ASSET PRICING MODELS

[1] CAPM

(1) Some notation:
• \(R_{it} \) = (gross) return on asset \(i \) at time \(t \).
• \(R_{mt} \) = (gross) return on the market portfolio at time \(t \).
• \(R_{ft} \) = return on risk-free asset at time \(t \).
• \(X_{it} = R_{it} - R_{ft} \) = excess return on asset \(i \).
• \(X_{mt} = R_{mt} - R_{ft} \) = excess return on the market portfolio.

\[
\begin{pmatrix}
R_{1t} \\
R_{2t} \\
\vdots \\
R_{Nt}
\end{pmatrix}_{N \times 1} ;
\begin{pmatrix}
X_{1t} \\
X_{2t} \\
\vdots \\
X_{Nt}
\end{pmatrix}_{N \times 1} ,
\begin{pmatrix}
1 \\
1 \\
\vdots \\
1
\end{pmatrix}_{N \times 1}
\]

• For simplicity, we assume that \((R_{t}', R_{ft}, R_{mt})\) is iid over time.

(2) Sharpe-Lintner version of CAPM

• Lintner, 1965, Review of Economics and Statistics
• Sharpe, 1964, Journal of Finance
• Campbell, Lo and Mackinlay (CLM), 1997, book, chapter 5.
1) Basic idea:

- \(\text{var}(R_{mt}) = \) risk from the market portfolio of risky asset.
- risk price = \(p \).
 \[\rightarrow \text{cost of bearing the market risk} = p \text{ var}(R_{mt}). \]
 \[\rightarrow \text{At equilibrium, cost of risk} = \text{expected gain from risk}. \]
 \[\rightarrow p \text{ var}(R_{mt}) = E(R_{mt}) - R_{fi} \]
 \[\rightarrow p = \frac{E(R_{mt}) - R_{fi}}{\text{var}(R_{mt})}. \]

- Systematic risk of an individual asset \(i \):
 The risk of asset \(i \) due to correlation between returns on asset \(i \) and the whole risky-asset market
 \[\rightarrow \text{cov}(R_{it}, R_{mt}). \]

- Let \(\beta_i \) be the systematic risk of an individual asset \(i \) relative to the market risk:
 \[\beta_i = \frac{\text{cov}(R_{it}, R_{mt})}{\text{var}(R_{mt})}. \]
 \[\rightarrow \text{This} \beta_i \text{ can be estimated by the time-series OLS on:} \]
 \[R_{it} = \alpha_i + \beta_i R_{mt} + \varepsilon_{it}. \]

- Cost of bearing the (systematic) risk of asset \(i \):
 \[\beta_i \text{ var}(R_{mt}) p = \beta_i[E(R_{mt}) - R_{fi}]. \]
• Equilibrium condition:
\[
E(R_{it}) - \beta_i [E(R_{mt}) - R_{ft}] = R_{ft}, \text{ for all } i = 1, \ldots, N
\]
\[
\rightarrow E(R_{it}) = R_{ft} + \beta_i [E(R_{mt}) - R_{ft}] \text{ or } E(X_{it}) = \beta_i E(X_{mt}).
\]
[Capital Asset Pricing Model]

2) Empirical Model
• Model:
\[
X_{1t} = \alpha_1 + \beta_1 X_{mt} + \varepsilon_{1t},
\]
\[
X_{2t} = \alpha_2 + \beta_2 X_{mt} + \varepsilon_{2t},
\]
\[
\vdots
\]
\[
X_{Nt} = \alpha_N + \beta_N X_{mt} + \varepsilon_{Nt}.
\]
\[
\rightarrow X_t = \alpha + \beta X_{mt} + \varepsilon_t,
\]
where \(\alpha = (\alpha_1, \ldots, \alpha_N)'\), \(\beta = (\beta_1, \ldots, \beta_N)'\) and \(\varepsilon_t = (\varepsilon_{1t}, \ldots, \varepsilon_{Nt})'\).

• Assume that the \(\varepsilon_t\) are iid over time with \(\text{Cov}(\varepsilon_t) = \Sigma = [\sigma_{ii}]_{N \times N}\).

