[10] Duration Model

- Reference:
- Chung, Schmidt and Witte (1991), Journal of Quantitative Criminology.
- Kiefer (1988), Journal of Economic Literature.
- LIMDEP Manual.

(1) Basic Model

- $\mathrm{T}=$ length of time until an event (E) occurs.
- Examples:
- Recidivism in criminology:
$\mathrm{E}=$ returning to prison.
$\mathrm{T}=$ interval from release ro returning.
- Unemployment Duration
$E=$ quit job search (get a job or give up)
$\mathrm{T}=$ time length for a job search.
- Time interval between equity trades or exchange rate quotes.
[Engle and Russell, ECON, 1998]
- Assume that T is continuous:
$T \sim \operatorname{pdf}, \mathrm{f}(\mathrm{t} \mid \theta) ; \operatorname{cdf} \mathrm{F}(\mathrm{t} \mid \theta)$.
- Some important concepts:

1) $F(t \mid \theta)=\operatorname{Pr}(T<t)$.

- Probability of failure within t .
- Probability that E occurs within t .
ex: probability of returning to prison within t; ex: Probability of quitting job search within t.

2) Probability of survival: $S(t \mid \theta)=1-F(t \mid \theta)=\operatorname{Pr}(T \geq t)$.

- Probability that E does not occurs with t . ex: probability that an ex-prisoner does not in prison until t . ex: probability that job search still goes on until t.
- In general, $\mathrm{S}(\mathrm{t} \mid \theta) \rightarrow 0$ as $\mathrm{t} \rightarrow \infty$.

3) Hazard function:

- $\mathrm{h}(\mathrm{t} \mid \theta)=\mathrm{f}(\mathrm{t} \mid \theta) / \operatorname{Pr}(\mathrm{T} \geq \mathrm{t})=\mathrm{f}(\mathrm{t} \mid \theta) / \mathrm{S}(\mathrm{t} \mid \theta)=\mathrm{f}(\mathrm{t} \mid \theta) /[1-\mathrm{F}(\mathrm{t} \mid \theta)]$.
- Probability that E occurs just after time t conditional on no failure prior to t.
ex: probability of returning prison right after t .
ex: probability of quitting search right after t.

4) Intergrated hazard function.

- $\mathrm{H}(\mathrm{t} \mid \theta)=\int_{0}^{t} h(x \mid \theta) d x$.
- $\mathrm{S}(\mathrm{t} \mid \theta)=\exp [-\mathrm{H}(\mathrm{t} \mid \theta)]$ or $\mathrm{H}(\mathrm{t} \mid \theta)=-\ln S(t \mid \theta)$.
- $\mathrm{h}(\mathrm{t} \mid \theta)=-\frac{d[\ln S(t \mid \theta)]}{d t}$.
- If you know $\mathrm{s}(\mathrm{t} \mid \theta)$, we can get $\mathrm{h}(\mathrm{t} \mid \theta)$, and vice versa.

5) State Dependence:

- $\frac{d h(t \mid \theta)}{d t}>0$: positive state dependence.
- $\frac{d h(t \mid \theta)}{d t}<0$: negative state dependence.

