +  +  + s ) = µ  + µ  + µ �  + � .x o o o o o
2 2 2 2

Rules for Probability limits:

1) W  is an square matrix of random variables and plimW  is invertible. Then, T T

plim [W ]  = [plim W ] .T T
-1 -1

2) X  and Y  are conformable matrices of random variables  Then, T T
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plim X Y  = [plim X ][plim Y ].T T T T

(4) Convergency in distribution

Definition: (Convergency in distribution)

F(z): cdf of a random vector z.

z : a random vector with cdf F (z ).T T T

� We say z  converges in distribution to z, iff lim F (z) = F(z) for a.T T�� T

�  z   �   z.T d

Fact: d. differs from p.

EX: Two dice A and B.

A is fair one: f(z) = 1/6, z = 1,2, ... , 6.

B is unfair: 

z  be a possible outcome from the T’th trial withT

f (z ) = 1/6 + 1/(T+100) for z  = 1, 2, 3,T T T

f (z ) = 1/6 - 1/(T+100) for z  = 4, 5, 6.T T T

As T � �, the unfairness of B decreases.

� z   �   z. T d

But a realized value of z  may not equal that of x at T’th trial, even if T � �.T

Theorem: (Mann and Wald)

Suppose g(z) is a continuous function.  Then,

(z   �   z)  � (g(z )  �   g(z)).T d T d

Theorem:

A : a random matrix with plim A  = A.T T

z : a random vector  �   z.T d

� A z   �   Az.T T d

EX: (Central Limit Theorem, CLT)



T(x̄�µo) �d N(0 ,�2
o) .

1

T
�T

t�1yt �d N(0 , limT��
1
T

Cov(�T
t�1yt)) .

T T T x̄

T(x̄�µo)

1

T
�T

t�1yt �d N(0 , limT��
1
T
�T

t�1Cov(yt)) .
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{x , ... , x }: RS from a population with µ  and � .1 T o o
2

� Lindberg-Levy CLT says

Theorem: (Generalized CLT, GCLT)

{y , ... , y }: a sequence of p×1 random vectors.1 T

For any t, E(y ) = 0 and Cov(y ) is well defined and finite.t t

Under some suitable conditions (acceptabe for Econometrics I, II),

Note:

1) Cov(y ) [var(y ) if y  is a scalar] could differ across different t.t t t

2) The y  could be correlated as long as lim cov(y ,y ) = 0.t n�� t t+n

EX: (Lindberg-Levy CLT)

{x , ... , x }: RS from a population with µ  and � .1 T o o
2

� Let y  = x  - µ .t t o

E(y ) =E(x ) - µ  = 0;t t o

var(y ) = var(x ) = � .t t o
2

[1/ ]� y  = [1/ ][� x  - Tµ ] = ( -µ )t t t t o o

(1/T)var(� y ) = (1/T)var(� x -Tµ) = (1/T)var(� x )t t t t t t

= (1/T)� var(x ) = (1/T)T�  = �t t o o
2 2

� lim (1/T)var(� y ) = � .t t o
2

�   �   N(0,� ).d o
2

Corollary:

Assume the same things as GCLT.

Assume that the y ’s are linearly uncorrelated.t

Then,



�g(
)
�


�

g1

g2

�

gp

; �g(
)

�
�

� [g1 ,g2 , ... ,gp] ,

Eyt�1 , ... ,yt�j�1
[E(yt�j�yt�j�1 , ... ,y1)] � Eyt�1 , ... ,yt�j�1

(0) � 0 .

Eyt
[E(ytyt�j�yt)] � Eyt

[ytE(yt�j�yt)] � Eyt
(0) � 0 .