• Comments.
 • No heteroskedasticity over time.
 • Reasonable if \(\varepsilon_t\) is normal.
 • If \(\varepsilon_t\) is t-distributed, heteroskedasticity should exist.
 [MacKinlay and Richardson (1991, JF).]
• Equilibrium condition:

\[E(\Delta R_t) - \beta_i E(\Delta M_t) = R_f, \text{ for all } i = 1, \ldots, N \]

\[\rightarrow E(R_t) = R_f + \beta_i E(\Delta M_t) \text{ or } E(X_t) = \beta_i E(X_{mt}). \]

[Capital Asset Pricing Model]

2) Empirical Model

• Model:

\[X_{1t} = \alpha_1 + \beta_1 X_{mt} + \varepsilon_{1t}, \]

\[X_{2t} = \alpha_2 + \beta_2 X_{mt} + \varepsilon_{2t}, \]

\[\vdots \]

\[X_{Nt} = \alpha_N + \beta_N X_{mt} + \varepsilon_{3t}. \]

\[\rightarrow X_t = \alpha + \beta X_{mt} + \varepsilon_t, \]

where \(\alpha = (\alpha_1, \ldots, \alpha_N)' \), \(\beta = (\beta_1, \ldots, \beta_N)' \) and \(\varepsilon_t = (\varepsilon_{1t}, \ldots, \varepsilon_{Nt})' \).

• Assume that the \(\varepsilon_t \) are iid over time with \(\text{Cov}(\varepsilon_t) = \Sigma = [\sigma_{ii}]_{N \times N} \).

• Comments.

 • No heteroskedasticity over time.
 • Reasonable if \(\varepsilon_t \) is normal.
 • If \(\varepsilon_t \) is t-distributed, heteroskedasticity should exist.

[MacKinlay and Richardson (1991, JF).]
• Estimation:
 • SUR model with the same regressor: GLS = OLS.
 → Use MLE or OLS.
 • CAPM implies $H_0: \alpha_1 = ... = \alpha_N = 0$.
 → Can test these restrictions by Wald or LR.
 [See Ch. 4-5 of CLM.]
 → If N is too large, the test result would be unreliable.
 [See Ahn and Gadarowski, 2004]

• Two-Pass Regression Method (Fama- MacBeth, 1973, JPE)
 • Suppose that β_i’s are known. Then, we can consider the following cross-sectional regression model for each t:

 \[(*) \quad X_t = e_N \gamma_{1t} + \beta \gamma_{2t} + \text{error}, \]

 where $\beta = (\beta_1, ..., \beta_N)'$.
 • If the CAPM is correct, it should be the case that $E(\gamma_{1t}) = 0$ and $E(\gamma_{2t}) \neq 0$.

ASSET PRICING-5
• Estimation procedure:
 • STEP 1: For each i, do time-series OLS to estimate β_i ($\hat{\beta}_i$).
 • STEP 2: For each t, do cross-section OLS to estimate γ_{1t} and γ_{2t} ($\hat{\gamma}_{1t}$ and $\hat{\gamma}_{2t}$).
 • STEP 3: Compute:
 $$\hat{\gamma}_j = \frac{1}{T} \sum_{t=1}^{T} \hat{\gamma}_{jt}; \text{var}(\hat{\gamma}_j) = \frac{1}{T(T-1)} \sum_{t=1}^{T} (\hat{\gamma}_{jt} - \hat{\gamma}_j)^2.$$
 • STEP 4: Do t-tests to check whether $\gamma_1 = 0$ and $\gamma_2 \neq 0$.

• Equivalent Procedure [Shanken, 1992, RFS]
 • STEP 1: For each i, do time-series OLS to estimate β_i ($\hat{\beta}_i$).

 Let $\hat{B} = (e_N, \hat{\beta})$, $\gamma = (\gamma_1, \gamma_2)'$ and $\bar{X} = \frac{1}{T} \sum_{t=1}^{T} X_t$.

 • STEP 2: Do OLS on $\bar{X} = \hat{B} \gamma + \text{error}$:
 $$\hat{\gamma} = (\hat{B}'\hat{B})^{-1} \hat{B}'\bar{X};$$
 $$\text{Cov}(\hat{\gamma}) = (\hat{B}'\hat{B})^{-1} \hat{B}' \frac{1}{T^2} \sum_{i=1}^{T} (X_i - \bar{X})(X_i - \bar{X})' \hat{B} (\hat{B}'\hat{B})^{-1}$$

 • The above covariance matrix is valid only if true β_i’s are used.
 → Correct form of the covariance matrix will be discussed below.
(3) Black-version of CAPM:

1) Basic Model
 - Model when there is no risk-free asset.
 - \(R_{omt} \) = return on the zero-beta portfolio associated with \(m \).