Example: Recidivism

(2) Maximum Likelihood Estimation

- $t_{i}^{*}=$ the i 'th individual's actual exit time
- $\mathrm{c}_{\mathrm{i}}=$ follow-up time for i (time interval following i).
- $t_{i}=\left\{\begin{array}{l}t_{i}^{*} \text { if } t_{i}^{*}<c_{i} ; \\ c_{i} \text { if } t_{i}^{*} \geq c_{i} .\end{array}\right.$
- $d_{i}=\left\{\begin{array}{l}1 \text { if } t_{i}<c_{i} ; \\ 0 \text { if } t_{i}=c_{i} .\end{array}\right.$
$l_{N}(\theta)=\sum_{t_{i}<c_{i}} \ln f\left(t_{i} \mid \theta\right)+\sum_{t_{i}=c_{i}} \operatorname{Pr}\left(t_{i}^{*} \geq c_{i}\right)$
$=\sum_{t_{i}<c_{i}} \ln f\left(t_{i} \mid \theta\right)+\sum_{t_{i}=c_{i}} \ln \left[1-F\left(c_{i} \mid \theta\right)\right]$
$=\sum_{t_{i}<c_{i}} \ln f\left(t_{i} \mid \theta\right)+\sum_{t_{i}=c_{i}} \ln \left[S\left(c_{i} \mid \theta\right)\right]$
$=\sum_{i=1}^{N}\left\{d_{i} \ln f\left(t_{i} \mid \theta\right)+\left(1-d_{i}\right) \ln S\left(c_{i} \mid \theta\right)\right\}$

(3) Distributions

1) Exponential:

- For simplicity, suppress " i ".
- $\mathrm{f}(\mathrm{t} \mid \theta)=\lambda \exp (-\lambda \mathrm{t})$, where $\theta=\lambda>0$.
- $\mathrm{S}(\mathrm{t} \mid \theta)=\exp (-\lambda \mathrm{t})$
- $\mathrm{h}(\mathrm{t} \mid \theta)=\lambda$ (no state dependence).
- $E(t)=1 / \lambda[$ expected duration] $\operatorname{var}(t)=1 / \lambda$.

2) Weibull:

- $t^{p} \sim \operatorname{Exponential}(\lambda)$.
- $f(t \mid \theta)=p \lambda^{p} t^{p-1} \exp \left[-(\lambda t)^{p}\right]$, where $\theta=(\lambda, p)^{\prime}$.
- $S(t \mid \theta)=\exp \left[-(\lambda t)^{p}\right]$.
- $h(t \mid \theta)=\lambda p(\lambda t)^{p-1}$.

$$
\rightarrow \frac{d h(t \mid \theta)}{d t}=(p-1) \lambda^{p} p t^{p-2}\left\{\begin{array}{l}
>0 \text { if } p>1 \\
=0 \text { if } p=1 \\
<0 \text { if } p<1
\end{array}\right.
$$

- $E(t)=\frac{1}{\lambda} \Gamma\left(\frac{1}{p}+1\right)$, where $\Gamma(\alpha)=\int_{0}^{\infty} y^{\alpha-1} e^{-y} d y$.

$$
<\text { Poof }>
$$

Let $y=(\lambda t)^{p}$; then, $t=\frac{1}{\lambda} y^{\frac{1}{p}}$ and $d t=\frac{1}{p \lambda} y^{\frac{1}{p}-1} d y$. Hence,

$$
\begin{aligned}
E(t) & =\int_{0}^{\infty} t f(t, \theta) d t=\int_{0}^{\infty} \frac{1}{\lambda} y^{\left(\frac{1}{p}+1\right)-1} \exp (-y) d y \\
& =\frac{1}{\lambda} \Gamma\left(\frac{1}{p}+1\right)
\end{aligned}
$$

where $\Gamma(\alpha)=\int_{0}^{\infty} y^{\alpha-1} \exp (-y) d y$.
3) Log-normal:

- $\ln (\mathrm{t}) \sim \mathrm{N}\left(\mu, \sigma^{2}\right)$, where $\mu=-\ln (\lambda)$ and $\sigma=1 / \mathrm{p}$.
- $f(t \mid \theta)=\frac{p}{\sqrt{2 \pi} t} \exp \left(-\frac{p^{2}}{2}(\ln t+\ln \lambda)\right)$.
- $\mathrm{S}(\mathrm{t} \mid \theta)=1-\Phi\left(\frac{\ln t+\ln \lambda}{\sigma}\right)$.
- $E(t)=\frac{1}{\lambda}+\exp \left(\frac{1}{2 p^{2}}\right) ; E(\ln t)=-\ln \lambda$.
- $\mathrm{h}(\mathrm{t} \mid \theta)=$ complicated, but

