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Abstract

Human based algorithms to catch fly balls have been
research and studied. In this paper, the validity of
the human models are tested by catching balls that are
dropped vertically downward. The regular OAC (Opti-
cal Acceleration Cancellation ) and the inverted OAC
models are simulated first, and then tested experimen-
tally with a mobile robot. The simulation and the ex-
perimental results show that both methods are able to
intercept the dropped ball, but the initial and final mo-
tions are different. A new digital image processing pro-
gram, DVRobot, was written to process digital images
very quickly.

1 Introduction

The digital video robot (DV Robot) is a high-speed
robot programmed to catch fly balls based on human
navigational principles. This high-speed system in-
volves distribution of tasks between computers. Vi-
sion based navigational strategies require tremendous
image processing to extract desired parameters from
the video. A fast computer does this task and then
the information is transmitted to the computer on the
robot, which uses this data in the implementation of
the navigational algorithm.

Digital video systems use IEEE 1394 that provides
a high-speed, Plug and Play-capable bus. The goal
of the protocol is to provide an easy-to-use, low-cost,
high-speed communication line. The protocol is also
very scalable, and provides for both asynchronous and
isochronous applications. High speed video data is
needed for interception tasks because the task lasts
only for 1 to 5 seconds.

A falling object is an interesting interception case
for a mobile robot or a user because the object is
seen falling during the entire task. In psychology case
studies, only the interception of thrown objects which
rise and fall have been studied. We are interested in
modeling, simulating, and experimentally testing vi-
sion based algorithms for navigating towards a falling

Figure 1: An extra computer is added to the Nomad
Scout for image processing. A new program, DVRobot
is written which can capture and analyze images from
1394 Digital Cameras or DV Camcorders.

object.

2 Literature Review

The algorithm for catching dropped balls is based
on the Optical Acceleration Cancellation (OAC)
model [1]. In this model, the fielder selects a run-
ning path to achieve optical acceleration cancellation
of the ball in the image plane or constant optical rate
in the camera’s image plane. For this strategy, fielders
maintain their alignment with the ball and also main-
tain a constant change in the tangent of the optical
angle, tan(α).

There are two modes to simulate the motion of the
camera. In the passive model, the camera is stationary
and the image of the ball in the picture should rise/fall
at a constant rate if d

dt (tan(α)) is to be kept constant.
In active mode, the tilt of the camera is constantly



adjusted using the formula αdes = arctan(Ct) [2].
In our experiments, we have used the active OAC

model [2]. Brancazio had suggested that the accel-
eration of the angle α is a better control variable
than acceleration of tan(α), because it works better
for ball flights undergoing drag [3]. He introduces a
two-component strategy to catch the fly ball - one for
motion initialization and the other for controlling the
running speed. We use the OAC model because it has
also shown that the acceleration of the angle works
only when the projection of the ball is not too steep
[1].

In robotics, Burgstadt and Ferrier have demon-
strated a mobile robot based on the OAC strategy.
In their implementation, they collected acceleration
data from the image, which is very noisy [4]. In our
previous work, we developed perceptual algorithms in
the visual plane by modeling the camera as a passive
or an active device. With the passive OAC model, the
camera is always stationary (no tilting) and the robot
moves to keep the image of the object constantly ris-
ing in the image plane. With the active OAC model,
however, the tilt of the camera is constantly adjusted
according to the rate at which the center of the ball
moves in the image plane, and the robot moves to
maintain the ball at the center of the image. [2, 5, 6].
Experimentally, the mobile robot intercepts the object
more consistently using the active model.

3 Mathematical Modeling and Simulation

3.1 Model for a Falling Object

We developed two mathematical models for deter-
mining how a robot will catch a ball that is dropped
straight down. As compared to previous work in
psychology, the fielder intercepts an object that rises
first and then falls. In this situation, the fielder only
watches the object fall and then must determine a mo-
tion to intercept the object.

In the regular, passive model, the fielder will move
forward to keep the ball rising at a constant rate in
the image plane. We used a drawing package to sim-
ulate a ball falling and a fielder moving towards the
interception point. See Figure 10 at the end of the
paper. As the fielder moves forward, the ball rises a
fixed distance, 100 mm, in the image plane.