 [portfolio that has the minimum variance of all portfolios uncorrelated with \(m \)]

 \(\rightarrow \) Let \(\gamma = E(R_{omt}) \).
 - Black-Version of CAPM:

 \[E(R_{it}) = \gamma + \beta_i[E(R_{mt}) - \gamma] \rightarrow E(R_{it}) = \gamma(1 - \beta_i) + \beta_iE(R_{mt}). \]

2) Empirical estimation and testing.
 - Empirical Model:

 \(R_{1t} = \alpha_1 + \beta_1 R_{mt} + \varepsilon_{1t}; \)
 \(R_{2t} = \alpha_2 + \beta_2 R_{mt} + \varepsilon_{2t}; \)

 \(\vdots \)
 \(R_{mt} = \alpha_n + \beta_n R_{mt} + \varepsilon_{3t}. \)

 \(\rightarrow \) \(R_t = \alpha + \beta R_{mt} + \varepsilon_t, \)
 - Black-version of CAPM implies \(H_0: (e_N - \beta)\gamma = \alpha. \)

 \(\rightarrow \) See CLM for how to test this hypothesis.
(3) When returns are heteroskedastic or autocorrelated over time.

- Estimate the parameters by GMM.
- Moment conditions:

\[
E \left(\begin{pmatrix} 1 \\ X_{it} \end{pmatrix} (X_{it} - \alpha_i - \beta_i X_{mt}) \right) = 0, \; i = 1, ..., N
\]

\[
\rightarrow E \left(\begin{pmatrix} 1 \\ X_{mt} \end{pmatrix} \otimes (X_t - \alpha - \beta X_{mt}) \right) = 0.
\]

(1) Arbitrage Pricing Model [Ross, JET, 1976]

- Assumption 1:
 - \(R_{it} = \alpha_i + \beta_{i1}f_{1t} + \beta_{i2}f_{2t} + \ldots + \beta_{ik}f_{kt} + \epsilon_{it}, \)
 where \(f_{1t}, \ldots, f_{kt} \) are macroeconomic or portfolio factors.
 - \(R_t = \alpha + \beta_1f_{1t} + \ldots + \beta_kf_{kt} + \epsilon_t = \alpha + Bf_t + \epsilon_t, \)
 where \(B = (\beta_1, \ldots, \beta_k) \) and \(f_t = (f_{1t}, \ldots, f_{kt})' \).
 - \(\text{Cov}(\epsilon_t) = \Sigma_{N\times N} (\epsilon_{it} \text{ are cross-sectionally correlated}). \)
 → If there is no missing factor, \(\Sigma \) should be diagonal.
 - \(R_t \) and \(f_t \) are covariance-stationary and ergodic.
 - The factors in \(f_t \) are strictly exogeneous:
 \(E(f_s\epsilon_{it}) = 0 \) for all \(i = 1, \ldots, N, \) and all \(t \) and \(s. \)
 \(\rightarrow E(f_s \otimes \epsilon_t) = 0. \)
 - The beta matrix \(B \) is of full column.
 \(\rightarrow \) How could we test for \(\text{rank}(B)? \)
 \(\rightarrow \) What happens if \(B \) is not full column? [See below.]

- Assumption 2 (No Autocorrelation): Assumption 1 plus
 - \(E(\epsilon_t\epsilon_t' | f_1, \ldots, f_T) = 0_{N\times N}. \)
• Assumption 3 (No Heteroskedasticity): Assumption 2 plus
 - \(\text{Cov}(\varepsilon_t \mid f_1, \ldots, f_T) = \Sigma \), for all \(t \).

• Assumption 4 (Autocorrelation in \(f_t \)):
 - Let \(\hat{\Sigma}_F \) be the Newey-West estimator of
 \[
 \lim_{T \to \infty} \text{Var} \left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} (f_t - E(f_t))(f_t - E(f_t))' \right)
 \]

• Assumption 5 (No Autocorrelation in \(f_t \)):
 - \(\hat{\Sigma}_F = \frac{1}{T} \sum_{t=1}^{T} (f_t - \bar{f})(f_t - \bar{f})' \)
 - \(\rightarrow_p \lim_{T \to \infty} \text{Var} \left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} (f_t - E(f_t))(f_t - E(f_t))' \right) \)

• Ross (1976) shows that the absence of arbitrage implies:
 - \(H_o : E(R_t) = e_N \gamma_0 + B \gamma_1 = (e_N, B) \begin{pmatrix} \gamma_0 \\ \gamma_1 \end{pmatrix} = B_c \gamma \). Or equivalently,
 - \(H_o' : \alpha = e_N \lambda_o + B \lambda_1 = B_c \lambda \), where \(\lambda_1 = \gamma_1 - E(f_t) \).
(2) Estimation and Testing [Ahn and Gadarowski, 2004]

- Let $Z_t = (1, f'_t)'$.