1

T
�T

t�1yt �d N(0 , limT��
1
T
�T

t�1Cov(yt)) .
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Proof:

When y  is a scalar, var(� y ) = � var(y ).t t t t t

Lemma:

Let E(y �y , y , ... , y ) = 0. [Martingale Difference Sequence]t t-1 t-2 1

Then, the y ’s are linearly uncorrelated.t

Proof: [Assume y  is a scalar.]t

Consider the case in which y  is a scalar.t

� By the law of iterative expectation, E(y ) = 0.t

� By the law of iterative expectation,

E(y �y , y , ... , y ) = t+j t t-1 1

� cov(y ,y ) = E[(y -E(y ))(y -E(y ))] = E(y y )t t+j t t t+j t+j t t+j

= 

Theorem: (GCLT for martingale difference sequences)

{y , ... , y }: a sequence of p×1 random vectors.1 T

E(y �y , ... , y ) = 0.t t-1 1

Cov(y ) is well defined and finite.t

Under some suitable conditions (acceptabe for Econometrics I, II),

[10] Large-Sample Properties of MLE

A Short Digression to Matrix Algebra

Definition:

1) g(
) = g(
 , ... , 
 ): a scalar function of 
.1 p

g  = �g/�
 .j j



�w(
)

�
�

�

w11 w12 ... w1p

w21 w22 ... w2p

� � �

wm1 wm2 ... wmp mxp

�2 g(
)

�
�
�

�

g11 g12 ... g1p

g21 g22 ... g2p

� � �

gp1 gp2 ... gpp pxp


2
1�
2


1�

2
2

2
1 1

1 2
2

2 1

1 2
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2) w(
): a m×1 vector:

� w  = �w (
)/�
 .ij i j

3) g(
): a scalar function of 


� where g  = � g(
)/�
 �
 .ij i j
2

� Called Hessian matrix of g(
).

EX:

Let g(
) = 
  + 
  + 
 
 .  Find �g(
)/�
.1 2 1 2
2 2

� (2
 +
 ,2
 +
 )�1 2 2 1

EX:

Let w(
) = .  Then, �w(
)/�
� = .

EX:

Let g(
) = 
  + 
  + 
 
 .  Find the Hessian matrix of g(
).1 2 1 2
2 2

� .

Some useful results:

1) c�: 1×p, 
: p×1 (c�
 is a scalar) 



HT(
) �
�2 lT(
)

�
�
�

; (i,j)th ele. in HT �
�2 lnL
�
i�
j

,


̂


̂

T(
̂�
o)


̂


̂ 
̂ 
̂
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� �(c�
)/�
 = c ; �(c�
)/�
� = c�.

2) R: m×p, 
: p×1 (R
 is m×1)

� �(R
)/�
 = R

3) A: p×p symmetric, 
: p×1 (
�A
)

� �(
�A
)/�
 = 2A
.

� �(
'A
)/�
� = 2
'A

� �(
�A
)/�
�
� = 2A.

End of Digression

Definition: (Hessian matrix of log-likelihood function)

Definition: (Information matrix)

I (
 ) = E[-H (
 )].T o T o

Note: To compute I (
 ), compute H (
) first, then, H (
 ), and then, E(-H (
 )).T o T T o T o

Theorem:

Let  be MLE.  Then, under suitable regularity conditions,

 is consistent, and

 �  N(0, lim[(1/T)I (
 )] ).d T o
-1

Further,  is asymptotically efficient.

Implication:

 
 N(
 , [I (
 )] ) �  
 N(
  , [I ( )] ).o T o o T
-1 -1

EX:

{x , ... , x } iid with N(µ ,� ).1 T o o
2


 = [µ,v]� and v =� .2



lT � �
T
2

ln(2�) �
T
2

lnv �
1
2v

�t (xt�µ)2 .

� lT

�µ
�

�t (xt�µ)

v
;
� lT

�v
� �

T
2v

�
1

2v 2
�t (xt�µ)2 .

IT(
o) �

T

�2
o

0

0
T

2�4
o

; [IT(
o)]
�1 �

�2
o

T
0

0
2�4

o

T

.

�2 lT(
)

�µ �µ
�

1
v
�t (�1) � �

T
v

�2 lT(
o)

�µ �µ
��

T
vo

E �
�2 lT(
o)

�µ �µ
�

T
vo

�2 lT(
)

�µ �v
� �

�t(xt�µ)

v 2

�2 lT(
o)

�µ �v
� �

�t(xt�µo)

v 2
o

E �
�2 lT(
o)

�µ �v
� E

�t(xt�µo)

v 2
o

1

v 2
o

E[�t(xt�µo)] �
1

v 2
o

�t[E(xt)�µo]

�2 lT(
)

�v�v
�

T

2v 2
�

0×2v 2�1×4v

(2v 2)2
�t(xt�µ)2 T

2v 2
�

1

v 3
�t(xt�µ)2

�2 lT(
o)

�v�v
T

2v 2
o

�
1

v 3
o

�t(xt�µo)
2

E �
�2 lT(
o)

�v�v
E�

T

2v 2
o

�
1

v 3
o

�t(xt�µo)
2

�
T

2v 2
o

�
1

v 3
o

�tE[(xt�µo)
2] �

T

2v 2
o

�
1

v 3
o

�tvo � �
T

2v 2
o

�
Tvo

v 3
o

T

2v 2
o
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The first derivatives:

The second derivatives:

 �  � .