In the inverted, passive model, the fielder will move
backward and forward to keep the ball falling at a
constant rate in the image plane. Again a drawing
package is used to simulate the ball falling and a fielder
moving towards the destination. See Figure 11 at the
end of the paper. As the fielder moves, the ball falls
at a constant distance of 60 mm in the image plane.

The first model to be simulated by a computer is
the regular, active OAC strategy similar to the model
discussed in our previous paper [2]. In this model, the
robot actively tilts the camera upward with a constant
rate and maintains the image of the ball to be at the
center of the camera by moving forward or backward.
The robot does not know the exact velocity of the ball,
but it can estimate the rate at which the center of the
ball increases or decreases in the image plane.

In the OAC model, the elevation angle, α, from
the fielder to the object is the fundamental variable.
In the model, the derivative of the tan(α) is constant.
Therefore, tan(α) equals a constant multiplied by time
as well as second constant representing that at the
start of the task the ball has a certain height. The
ball is assumed to fall at xb = 0.

d

dt
tan(α) = C1 (1)

tanα = C1t + C2 (2)

xf =
yb

C1t + C2
(3)

where

C1 =
ẏb(0)
D

(4)

C2 =
yb(0)
D

(5)

D = = xf (0)− xb(0) = xf (0) (6)

The second OAC model is similar to the first model
except that the camera is tilted down from its initial
tilt angle at a rate determined by −C1. The robot
moves backward or forward to center the image of the
ball.

For both models, the tilt angle of the camera is
constantly adjusted using the formula

αdes = arctan(C1t + C2) (7)

By tilting the camera, the desired position of the
image of the ball is always at the center. If the ball
is not at the center of the image, the robot corrects
the error in the image plane by moving forward or
backward. The camera is modeled as a pinhole and
the CCD image rotates about the pinhole axis. Before
the ball is dropped, the robot initially tilts the camera
to center the ball. The regular active OAC model uses
a positive value for the variable C1. The rate of the
image of the ball in the image plane increases. In the
inverted OAC model, we use a negative value for C1.

We use a proportional controller to determine the
velocity of the robot. The error is measured in the im-
age plane while the camera is being constantly tilted.
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Figure 2: The fielder and ball position versus time.
The fielder position for the regular model is always
below the position for the inverted model because in
the first model the fielder’s initial velocity is much
larger.

ẋf = KpD

((
yb

xf

)
∓ C1t − C2

)
cos (arctan (±C1t + C2))

(8)

In all simulations, the proportional gain, Kp = 1.5,
C1 = ±40, xb = 0, and zb = 1000− 10t2. To show the
robustness of the control algorithm, the simulations for
both models are performed with three different initial
positions, xf = 50, 200, and 300. The simulation re-
sults show that the fielder intercepts the ball in all the
above initial conditions. See Figures 2 and 5. In the
regular, active OAC strategy, the fielder starts with a
high initial velocity so that the image of the dropping
ball increases in the image plane, and the fielder starts
slowing down as he nears the ball. On the other hand,
in the inverted, active OAC model, the fielder starts
with a low velocity in the beginning and speeds up at
the end to intercept the ball. See Figure 3. In Figure
4, the actual ball image for inverted OAC model drops
at the end of the simulation and causes the fielder to
run very fast to intercept the ball.

4 Experiment

4.1 Set Up

In our experiment, we used a Nomad Super Scout
robot from Nomadic Technologies Inc. with an addi-
tional pan-tilt mechanism installed on it. The com-
puter on the robot runs Linux as the operating sys-
tem. We used a SONY digital camcorder with a built
in FirewireTM IEEE 1394 port for video transmis-
sion. The laptop computer processing the images has
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Figure 3: The fielder velocities during the interception
task versus time. In the simulation for the regular
model, the fielder moves quickly backward to catch the
ball. In the simulation for the inverted OAC model,
the fielder moves forward (positive velocity away from
the ball) and then backwards to catch the ball. In
the inverted model, the fielder’s velocity is very large
(negative) at the end of the task.

a Firewire card installed on it. The image processing
computer and the computer in the robot communi-
cate via an Ethernet cable. We have developed our
own data acquisition software - DVRobotVideo that
runs on Windows 98, NT, and 2000 platforms. The
software tracks the target by matching the RGB (red,
blue, green) intensities of the pixels of the image with
preset target colors. The RGB values can be set at run
time. A standard calculation is used to find the center
of mass of the target. The software allows for four res-
olutions of the image - 720x480, 360x240, 180x120 and
80x60. Our computer can process images at the rate
of 15 frames per second at 320x240 resolution. Faster
machines can easily process 30 frames per second at
the 720x480 resolution.