- Let $\Xi = \lim_{T \to \infty} Var\left(\frac{1}{\sqrt{T}} \Sigma_{i=1}^T Z_i \otimes \varepsilon_i \right)$.

- Let $\hat{\Xi}_1$ be the Newey-West estimator of Ξ using OLS residuals instead of ε_i. Then, it is consistent under Assumption 1.

- Under Assumption 2,
 \[
 \hat{\Xi}_2 \equiv \frac{1}{T} \Sigma_{t=1}^T \left(Z_t Z'_t \otimes \varepsilon_t \varepsilon'_t \right) \rightarrow_p \Xi.
 \]

- Under Assumption 3,
 \[
 \hat{\Xi}_3 \equiv \left(\frac{1}{T} \Sigma_{t=1}^T Z_t Z'_t \right) \otimes \left(\frac{1}{T} \Sigma_{t=1}^T \varepsilon_t \varepsilon'_t \right) \equiv \hat{\Delta}_{ZZ} \otimes \hat{\Sigma} \rightarrow_p \Xi.
 \]
Two-Pass Estimation of lambdas:

- Let $\hat{\Lambda} = (\hat{\alpha}, \hat{B})$ be the OLS estimator of α and B.
- Let A be any $N \times N$ positive definite matrix.
- Then, a two-pass estimator of γ is given:
 \[
 \hat{\gamma}_{TP} = \left(\hat{B}'_c A\hat{B}_c \right)^{-1} \hat{B}'_c A\hat{\alpha}.
 \]

 → If $A = I_N$, the TP estimator is the Fama-MacBeth estimator.

 \[
 \text{Cov}(\hat{\gamma}_{TP}) = \left(\hat{B}'_c A\hat{B}_c \right)^{-1} \hat{B}'_c A\hat{\Omega}A\hat{B}_c \left(\hat{B}'_c A\hat{B}_c \right)^{-1},
 \]

 where $\hat{\Omega} = (\hat{\lambda}_s\Delta_{ZZ}^{-1} \otimes I_N) \hat{\Xi}(\Delta_{ZZ}^{-1} \hat{\lambda}_s \otimes I_N)$, $\hat{\lambda}_s = (1, -\hat{\lambda}_1')'$, and $\hat{\lambda}_1$ is any consistent estimator of λ_1.

- Asymptotically optimal choice of $A = \left(\hat{\Omega} \right)^{-1}$.

 → Let $\hat{\lambda}_{OMD}$ be the optimal TP estimator using $\left(\hat{\Omega} \right)^{-1}$.

Estimation of gammas:

- $\hat{\gamma}_{TP} = (\hat{B}'_c A\hat{B}_c)^{-1} \hat{B}'_c A\bar{R} = \hat{\lambda}_{TP} + \bar{J}f = \begin{pmatrix} \hat{\lambda}_{0,TP} \\ \hat{\lambda}_{1,TP} + \bar{f} \end{pmatrix}$,

 where $J = \begin{pmatrix} 0_{1 \times k} \\ I_k \end{pmatrix}$.
• Under Assumption 4,
\[\text{Cov}(\hat{\gamma}_{TP}) = \text{Cov}(\hat{\lambda}_{TP}) + \frac{1}{T} J\Sigma_{F} J' \].

• Under Assumption 5,
\[\text{Cov}(\hat{\gamma}_{TP}) = \text{Cov}(\hat{\lambda}_{TP}) + \frac{1}{T} J\Sigma_{F} J' \].

• Model Specification test:

\[Q_{OMD} \equiv \frac{T - N + 1}{N - 1 - k} (\hat{\alpha} - \hat{B}_{c}\hat{\lambda}_{OMD})' \hat{\Omega}^{-1} (\hat{\alpha} - \hat{B}_{c}\hat{\lambda}_{OMD}) \rightarrow \chi^2(N - 1 - k) \frac{N - 1 - k}{N - 1 - k}.