4) Log-logistic

- $f(t \mid \theta)=\frac{\lambda p(\lambda t)^{p-1}}{\left(1+(\lambda t)^{2 p}\right)^{2}}, \theta=(\lambda, p)^{\prime}$.

$$
\rightarrow \mathrm{f}(\mathrm{w})=\frac{\exp (-w)}{[1+\exp (-w)]^{2}}, \text { where } w=-p \ln (\lambda t)
$$

- $S(t \mid \theta)=\frac{1}{1+(\lambda t)^{p}} ; h(t \mid \theta)=\frac{\lambda p(\lambda t)^{p-1}}{1+(\lambda t)^{p}}$.
- $\frac{d h(t \mid \theta)}{d t}=\lambda^{p} p t^{p-2} \frac{(p-1)-(\lambda t)^{p}}{\left(1+(\lambda t)^{p}\right)^{2}}$.
\rightarrow Negative if $\mathrm{p}<1$; negative if t is large; positive if $\mathrm{p}>1$ and t is small.

5) Gamma:

- $f(t \mid \theta)=\frac{\lambda p(\lambda t)^{p \xi-1}}{\Gamma(\xi)} \exp \left(-(\lambda t)^{p}\right)$, where $\theta=(\lambda, p, \xi)^{\prime}$.
- Weibull if $\xi=1$ and exponential if $\xi=\mathrm{p}=1$.

(4) Estimation

- Set $\frac{1}{\lambda_{i}}=\exp \left(x_{i}^{\prime} \beta\right)$ and $\sigma=\frac{1}{p}$ so that $\beta_{\mathrm{j}}>0$ means " x_{ji} prolongs duration."
- LIMDEP estimates β and σ.
- Caution!
- We here assume that x_{i} does not change during the follow-up period, c_{i}.
- This may cause dome misspecification problem. For the cases of time-varying x_{i}, see Heckman and Singer (Social Science Duration Analysis, 1985, Ch. 2).

(5) Checking Specification

- Consequences of distributional misspecification:
- $\hat{\beta}_{M L}$ would be inconsistent.
- Even if the ML estimator may be consistent for some special cases, it could be inconsistent. When it is consistent, use $\left(H_{N}\right)^{-1} B_{N}\left(H_{N}\right)^{-1}$ to estimate $\operatorname{Cov}\left(\hat{\beta}_{M L}\right)$. [See Gourieroux, Monfort and Trognon (ECON, 1984).]
- Vuong Test [Vuong (ECON, 1989)]
- Wish to decide on which of two competing models would be more plausible.
- Here, the goal is not to find the correct model, but to find a better model between $\mathrm{f}\left(\mathrm{t}_{\mathrm{i}} \mid \mathrm{x}_{\mathrm{i}}, \theta\right)$ and $\mathrm{g}\left(\mathrm{t}_{\mathrm{i}} \mid \mathrm{z}_{\mathrm{i}}, \gamma\right)$. Both models could be misspecified.
[CASE 1] Nonnested Models
- EX: Weibull Vs. Log-normal.
- Let θ_{*} and γ_{*} be the maximizers of $E[f(t \mid x, \theta)]$ and
$E[g(t \mid z, \gamma)]$, respectively.
- $\omega_{*}^{2}=\operatorname{var}\left(\log \frac{f\left(y \mid x, \theta_{*}\right)}{g\left(y \mid z, \gamma_{*}\right)}\right)$.
- $H_{o}: E\left[\log \frac{f\left(y \mid x, \theta_{*}\right)}{g\left(y \mid z, \gamma_{*}\right)}\right]=0$;
$H_{f}: E\left[\log \frac{f\left(y \mid x, \theta_{*}\right)}{g\left(y \mid z, \gamma_{*}\right)}\right]>0 ; H_{g}: E\left[\log \frac{f\left(y \mid x, \theta_{*}\right)}{g\left(y \mid z, \gamma_{*}\right)}\right]<0$.
- Let $\hat{\theta}_{N}$ and $\hat{\gamma}_{N}$ be the ML estimators based on $\mathrm{f}\left(\mathrm{t}_{\mathrm{i}} \mid \mathrm{x}_{\mathrm{i}}, \theta\right)$ and $\mathrm{g}\left(\mathrm{t}_{\mathrm{i}} \mid \mathrm{z}_{\mathrm{i}}, \gamma\right)$, respectively.
- Define:

$$
\begin{aligned}
& \hat{l}_{i}=\log \frac{f\left(t_{i} \mid x_{i}, \hat{\theta}_{N}\right)}{g\left(t_{i} \mid z_{i}, \hat{\gamma}_{N}\right)} ; \hat{l}_{N}=\Sigma_{i=1}^{N} \hat{l}_{i} ; \\
& \hat{\omega}_{N}^{2}=\frac{1}{N} \Sigma_{i=1}^{N}\left[\hat{l}_{i}\right]^{2}-\left[\frac{1}{N} \hat{l}_{N}\right]^{2} ; \hat{\omega}_{N}=\sqrt{\hat{\omega}_{N}^{2}} ; \\
& t_{N}=\sqrt{N} \frac{\hat{l}_{N}}{\hat{\omega}_{N}} .
\end{aligned}
$$

- Under $\mathrm{H}_{\mathrm{o}}, t_{N} \rightarrow N(0,1)$; Under $\mathrm{H}_{\mathrm{f}}, t_{N} \rightarrow+\infty$; Under $\mathrm{H}_{\mathrm{g}}, t_{N} \rightarrow-\infty$.
[CASE 2] Nested Models
- Exponential vs. Weibull with same regressors $\mathrm{x}_{\mathrm{i}}=\mathrm{z}_{\mathrm{i}}$.
- Assume $g\left(y_{i} \mid z_{i}, \gamma_{*}\right) \subset f\left(y_{i} \mid x_{i}, \theta_{*}\right)$.
- $H_{o}: g\left(y_{i} \mid z_{i}, \gamma_{*}\right)=f\left(y_{i} \mid x_{i}, \theta_{*}\right)$;
$H_{a}: g\left(y_{i} \mid z_{i}, \gamma_{*}\right) \neq f\left(y_{i} \mid x_{i}, \theta_{*}\right)$
- The usual LR statistic, $2 \hat{l}_{N}$, is not χ^{2} under H_{0} if both models are misspecificed [in fact, a weighted χ^{2}].
- If the general model $\left[f\left(y_{i} \mid x_{i}, \theta_{*}\right)\right]$ is correctly specified, then ,the LR statistic is χ^{2} under H_{0}.
- Rule of Thumb Methods:

1) Compare the ML results to non-parametric estimates of $h(t)$ or $s(t)$ ["Kaplan-Meier" estimates].
2) Consider whether estimated parameters are reasonably signed. [Compare to Cox' proportional hazard model (a semi-parametric model).]

(6) Heteroskedasticity

- Suppose that $\theta=\binom{\beta}{\sigma}$ differs across different $\mathrm{i}\left(\theta_{\mathrm{i}}\right)$. If you estimate a model incorrectly assuming θ constant, the estimated hazard functions tend to be biased to negative duration dependence [Heckman and Singer, 1985, Ch. 2].
- Heckman and Singer's suggestion (ECON, 1984)
- Assume that the θ_{i} are random variables with $\mathrm{pdf} \mathrm{g}\left(\theta_{\mathrm{i}}\right)$.
- $f\left(t_{i}, \theta_{i} \mid x_{i}\right)=f\left(t_{i} \mid x_{i}, \theta_{i}\right) g\left(\theta_{i}\right)$.
- $f\left(t_{i} \mid x_{i}\right)=\int f\left(t_{i} \mid x_{i}, \theta_{i}\right) d \theta_{i}$.
- Estimate $\mathrm{g}\left(\theta_{\mathrm{i}}\right)$ non-parametrically. Then, using the estimated $\mathrm{g}\left(\theta_{\mathrm{i}}\right)$, estimate $\mathrm{f}\left(\mathrm{t}_{\mathrm{i}} \mid \mathrm{x}_{\mathrm{i}}\right)$.
- How about specifying $g\left(\theta_{\mathrm{i}}\right)$?
$\rightarrow \quad$ Results are too sensitive to specification of $g\left(\theta_{\mathrm{i}}\right)$.
$\rightarrow \quad \mathrm{H}-\mathrm{S}$ develop a nonparametric method than can estimate $\mathrm{g}\left(\theta_{\mathrm{i}}\right)$.