 � .

� =  = 0. 

 = 

�  = .

� =   

=  =  = .

Therefore,




̂ �

µ̂ML

�̂2
ML


 N
µo

�2
o

,

�̂2
ML

T
0

0
2(�̂2

ML)2

T

.

0 �

���f(x,
)dx

�
 ��
�f(x,
)
�


dx ��
�lnf(x,
)

�

f(x,
)dx ��s(x,
)f(x,
)dx

E
�
(s(x,
))
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Hence,

[Sketchical Technical Notes For MLE]

Definition:

For any function g(x,
) where x is a randon variable (or vector) with probability density f(x,
 ),o

E(g(x,
)) 	 � g(x,
)f(x,
 )dx (true expected value of g(x,
)) ;
� o

E (g(x,
)) 	 � g(x,
)f(x,
)dx (expected value of g(x,
) assuming f(x,
)),
� �

where � denote the range of x.

Assumption 1:

(i) Let x is a random (vector or scalar) variable with pdf of a form f(x,
), where 
 is a p×1 vector

of unknown parameters.  Let 
  be the true value of 
.  Then, 
  uniquely maximizes E[lnf(x,
)]. o o

That is, E[lnf(x,
 )] > E[lnf(x,
)] for any 
 � 
 .o o

(ii) {x , ..., x } is a random sample from a population satifying (i).1 T

Assumption 2:

The range of x does not depend on 
.

Lemma 1:

Define s(x,
) = �lnf(x,
)/�
.  Then, under Assumption 2, E (s(x,
)) = 0, for all 
.
�

<Proof>

Since f(x,
) is a probability density function, 1 = � f(x,
)dx for any 
.  Differentiate both side of
�

this equation with respect to 
.  Then, we have:

 =  = =  

= ,

where Assumption 2 warrants the first equality, and the second equality results from the fact that

�lnf(x,
)/�
 = [�f(x,
)/�
)]/f(x,
).



E
�
[s(x,
)s(x,
)�] � E

�
�
�2lnf(x,
)

�
�
�

��
�lnf(x,
)

�

f(x,
)dx

��
�2lnf(x,
)
�
�


f(x,
)� �lnf(x,
)
�


�f(x,
)
�


��
�2lnf(x,
)
�
�


f(x,
)� �lnf(x,
)
�


�lnf(x,
)
�


f(x,
)

�2lnf(x,
)
�
�


�
�lnf(x,
)

�

�lnf(x,
)

�


E[s(x,
o)s(x,
o)
�] � E �

�2lnf(x,
)

�
�
�

�
���o

1

2�v
exp �

(x�µ)2

2v

µ

v

µo

vo
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Corollary 1:

Under Assumption 2, E(s(x,
 )) = 0.o

Lemma 2:

Under Assumption 2,

,

for all 
.

<Proof>

For simplicity, we only consider the cases where 
 is a scalar.  Lemma 1 implies:

 = 0.

Differentiate both sides of this equation:

dx = 0

� dx = 0

� E  = 0, for any 

�

Corollary 2:

Under Assumption 2,

.

EX:

• f(x,
) = ; 
 = ; 
  = o

• Assumption 1 holds?