In this paper, we discuss the OAC model applied to
the special case of a ball falling vertically down instead
of it following a usual parabolic path. It is assumed
that the robot is initially aligned with the ball and
so this task consists of a one-dimensional motion of
the robot. The ball is first centered in the image by
tilting the camera. The fall rate is then determined in
the next few frames. Two cases of this OAC strategy
are implemented. In the first case, the regular OAC,
the drop rate, C1 is taken to be a positive value. Hence
the camera tilts upwards at a constant rate and the
robot velocity is computed so as to keep the center
of mass of the ball at the center of the image (i.e.
the desired center). In the second case, the inverted
OAC, a negative value of C1 is implemented in the
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Figure 4: The image of the ball is projected on the
background scenery. In the regular OAC model, the
image of the ball stays close to the desired image.

controller such that the camera dips at a constant rate.
Again the robot velocity is adjusted to cancel the error
between the actual position of the center of mass of the
target and the desired position.

It should be noted that when regular OAC is used,
the desired location of the center of mass of the target
should rise in the image plane. But because the pan-
tilt mechanism is actively controlled and tilted at the
desired rate given by C1, the desired position of the
center of the target is always at the center of the image.
The same argument is true for the inverted active OAC
model.

4.2 Dropped Ball, regular OAC

The response of the robot in this case is shown in
Figure 6 and Figure 7. As the camera tilts upward
and the ball is falling, the image of the ball drops to
the lower half of the image plane, thus, causing the
robot to move forward. In the first few seconds of the
motion, the deviation from the desired center is large;
therefore, the robot velocity is high as well. As the ball
continues its motion downwards, the error between the
actual position of the ball and the desired position (the
center of the image) decreases. Because of the smaller
errors close to interception, the robot’s velocity is low.

4.3 Dropped Ball, inverted OAC

In this case, the camera first centers the ball by
tilting up or down depending on the position of the
ball in the image plane. The data from the next few
frames are used to determine the drop rate of the ball.
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Figure 5: The fielder’s and ball position versus time
for different initial fielder positions, xf = 50 and 300.
At a given time instant, the fielder position for the
regular OACmodel is always below the position for the
inverted model because in the first model the fielder’s
initial velocity is much larger.
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Figure 6: y coordinate of the ball, Regular OAC.

The camera is then tilted down at a constant rate pro-
portional to the drop rate. Since the camera is tilting
down and the ball is also falling, the error in the actual
position of the ball during the initial motion is small,
causing the robot to move slowly. See Figure 8. As
the ball gains velocity, the error also increases in mag-
nitude and so does the robot velocity. The increase in
velocity can be seen in Figure 9.

5 Conclusion

In both experiments and simulations, keeping the
ball rising at a constant rate or falling at a constant
rate in the image plane (positive and negative C1) de-
termine strategies for catching a vertically falling ob-
ject. The experiments corroborate the simulations in
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Figure 11: The fielder moves from position (t0, t1, t3, t5, t7) to position t9. In the inverted case, the fielder actually
moves backward at the beginning and then forwards to intercept the object. The ball falls a constant 60 mm in
the image plane.
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Figure 7: Velocities, Regular OAC.
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Figure 8: y coordinate of the ball, Inverted OAC.
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Figure 9: Velocities, Inverted OAC.

showing that the initial motion of the robot is fast
in the case of positive C1 in contrast to negative C1

where the robot must drastically speed up at the end
of the task.

We believe that collaborative research between per-
ceptual Psychology and Robotics will aid in the de-
velopment and validation of human perceptual algo-
rithms that will allow us to explore and systematically
quantify the limits of control variable parameters in
the image plane for real world conditions.
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Figure 10: The fielder moves from the left to the right
to intercept the object. The distance from the fielder
to the image plane is a constant 50 mm simulating
that the focal distance is constant in the camera. As
the fielder moves forward, the ball rises in the image
plane by a constant 100 mm. Note, initially, there is a
finite elevation angle between the fielder and the ball.