(7) Proportional Hazards

- Cox (Biometrika, 1975).
- A partial solution to the problem of distributional misspecifications.
- $\mathrm{h}\left(\mathrm{t} \mid \mathrm{x}_{\mathrm{i}}, \beta\right)=\mathrm{h}_{\mathrm{o}}(\mathrm{t}) \lambda_{\mathrm{i}}$,
where $\lambda_{\mathrm{i}}=\exp \left(-\mathrm{x}_{\mathrm{i}}^{\prime} \beta\right)$ and $\mathrm{h}_{\mathrm{o}}(\mathrm{t})$ is the common trend (baseline hazard) among i.
- Partial likelihood:
- Suppose that n individuals (out of N) exit within the follow-up periods.
- Order them by $0=\mathrm{t}_{0}<\mathrm{t}_{1}<\mathrm{t}_{2}<\ldots<\mathrm{t}_{\mathrm{n}}$:
- Don't use censored people.
- Assume no tie (for convenience only. Can allow ties).
- $R\left(t_{j}\right)=\left\{i \mid\right.$ not yet exit just prior ro $\left.t_{j}\right\}$ where i is a person "at risk" at time t_{j}

$$
=\{j, j+1, \ldots, n\} .
$$

Short Digression:

- Question:
- Bob and Steve went fishing.
- A fish on the pond.
- Bob uses very good baits, so that the probability $\left(\mathrm{P}_{\mathrm{B}}\right)$ of Bob's catching the fish (if he fishes alone) $=1$.
- Steve uses bad baits, so that the probability $\left(\mathrm{P}_{\mathrm{S}}\right)$ of Steve's catching fish (if he fishes alone) $=1 / 4$.
- What is the conditional probability that Steve caught the fish given that one of Bob and Steve caught that fish? [One of Steve and Bob caught a fish. What is the probability that it is Steve?]
- Answer:

$$
\frac{P_{S}}{P_{S}+P_{B}}=\frac{1 / 4}{1 / 4+1}=\frac{1}{5}
$$

End of Digression

- Probability that " j " exits after time t_{j} given that one person in $\mathrm{R}\left(\mathrm{t}_{\mathrm{j}}\right)$ fails just after t_{j}

$$
=\frac{h\left(t_{j} \mid x_{j}, \beta\right)}{\sum_{i \in R\left(t_{j}\right)} h\left(x_{i} \mid x_{i}, \beta\right)}=\frac{h_{o}\left(t_{j}\right) \exp \left(-x_{j}^{\prime} \beta\right)}{\sum_{i \in R\left(t_{j}\right)} h_{o}\left(t_{j}\right) \exp \left(-x_{i}^{\prime} \beta\right)}=\frac{\exp \left(-x_{j}^{\prime} \beta\right)}{\sum_{i \in R\left(t_{j}\right)} \exp \left(-x_{i}^{\prime} \beta\right)} .
$$

- If there are m_{j} ties at time t_{j}, let $\mathrm{x}_{\mathrm{j}, \mathrm{h}}$ be the vector of regressors for the h 'th person $\left(h=1, \ldots, m_{j}\right)$ in the group with t_{j}. Then use:

$$
\prod_{h=1}^{m_{j}} \frac{\exp \left(-x_{j, h}^{\prime} ' \beta\right)}{\sum_{i \in R\left(t_{j}\right)} \exp \left(-x_{i}^{\prime} \beta\right)} .
$$

All of the m_{j} persons should be in $R\left(t_{j}\right)$.