• lnf(x,
) = (-1/2)ln(2�) - (1/2)ln(v) - (x-µ) /(2v) = (-1/2)ln(2�) - (1/2)ln(v) - [(x-µ )-(µ -µ)] /(2v)2 2
o o




̂


̂


̂

1

T

�lT(
)

�

�
���o

1
T

Cov �tst(
o)

1

T

�lT(
)

�

�
���o

1

T
�t

�lnf(xt,
)

�

�
���o

1

T
�tst(
o)

1
T

�2lT(
)

�
�
�

�
���o

1
T
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= (-1/2)ln(2�) - (1/2)ln(v) - (x-µ ) /(2v) - 2(µ -µ)(x-µ )/(2v) - (µ-µ ) /(2v).o o o o
2 2

E[lnf(x,
)] = (-1/2)ln(2�) - (1/2)ln(v) - v /(2v) - (µ-µ ) /(2v).o o
2

� Clearly, E[lnf(x,
)] is maximized at µ = µ .o

� Also, E[lnf(x,
)] is maximized at v = v , by FOC: �E[lnf(x,
)]/�v = - (1/2v) + v /(2v ) o o
2

= 0 � v = v .o

• Assumption 2 holds?

• Yes, since -� < x < �.

Theorem 1:

Under Assumption 1, the MLE  is consistent under some suitable assumptions. [See Amemiya.]

<An Intuition>

Observe that T l (
) = T � lnf(x ,
).  Since {x , ... , x } ia a random sample, we can regard-1 -1
T t t 1 T

{lnf(x ,
), ... , lnf(x ,
)} as a random sample from a population of the random variable lnf(x,
). 1 T

Then, by LLN, T l (
) �  E[lnf(x,
)].  But Assumption 1 implies that 
   uniquely maximize-1
T p o

E[lnf(x,
)] = plim T l (
 ).  That is, 
  maximizes plim T l (
).  Note that MLE  maximizes-1 -1
T o o T

T l (
).  But, when sample size T is large, searching for the maximizer  is similar to searching�1
T

for 
 .  This provides an intuition for the consistency of MLE.  o

Lemma 3:

Define s (
) = s(x ,
) = �lnf(x ,
)/�
.  Under Assumptions 1-2 and other suitable assumptions,t t t

� N(0, lim ) .d

<Proof>

Note that:

 = = .

By Lemma 1, E[s (
 )] = 0.  Thus, by GWCLT, we obtain the desired result.t o

Lemma 4:

Under Assumptions 1-2 and other suitable assumptions,

- � lim I (
 ).p T o



1
T

�2lT(
)

�
�
�

�
���o

1
T
�t

�2lnf(xt,
)

�
�
�

�
���o

1
T

�2lT(
)

�
�
�

�
���o

1
T
�t

�2lnf(xt,
)

�
�
�

�
���o

1
T

E ��t

�2lnf(xt,
o)

�
�
�

�
���o

1
T

E �
�2lT(
)

�
�
�

�
���o

1
T

IT(
o)

Cov �tst(
o)

Cov �tst(
o) Cov[st(
o)] E[st(
o)st(
o)
�]

E �
�2lnf(xt,
)

�
�
�

�
���o

E[st(
o)st(
o)
�] E �

�2lnf(xt,
)

�
�
�

�
���o

1

T

�lT(
o)

�

1
T


̂
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<proof>

 Note that  -  = - .

Then, by GWLLN,

- = -  

�  lim   = lim  = .p

Lemma 5:

Under Assumptions 1-2, =  I (
 ).T o

<proof>

Since {s (
 ), ... , s (
 )} is a RS,1 o T o

 = �  = � .t t

where the last equality results from Lemma 1.  Note also that

I (
 ) = � .T o t

Thus, it is enought to show that 

 = .

But this equality holds by Lemma 2.

Corollary 3:

Under Assumptions 1-2 and other suitable assumptions,

� N(0, lim I (
 )) .d T o

Theorem 2:

Let  be MLE.  Under Assumptions 1-2 and other suitable assumptions,



T(
̂�
o)
1
T

�lT(
)

�

�
���̂

�lT(
)

�

�
���o

�2lT(
)

�
�
�

�
���̄

(
̂�
o)


̄ 
̂ 
̂ 
̄ 
̂ 
̄

1

T

�lT(
)

�

�
���o

1
T

�2lT(
)

�
�
�

�
���o

T(
̂�
o)

T 
̂ �
1
T

�2lT(
)

�
�
�

�
���o

�1

1

T

�lT(
)

�

�
���o

� op(1)

T 
̂ [lim 1
T

IT(
o)]
�1 1

T

�lT(
o)

�

� op(1)

T 
̂ 1
T

1
T

1
T1

T
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� N(0, lim[ I (
 )] ) .d T o
-1

<Proof>

Consider the first order condition for MLE:

 = 0.