• Alternative test:
 • Assume:
 \[\alpha = e_{N}\lambda_{0} + B\lambda_{1} + S\lambda_{2} \],
 where S contains firm specific variables such as firm sizes or book values.
 • \(H_{\alpha} \) and \(H_{\alpha}^{a} \) imply \(\lambda_{2} = 0 \).
 • For detailed test procedures, see Ahn and Gadarowski.
• Empirical Suggestions from Ahn and Gadarowski
 • Need to check persistency of factors.
 → When factors follow unit root or near-unit-root processes, the
 TP estimators are unreliable.
 • Do not use too many assets (N). 25 or fewer would be appropriate.
 • Testing autocorrelation in time-series OLS residuals and factors
 are important. Heteroskedasticity-robust Q tests are more reliable
 than autocorrelation-robust Q tests.
 • The Q tests generally have low power.
 • The t-tests based on nonoptimal TP estimators are more reliable
 than those based on the optimal TP estimators.

(3) What happens if the beta matrix B is not of full column?

• When?
 • Some factors are in fact not the determinants of returns.
 → Kan and Zhang (1999, JF) call such factors “useless factors”.
 → The columns of B corresponding to useless factors are zero
 vectors.
 → rank(B) < k.
• Consequences?
 • The TP estimator is severely biased.
 • The price of a useless factor would appear to be significant.

• How to find out correct factors?
 • Conner and Korajczyk (1993, JF)

• What happens if some unimportant factors are used?
 → The TP estimators are severely biased.
 [Kan and Zhang, 1999, JF]
 → Important to test how many factors to be used.

• How many factors to be used?
 • When candidate factors are all observed:
 • Connor and Korajczyk (1993, JF).
Estimating the Number of Factors

- Question:
 - Suppose we do not observe factors. Wish to estimate factors.
 - How many factors?

- Methods:
 - MLE assuming factors are iid standard normal over time: Large T and Small N. [See Campbell, Ch. 6.4].
 - Jones (2001, JFE): Large N and small T.
 - Bai (2003, ECON), and Bai and Ng: Both N and T are large.
Stochastic Discount Factor Model

- There are many asset pricing models (CAPM, APT, consumption-based CAPM, intertemporal equilibrium model):
 → See Ch. 8 of CLM.
- A particular asset pricing model typically implies:
 \[E[R_t m_t(f_t|\delta)] = e_N, \]
 where \(m(f_t|\delta) \) is a scalar function of factors and a parameter vector \(\delta \), \(e_N \) is the normalized price vector, and \(m(f_t|\delta) \) is called “stochastic discount factor” (SDF).
 → For linear factor models, \(m(f_t|\delta) = \delta_1 + f_t'\delta_2 \), where \(\delta = (\delta_1, \delta_2')' \).
- The parameter vector \(\delta \) and model specification can be tested by GMM.

 - Let \(w_t(\delta) = R_t m_t(\delta) - e_N \); then, \(E[w_t(\delta)] \) is the pricing error.
 - If no pricing error, then, \(E[w_t(\delta)] = 0_{N \times 1} \).

2. HJ-distance (Hansen and Jagannathan, 1997):
 - \(HJ(\delta) = \sqrt{E[w_t(\delta)]'G^{-1}E(w_t(\delta))} \), where \(G = E(R_t R_t') \).
 - Correct model has \(HJ(\delta) = 0 \).
 - For a given \(\delta \), this measure equals the maximum pricing error generated by a given asset pricing model.
• Standard GMM test for no pricing error:

 • Let S_T be a consistent estimator of $\lim_{T \to \infty} \text{Cov} \left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} w_t(\delta) \right)$.

 [by White (1980) or Newey and West (1987).]

 • Let $\hat{\delta}_{GMM}$ be the optimal GMM estimator.

 • Then, under the hypothesis of no pricing error,

 \[J_T = T w_T(\hat{\delta}_{GMM})' S_T^{-1} w_T(\hat{\delta}_{GMM}) \to_d \chi^2(N - p), \]

 where $w_T(\delta) = \frac{1}{T} \sum_{t=1}^{T} w_t(\delta)$, and p is the # of parameters in δ.

• Jagannathan-Wang test:

 • $HJ_T(\delta) = \sqrt{w_T(\delta)' G_T^{-1} w_T(\delta)}$.

 • Let $\hat{\delta}_{HJ}$ is the minimizer of $HJ_T(\hat{\delta})$.

 • Under the hypothesis of no pricing error,

 \[SHJ_T = T \times [HJ_T(\hat{\delta}_{HJ})]^2 \to \text{weighted } \chi^2. \]

 • JW (1996) provides a simulation method to compute p-value for this statistic.

 • JW conjecture that this HJ test would have better finite sample properties, because non-optimal GMM often has better finite sample properties than optimal GMM.
 • For linear factor models, the JW method has extremely poor finite sample properties, poorer than optimal GMM, especially when N is large.
 • Better to use optimal GMM!