- If an individual's spell is censored between t_{j} and t_{j+1}, the person will be included in the denominators of $R\left(t_{i}\right)$ for $i=$ $1, \ldots, j$, but not for $\mathrm{i}=\mathrm{j}+1, \ldots$. The person does not influence the numerators.
- Partial ML estimation:
- $l_{N}(\beta)=\sum_{j=1}^{n} \log \left(\frac{\exp \left(-x_{j}^{\prime} \beta\right)}{\sum_{i \in R\left(t_{j}\right)} \exp \left(-x_{i}^{\prime} \beta\right)}\right)$.
- Let $\mathrm{m}_{\mathrm{j}}=\#$ of exits at time t_{j}. Then,

$$
\hat{h}_{o}\left(t_{j}\right)=\frac{m_{j}}{\sum_{i \in R\left(t_{j}\right)} \exp \left(-x_{i}^{\prime} \beta\right)} .
$$

- $\hat{H}_{o}\left(t_{j}\right)=\sum_{i=1}^{j} \hat{h}_{o}\left(t_{i}\right)$.
- $\hat{S}\left(t_{j} \mid x_{i}\right)=\exp \left[-\hat{H}_{o}\left(t_{j}\right) \exp \left(-x_{i}^{\prime} \beta\right)\right]$.
- It can be shown (Kiefer, 1988, JEL) that

$$
\begin{aligned}
v_{i}= & x_{j}^{\prime} \beta-\ln \left[-\ln s\left(t_{j} \mid x_{j}\right)\right] \sim \exp \left(-v_{i}\right) \exp \left(-\exp \left(v_{i}\right)\right) . \\
& {[\text { pdf of the extreme-value distribution] }}
\end{aligned}
$$

- So, the model specification of the proportional hazard can be tested by investigating the distribution of the \hat{v}_{i}.

(8) Non-Parametric Approach

- Let $\mathrm{c}_{\max }=$ maximum follow-up periods.
- Divide this interval into k equal subintervals:

$$
0=\mathrm{t}_{0}<\mathrm{t}_{1}<\ldots<\mathrm{t}_{\mathrm{j}-1}<\mathrm{t}_{\mathrm{j}}<\mathrm{t}_{\mathrm{k}}=\mathrm{c}_{\max } .
$$

- Define:
- $\mathrm{r}_{\mathrm{j}}=\#$ of people in $\left(\mathrm{t}_{\mathrm{j}-1} \mathrm{t}_{\mathrm{j}}\right]$
= \# of people "at risk"
$=\#$ of all people $-\#$ of people who exited in $\left(0, \mathrm{t}_{\mathrm{j}-1}\right]$
- (\# of people censored in $\left.\left(\mathrm{t}_{\mathrm{j}-1}, \mathrm{t}_{\mathrm{j}}\right]\right) / 2$
- $\mathrm{n}_{\mathrm{j}}=\#$ of people who exit in $\left(\mathrm{t}_{\mathrm{j}-1}, \mathrm{t}_{\mathrm{j}}\right]$.
- $\hat{h}\left(t_{j}\right)=\frac{n_{j}}{r_{j}}$ [Kaplan-Meier estimator].
- $\hat{H}\left(t_{j}\right)=\sum_{a=1}^{j} \hat{h}\left(t_{a}\right)$.
- $\hat{S}\left(t_{j}\right)=\exp \left(-\hat{H}\left(t_{j}\right)\right)$.
- Comments
- No regressors.
- Can determine what $h(t)$ looks like.