Use Taylor's expansion around 
 :o

 +  = 0 ,

where  is a vector between  and 
 .  Since  is consistent and  is between  and 
 ,  is alsoo o

consistent.  That is,

 +  = o (1) ,p

where o (1) means "a term asymptotically negligible".  Thus, we have:p

( -
 ) = o

�  ( -
 ) =   (By Lemma 4)o

�  ( -
 )  �   N(0, [lim I (
 )] lim I (
 )[lim I (
 )]�)o d T o T o T o
-1

= N(0,[lim I (
 )] ).  (By Corollary 3) T o
-1

[11] Testing Hypotheses Based on MLE

Let w(
) = [w (
),w (
), ... , w (
)]�, where w (
) = w (
 , 
 , ... , 
 ) = a f  of 
 , ... , 
 .1 2 m j j 1 2 p 1 p
n

General form of hypotheses:

H : The true 
 (
 ) satisfy the m restrcitions, w(
) = 0  (m � p).o o m×1



Ho : w(
) �

w1(
)

w2(
)
�


2
1�
2�2


3�
1�
2

�
0

0
.

Ho : w(
) �

w1(
)

w2(
)
�


1�
2�2


3�
1�
2

�
0

0
.

w(
) �
1 �1 0

�1 �1 1


1


2


3

�
2

0
� R
�r .
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Examples:

1) 
: a scalar

H : 
 = 2  � H : 
 - 2 = 0  � H : w(
) = 0, where w(
) = 
 - 2.o o o

2) 
 = [
 , 
 , 
 ]�.1 2 3

H : 
  = 
  + 2 and 
  = 
  + 
o 1 2 3 1 2
2

� H : 
 -
 -2 = 0 and 
 -
 -
  = 0.o 1 2 3 1 2
2

� Let w (
) = 
 -
 -2 and w (
) = 
 -
 -
 .1 1 2 2 3 1 2
2

� 

3) linear restrictions


 = [
 , 
 , 
 ]�.1 2 3

H : 
  = 
  + 2 and 
  = 
  + 
o 1 2 3 1 2

� H : 
  - 
  - 2 = 0 and 
  - 
  - 
  = 0o 1 2 3 1 2

�

�

Remark:

If all restrictions are linear in 
, H  takes the following form:o

H : R
 - r = 0 ,o mx1

where R and r are known mxp and mx1 matrices, respectively.

Definition:



�w(
)

�
�

�w1(
)

�
1

�w1(
)

�
2

...
�w1(
)

�
p

�w2(
)

�
1

�w2(
)

�
2

...
�w2(
)

�
p

� � �

�wm(
)

�
1

�wm(
)

�
2

...
�wm(
)

�
p mxp

w(
) �


2
1�
2


1�
2�

2
3

2
1 �1 0

1 �1 �2
3 2x3

w(
) �


1


2�
3

�
0

1
� 0 w(
) �

1 0 0

0 1 1


1


2


3

�
0

1
� 0

R �
1 0 0

0 1 1
; r �

0

1
.


̃
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W(
) =  = 

Example:

Let 
 = [
 ,
 ,
 ]� .1 2 3

H : 
  - 
  = 0 and 
  - 
  - 
  = 0.o 1 2 1 2 3
2 2

�  � W(
) = 

Example:


 = [
 ,
 ,
 ]�.1 2 3

H : 
  = 0 and 
  + 
  = 1.o 1 2 3

�  � 

�

� w(
) = R
 - r.

� W(
) = R.

Definition: (Restricted MLE)

Let  be the restricted ML estimator which maximizes

l (
) s.t. w(
) = 0.T
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̂ 
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̂
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̂
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̂
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Wald Test:

W  = w( )�[W( )Cov( )W( )�] w( ) T
-1

� W  = w( )�[W( ){I ( )} W( )�] w( ) T T
-1 -1

Note: Can be computed with any consistent estimator  and Cov( ).