(9) Split Population Model

- Schmidt and Witte (1989, JEC)
- So far, we have assumed that $\mathrm{S}(\mathrm{t} \mid \theta)=1-\mathrm{F}(\mathrm{t} \mid \theta) \rightarrow 0$ as $\mathrm{t} \rightarrow \infty$. [This means that an ex-prisoner will return to prison surely some time in the future.] But, it might be the case that $\mathrm{s}(\mathrm{t} \mid \theta)=1$ for some individuals. [Some ex-prisoners will never return to prison.]
- Assumptions:
- $y_{i}^{*}=z_{i}^{\prime} \gamma+v_{i}$, where the v_{i} are $\mathrm{N}(0,1)$ (or logistic)

$$
\rightarrow\left\{\begin{array}{l}
y_{i}=1 \text { iff } y_{i}^{*}>0 \Rightarrow \text { no return } ; \\
y_{i}=0 \text { iff } y_{i}^{*}<0 \Rightarrow \text { return some time }
\end{array}\right.
$$

$\rightarrow \quad \operatorname{Pr}($ i never returns $)=\Phi\left(z_{i}^{\prime} \gamma\right) ;$
$\operatorname{Pr}(\mathrm{i}$ returns some time $)=1-\Phi\left(z_{i}^{\prime} \gamma\right)$.

- For the people with $y_{i}^{*}<0, t_{i}^{*}$ is the length of actual exit time. [t_{i}^{*} is defined only for the people with $y_{i}^{*}>0$.]
$\rightarrow \quad$ Let t_{i} be the observed length of exit time. Then,

$$
t_{i}=\left\{\begin{array}{l}
t_{i}^{*} \text { if } t_{i}^{*}<c_{i} \\
c_{i} \text { if } t_{i}^{*} \geq c_{i}
\end{array}\right.
$$

- Let $g\left(t_{i}^{*} \mid y_{i}=0\right)$ be the pdf of t_{i}^{*} conditional on $\mathrm{y}_{\mathrm{i}}=0$. Assume:

$$
g\left(t_{i}^{*} \mid y_{i}=0\right)=f\left(t_{i}^{*} \mid x_{i}, \theta\right),
$$

where f is exponential, Weibull, etc.

$$
\begin{aligned}
\operatorname{Pr}\left(t_{i}<c_{i}\right) & =\operatorname{Pr}\left(y_{i}=0, t_{i}^{*}<0\right)=\operatorname{Pr}\left(t_{i}^{*}<c_{i} \mid y_{i}=0\right) \operatorname{Pr}\left(y_{i}=0\right) \\
& =F\left(c_{i} \mid x_{i}, \theta\right)\left[1-\Phi\left(z_{i}^{\prime} \gamma\right)\right]=\left[1-S\left(c_{i} \mid x_{i}, \theta\right)\right]\left[1-\Phi\left(z_{i}^{\prime} \gamma\right)\right] \\
& =1-\Phi\left(z_{i}^{\prime} \gamma\right)-S\left(c_{i} \mid x_{i}, \theta\right)\left[1-\Phi\left(z_{i}^{\prime} \gamma\right)\right] . \\
\operatorname{Pr}\left(t_{i}=c_{i}\right) & =1-F\left(c_{i} \mid x_{i}, \theta\right)\left[1-\Phi\left(z_{i}^{\prime} \gamma\right)\right] \\
& =\Phi\left(z_{i}^{\prime} \gamma\right)+S\left(c_{i} \mid x_{i}, \theta\right)\left[1-\Phi\left(z_{i}^{\prime} \gamma\right)\right] \\
g\left(t_{i}^{*} \mid t_{i}<c_{i}\right) & =g\left(t_{i}^{*} \mid y_{i}=0, t_{i}^{*}<c_{i}\right)=f\left(t_{i}^{*} \mid t_{i}^{*}<c_{i}\right) \\
& =\frac{f\left(t_{i}^{*}\right)}{\operatorname{Pr}\left(t_{i}^{*}<c_{i}\right)}=\frac{f\left(t_{i}^{*} \mid x_{i}, \theta\right)}{F\left(t_{i}^{*} \mid x_{i}, \theta\right)}
\end{aligned}
$$