Likelihood Ratio Test: (LR)

LR  = 2[l ( ) - l ( )] .T T T

Lagrangean Multiplier (LM) test

Define: s (
) = �l (
)/�
.T T

LM  = s ( )�[I ( )] s ( ).T T T T
-1

Theorem:

Under H : w(
) = 0,o

W , LR , LM   �   � (m) .T T T d
2

Implication:

• Given confidence level (1-�) or significance level (�), find a critical value such that

• Usually, � = 0.05 or � = 0.01.

• If W  > c, reject H .  Otherwise, do not reject H .T o o

Comments:

1) Wald needs only ; LR needs both  and ; and LM needs  only.

2) In general, W  � LR  � LM .T T T

3) W  is not invariant to how to write restrictions.  That is, W  for H : 
  = 
  may not be equal toT T o 1 2

W  for H : 
 /
  = 1.T o 1 2

Example:

(1) {x , ... , x }: RS from N(µ ,v ) with v  known.  So, 
 = µ.1 T o o o

H : µ = 0 .o

• w(µ) = µ



µ̂ x̄

µ̂

µ̂

µ̃

µ̂ x̄

µ̃

µ̃ x̄ µ̃

x̄ 2

µ̂ x̄ v̂ x̄

µ̃ ṽ
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• l (µ) = -(T/2)ln(2�) - (T/2)ln(v) - {1/(2v)}� (x -µ)T t t
2

• s (µ) = (1/v)� (x -µ)T t t

• I (µ ) = E[-� l (µ)/�µ � ] = T/vT o T �=�o o
2 2

[Wald Test]

Unrestricted MLE:

• FOC: �l (µ)/�µ = (1/v)� (x -µ) = 0T t t

•  = 

W(µ) = 1 � W( ) = 1

I ( ) = T/vT o

[LR Test]

Restricted MLE:  = 0

l ( ) = -(T/2)ln(2�) - (T/2)ln(v ) - {1/(2v )}� (x - )T o o t t
2

l ( ) = -(T/2)ln(2�) - (T/2)ln(v )- {1/(2v )}� xT o o t t
2

[LM Test]

s ( ) = (1/v )� x  = (T/v ) ;  I ( ) = T/vT o t t o T o

With this information, can show:

W = LR = LM = (T )/v .o

(2) Both µ and v unknown: 
 = (µ,v)�.

H : µ = 0.o

� w(
) = µ

� W(
) = �w(
)/�
� = [�µ/�µ, �µ/�v] = [1, 0]

� l (
) = -(T/2)ln(2�) - (T/2)ln(v) - {1/(2v)}� (x -µ)T t t
2

� s (
) = [(1/v)� (x -µ),-T/(2v) + (1/(2v ))� (x -µ) ]�T t t t t
2 2

� I (
 ) = diag[T/v , T/(2v )] .T o o o
2

� Unrest. MLE:  =  and  = (1/T)� (x - )t t
2

� Restricted MLE:  = 0, but need to compute 



µ̃ µ̃

ṽ


̂ µ̂ x̄ 
̂ 
̂ v̂ v̂ 2


̂ 
̂ 
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̂ 
̂ x̄ v̂


̂ v̂ v̂ x̄


̃ ṽ ṽ
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� l ( ,v) = -(T/2)ln(2�) - (T/2)ln(v) - {1/(2v)}� (x - )T t t
2

� l (0,v) = -(T/2)ln(2�) - (T/2)ln(v) - {1/(2v)}� xT t t
2

� FOC: �l (0,v)/�v = -T/(2v) + (1/(2v ))/� x  = 0T t t
2 2

�  = (1/T)� xt t
2

[Wald Test]

w( ) =  = ; W( ) = [1,0] ; I ( ) = diag(T/ , T/(2 )).T

� W  = w( )�[W( ){I ( )} W( )] w( ) = T / .T T
-1 -1 2

[LR Test]

l ( ) = -(T/2)ln(2�) - (T/2)ln( ) - {1/(2 )}� (x - )T t t
2

l ( ) = -(T/2)ln(2�) - (T/2)ln( ) - {1/(2 )}� xT t t
2

[LM Test]

s ( ) = [(1/ )� x , -T/(2 ) + (1/2 )� x ]� = [T / , - T/(2 )+T/(2 )]� = [T / , 0]�T t t t t
2

I ( ) = diag(T/ , T/(2 ))T

� LM  = s ( )�[I ( )] s ( ) = T / .T T T T
-1