- Log-likelihood function:

$$
\begin{aligned}
l_{N}(\theta, \gamma)= & \sum_{t_{i}<c_{i}} \ln \left\{g\left(t_{i} \mid t_{i}<c_{i}\right) \operatorname{Pr}\left(t_{i}<c_{i}\right)\right\}+\sum_{t_{i}=c_{i}} \ln \left\{\operatorname{Pr}\left(t_{i}=c_{i}\right)\right\} \\
= & \sum_{t_{i}<c_{i}} \ln \left\{f\left(t_{i} \mid x_{i}, \theta\right)\left[1-\Phi\left(z_{i}^{\prime} \gamma\right)\right]\right\} \\
& \quad+\sum_{t_{i}=c_{i}} \ln \left\{\Phi\left(z_{i}^{\prime} \gamma\right)+S\left(c_{i} \mid x_{i}, \theta\right)\left[1-\Phi\left(z_{i}^{\prime} \gamma\right)\right]\right\}
\end{aligned}
$$

- Comment:
- If the Kaplan-Meier estimator shows positive duration dependence, it is very hard to get split-population MLE results.
- If it shows rapid negative duration dependence, it is worth trying split MLE.
- Testing split-population model:
- MLE without split,

$$
\left.l_{N}^{R}(\theta, \gamma)=\sum_{t_{i}<c_{i}} \ln \left\{f\left(t_{i} \mid x_{i}, \theta\right)\right\}+\sum_{t_{i}=c_{i}} \ln \left\{S\left(c_{i} \mid x_{i}, \theta\right)\right]\right\},
$$

which is the split log-likelihood function with the restriction

$$
\Phi\left(z_{i}^{\prime} \gamma\right)=0
$$

- $L R_{N}=2\left[l_{N}(\hat{\theta}, \hat{\gamma})-l_{N}^{R}(\tilde{\theta})\right] \rightarrow \chi^{2}(d f=\operatorname{dim}(\gamma))$ under H_{0} : no split.
\rightarrow Really?

(10) Autoregressive Conditional Duration (ACD) Model

- Trading times: $\mathrm{t}_{0}<\mathrm{t}_{1}<\mathrm{t}_{2}<\ldots<\mathrm{t}_{\mathrm{N}}$.
- Duration of an interval (time between two trades): $\mathrm{x}_{\mathrm{i}}=\mathrm{t}_{\mathrm{i}}-\mathrm{t}_{\mathrm{i}-1}$.
- $\operatorname{EACD}(2,2)$ [Exponential ACD of orders 1 and 1]:
- Assume $\mathrm{x}_{\mathrm{i}} \sim \operatorname{exponential}\left(\lambda_{\mathrm{i}}\right)$, where $\psi_{i}=1 / \lambda_{i}$.
- $E\left(x_{i} \mid \Omega_{t_{i-1}}\right)=\psi_{i}$.
- Assume $\psi_{i}=\omega+\alpha_{1} x_{i-1}+\alpha_{2} x_{i-2}+\beta_{1} \psi_{i-1}+\beta_{2} \psi_{i-2}$.
- WACD $(2,2)$ [Weibull ACD of orders 1 and 1]:
- Assume $\left(\mathrm{x}_{\mathrm{i}}\right)^{\mathrm{p}} \sim \operatorname{exponential}\left(\lambda_{\mathrm{i}}\right)$, where $\psi_{i}=1 / \lambda_{i}$.
- Assume $\psi_{i}=\omega+\alpha_{1} x_{i-1}+\alpha_{2} x_{i-2}+\beta_{1} \psi_{i-1}+\beta_{2} \psi_{i-2}$.

